首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li J  Deng HW 《Genetics》2000,154(4):1893-1906
The Deng-Lynch method was developed to estimate the rate and effects of deleterious genomic mutations (DGM) in natural populations under the assumption that populations are either completely outcrossing or completely selfing and that populations are at mutation-selection (M-S) balance. However, in many plant and animal populations, selfing or outcrossing is often incomplete in that a proportion of populations undergo inbreeding while the rest are outcrossing. In addition, the degrees of deviation of populations from M-S balance are often not known. Through computer simulations, we investigated the robustness and the applicability of the Deng-Lynch method under different degrees of partial selfing or partial outcrossing and for nonequilibrium populations approaching M-S balance at different stages. The investigation was implemented under constant, variable, and epistatic mutation effects. We found that, generally, the estimation by the Deng-Lynch method is fairly robust if the selfing rate (S) is <0.10 in outcrossing populations and if S > 0.8 in selfing populations. The estimation may be unbiased under partial selfing with variable and epistatic mutation effects in predominantly outcrossing populations. The estimation is fairly robust in nonequilibrium populations at different stages approaching M-S balance. The dynamics of populations approaching M-S balance under various parameters are also studied. Under mutation and selection, populations approach balance at a rapid pace. Generally, it takes 400-2000 generations to reach M-S balance even when starting from homogeneous individuals free of DGM. Our investigation here provides a basis for characterizing DGM in partial selfing or outcrossing populations and for nonequilibrium populations.  相似文献   

2.
Most models of quasi-species evolution predict that populations will evolve to occupy areas of sequence space with the greatest concentration of neutral sequences, thus minimizing the deleterious mutation rate and creating mutationally 'robust' genomes. In contrast, empirical studies of the principal model of quasi-species evolution, RNA viruses, suggest that the effects of deleterious mutations are more severe than in similar DNA-based microbes. We demonstrate that populations divided into discrete patches connected by dispersal may favour genotypes where the deleterious effect of non-neutral mutations is maximized. This effect is especially strong in the absence of back mutation and when the amount of time spent in hosts prior to dispersal is intermediate. Our results indicate that RNA viruses that produce acute infections initiated by a small number of virions are expected to evolve fragile genetic architectures when compared with other RNA viruses.  相似文献   

3.
Soll SJ  Díaz Arenas C  Lehman N 《Genetics》2007,175(1):267-275
The accumulation of slightly deleterious mutations in populations leads to the buildup of a genetic load and can cause the extinction of populations of small size. Mutation-accumulation experiments have been used to study this process in a wide variety of organisms, yet the exact mutational underpinnings of genetic loads and their fitness consequences remain poorly characterized. Here, we use an abiotic system of RNA populations evolving continuously in vitro to examine the molecular events that can instigate a genetic load. By tracking the fitness decline of ligase ribozyme populations with bottleneck sizes between 100 and 3000 molecules, we detected the appearance and subsequent fixation of both slightly deleterious mutations and advantageous mutations. Smaller populations went extinct in significantly fewer generations than did larger ones, supporting the notion of a mutational meltdown. These data suggest that mutation accumulation was an important evolutionary force in the prebiotic RNA world and that mechanisms such as recombination to ameliorate genetic loads may have been in place early in the history of life.  相似文献   

4.
Jiang X  Xu Z  Li J  Shi Y  Wu W  Tao S 《PloS one》2011,6(11):e27757
We study the dynamics of adaptation in asexual populations that undergo both beneficial and deleterious mutations. In particular, how the deleterious mutations affect the fixation of beneficial mutations was investigated. Using extensive Monte Carlo simulations, we find that in the "strong-selection weak mutation (SSWM)" regime or in the "clonal interference (CI)" regime, deleterious mutations rarely influence the distribution of "selection coefficients of the fixed mutations (SCFM)"; while in the "multiple mutations" regime, the accumulation of deleterious mutations would lead to a decrease in fitness significantly. We conclude that the effects of deleterious mutations on adaptation depend largely on the supply of beneficial mutations. And interestingly, the lowest adaptation rate occurs for a moderate value of selection coefficient of deleterious mutations.  相似文献   

5.
S Pálsson  P Pamilo 《Genetics》1999,153(1):475-483
The effects of recessive, deleterious mutations on genetic variation at linked neutral loci can be heterozygosity-decreasing because of reduced effective population sizes or heterozygosity-increasing because of associative overdominance. Here we examine the balance between these effects by simulating individual diploid genotypes in small panmictic populations. The haploid genome consists of one linkage group with 1000 loci that can have deleterious mutations and a neutral marker. Combinations of the following parameters are studied: gametic mutation rate to harmful alleles (U), population size (N), recombination rate (r), selection coefficient (s), and dominance (h). Tight linkage (r 相似文献   

6.
Gordo I  Campos PR 《Genetics》2008,179(1):621-626
The evolutionary advantage of sexual reproduction has been considered as one of the most pressing questions in evolutionary biology. While a pluralistic view of the evolution of sex and recombination has been suggested by some, here we take a simpler view and try to quantify the conditions under which sex can evolve given a set of minimal assumptions. Since real populations are finite and also subject to recurrent deleterious mutations, this minimal model should apply generally to all populations. We show that the maximum advantage of recombination occurs for an intermediate value of the deleterious effect of mutations. Furthermore we show that the conditions under which the biggest advantage of sex is achieved are those that produce the fastest fitness decline in the corresponding asexual population and are therefore the conditions for which Muller's ratchet has the strongest effect. We also show that the selective advantage of a modifier of the recombination rate depends on its strength. The quantification of the range of selective effects that favors recombination then leads us to suggest that, if in stressful environments the effect of deleterious mutations is enhanced, a connection between sex and stress could be expected, as it is found in several species.  相似文献   

7.
We studied the effects of population size on the inbreeding depression and genetic load caused by deleterious mutations at a single locus. Analysis shows how the inbreeding depression decreases as population size becomes smaller and/or the rate of inbreeding increases. This pattern contrasts with that for the load, which increases as population size becomes smaller but decreases as inbreeding rate goes up. The depression and load both approach asymptotic limits when the population size becomes very large or very small. Numerical results show that the transition between the small and the large population regimes is quite rapid, and occurs largely over a range of population sizes that vary by a factor of 10. The effects of drift on inbreeding depression may bias some estimates of the genomic rate of deleterious mutation. These effects could also be important in the evolution of breeding systems in hermaphroditic organisms and in the conservation of endangered populations.  相似文献   

8.
The structure and organization of natural plant populations can be understood by estimating the genetic parameters related to mating behavior, recombination frequency, and gene associations with DNA-based markers typed throughout the genome. We developed a statistical and computational model for estimating and testing these parameters from multilocus data collected in a natural population. This model, constructed by a maximum likelihood approach and implemented within the EM algorithm, is shown to be robust for simultaneously estimating the outcrossing rate, recombination frequencies and linkage disequilibria. The algorithm built with three or more markers allows the characterization of crossover interference in meiosis and high-order disequilibria among different genes, thus providing a powerful tool for illustrating a detailed picture of genetic diversity and organization in natural populations. Computer simulations demonstrate the statistical properties of the proposed model. This multilocus model will be useful for studying the pattern and amount of genetic variation within and among populations to further infer the evolutionary history of a plant species.  相似文献   

9.
J Wang  W G Hill 《Genetics》1999,153(3):1475-1489
Transition matrices for selfing and full-sib mating were derived to investigate the effect of selection against deleterious mutations on the process of inbreeding at a linked neutral locus. Selection was allowed to act within lines only (selection type I) or equally within and between lines (type II). For selfing lines under selection type I, inbreeding is always retarded, the retardation being determined by the recombination fraction between the neutral and selected loci and the inbreeding depression from the selected locus, irrespective of the selection coefficient (s) and dominance coefficient (h) of the mutant allele. For selfing under selection type II or full-sib mating under both selection types, inbreeding is delayed by weak selection (small s and sh), due to the associative overdominance created at the neutral locus, and accelerated by strong selection, due to the elevated differential contributions between alternative alleles at the neutral locus within individuals and between lines (for selection type II). For multiple fitness loci under selection, stochastic simulations were run for populations with selfing, full-sib mating, and random mating, using empirical estimates of mutation parameters and inbreeding load in Drosophila. The simulations results are in general compatible with empirical observations.  相似文献   

10.
Li J  Deng HW 《Heredity》2005,95(1):59-68
Under several assumptions such as infinite population size with unlinked loci at linkage equilibrium (LD) under mutation-selection (M-S) balance, the rate (U), and the average effects (dominance and selection coefficients h and s) of deleterious genomic mutations (DGM) can be estimated by the Deng-Lynch method in some natural populations. However, all natural populations are finite in size and many of them are not large enough to be considered as approximately infinite. In the absence of an analytical estimation approach to characterize DGM in finite populations, we test the robustness and applicability of the Deng-Lynch method in finite populations with computer simulations. The results indicate that the estimation obtained by the Deng-Lynch method in finite populations with LD is generally robust when population size is greater than 400. With constant mutation effects, in outcrossing populations, the estimates U and ? are unbiased or only slightly upwardly biased, and ? is unbiased for most cases. In highly selfing populations, U and ? are upwardly biased, U is no more than 1.5U and ? is less than 1.1 h, and ? is either unbiased or slightly downwardly biased. With variable mutation effects, U ranges from 0.56 to 0.72U, and s ranges from 1.4 to 1.8s. Generally speaking, with the same finite population size, the estimation in outcrossing populations is better than in highly selfing populations. Given that even the order of the magnitude of the parameters of DMG (U in particular) is controversial, our investigation here may provide a basis for using the Deng-Lynch method to characterize DGM in finite populations of size greater than 400 in the presence of LD.  相似文献   

11.
In a large population of constant size, there is a unique equilibrium distribution for every deleterious autosomal dominant or deleterious X-linked gene. The purpose of this paper is to determine the mean vector and covariance matrix for such an equilibrium distribution. The theory of branching processes with immigration provides the framework for our investigation. Autosomal dominants can be treated using single-type branching processes; X-linked genes, using two-type branching processes. Application is made to Huntington's chorea and Becker's muscular dystrophy.  相似文献   

12.
Caenorhabditis elegans can reproduce exclusively by self-fertilization. Yet, males can be maintained in laboratory populations, a phenomenon that continues to puzzle biologists. In this study we evaluated the role of males in facilitating adaptation to novel environments. For this, we contrasted the evolution of a fitness component exclusive to outcrossing in experimental populations of different mating systems. We introgressed a modifier of outcrossing into a hybrid population derived from several wild isolates to transform the wild-type androdioecious mating system into a dioecious mating system. By genotyping 375 single-nucleotide polymorphisms we show that the two populations had similar standing genetic diversity available for adaptation, despite the occurrence of selection during their derivation. We then performed replicated experimental evolution under the two mating systems from starting conditions of either high or low levels of diversity, under defined environmental conditions of discrete non-overlapping generations, constant density at high population sizes (N = 104), no obvious spatial structure and abundant food resources. During 100 generations measurements of sex ratios and male competitive performance showed: 1) adaptation to the novel environment; 2) directional selection on male frequency under androdioecy; 3) optimal outcrossing rates of 0.5 under androdioecy; 4) the existence of initial inbreeding depression; and finally 5) that the strength of directional selection on male competitive performance does not depend on male frequencies. Taken together, these results suggest that androdioecious males are maintained at intermediate frequencies because outcrossing is adaptive.  相似文献   

13.
14.
Potatoes(Solanum tuberosum L.) represent an important tuber crop, worldwide. During its prolonged clonal propagation, numerous deleterious mutations have accumulated in the potato genome,leading to severe inbreeding depression; however,the shaping of this mutation burden during polyploidization and improvement is largely unknown.Here, we sequenced 20 diploid landraces of the Stenotomum group, eight tetraploid landraces, and 20 tetraploid modern cultivars, to analyze variations in their deleterious mutations. We show that deleterious mutations accumulated rapidly during the polyploidization of tetraploid potatoes. This study provides a foundation for future potato improvement.  相似文献   

15.
A multilocus stochastic model is developed to simulate the dynamics of mutational load in small populations of various sizes. Old mutations sampled from a large ancestral population at mutation-selection balance and new mutations arising each generation are considered jointly, using biologically plausible lethal and deleterious mutation parameters. The results show that inbreeding depression and the number of lethal equivalents due to partially recessive mutations can be partly purged from the population by inbreeding, and that this purging mainly involves lethals or detrimentals of large effect. However, fitness decreases continuously with inbreeding, due to increased fixation and homozygosity of mildly deleterious mutants, resulting in extinctions of very small populations with low reproductive rates. No optimum inbreeding rate or population size exists for purging with respect to fitness (viability) changes, but there is an optimum inbreeding rate at a given final level of inbreeding for reducing inbreeding depression or the number of lethal equivalents. The interaction between selection against partially recessive mutations and genetic drift in small populations also influences the rate of decay of neutral variation. Weak selection against mutants relative to genetic drift results in apparent overdominance and thus an increase in effective size (Ne) at neutral loci, and strong selection relative to drift leads to a decrease in Ne due to the increased variance in family size. The simulation results and their implications are discussed in the context of biological conservation and tests for purging.  相似文献   

16.
Hunter disease, an X-linked recessive lethal, has recently been observed to occur in high frequency in Israeli Jews as compared with other Caucasian populations. Using the equilibrium distribution of the number of affected males, one can computed the probability that the excess frequency is due to genetic drift. Our results demonstrate that the elevated frequency of Hunter disease is compatible with drift.  相似文献   

17.
Allopatric speciation is often assumed to occur as a consequence of adaptive divergence between two isolated populations. However, there are some scenarios in which reproductive isolation can be favored due to accumulated unconditionally deleterious mutations. If deleterious mutations have synergistic epistatic effects, it is shown here that the average fitness of recombinants between two parental lines with a given number of fixed mutations is lower than that of the parents in both the F1 and F2 generations. If individual mutations are only slightly deleterious, then they will tend to fixation at a high enough rate to cause lower hybrid fitness. If the fitness effects of mutation give rise to antagonistic epistasis, the hybrids tend to have a higher average fitness than the parental lines, suggesting a possible scenario for the origin of hybrid vigor. The other model of deleterious mutations investigated is the accumulation of knockout mutants in a duplicated gene family. While neutral in the parental lines, upon contact the F1 and later generations have a significant probability of carrying double knockouts. Under this scenario, selection may also favor reproductive isolation between the two lines. Even when the selection coefficients generated are too low to drive speciation, epistatic interactions between deleterious mutations offer a possible explanation for both outbreeding depression and hybrid vigor.  相似文献   

18.
Mechanisms of stabilization and compensation, that occur in biochemical systems with enzymes modified by harmful mutations are considered. The compensation of such mutations can result in their evolutionary neutralism. The stabilization is considered due to kinetic signals of metabolites which form the direct and feedback connections with enzymes (temporal stabilization), and also the compensation in enzymatic aggregates determined by the changes of conformation (spatial stabilization). Examples of the stabilization in one or several steady states of enzymatic systems are presented. The neutralism of the distortion of inhibitory and catalytic properties of enzymes is shown in the region of stabilization of these properties.  相似文献   

19.
For evolutionary reasons, pollen production is expected to be modified when changes occur in plant mating systems. In this study, outcrossing was enforced through male-sterility in usually autogamous populations of winter wheat. The correlated changes in pollen production were studied after a 6-year period of natural evolution. Both the disappearance of individuals with the lowest pollen production and the increase in the production of fertile pollen per spike were observed in male-fertile plants. The results are interpreted as a selection on male function. Some morphological differences also appeared in evolved populations between male-fertile and male-sterile plants. These differentiations are discussed in light of resource allocation theory.  相似文献   

20.
Cyclically parthenogenetic organisms experience benefits of both sexual and asexual reproductive modes in a constant environment. Sexual reproduction generates new genotypes and may facilitate the purging of deleterious mutations whereas asexuality has a two-fold advantage and enables maintenance of well-fitted genotypes. Asexual reproduction can have a drawback as increased linkage may lead to the accumulation of deleterious mutations. This study presents the results of Monte Carlo simulations of small and infinite diploid populations, with deleterious mutations occurring at multiple loci. The recombination rate and the length of the asexual period, interrupted by sexual reproduction, are allowed to vary. Here I show that the fitness of cyclical parthenogenetic population is dependent on the length of the asexual period. Increased length of the asexual period can lead both to increased segregational load following sexual reproduction and to a stronger effect of deleterious mutations on variation at a linked neutral marker, either by reducing or increasing the variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号