首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural and sexual selection are classically thought to oppose one another, and although there is evidence for this, direct experimental demonstrations of this antagonism are largely lacking. Here, we assessed the effects of sexual and natural selection on the evolution of cuticular hydrocarbons (CHCs), a character subject to both modes of selection, in Drosophila simulans. Natural selection and sexual selection were manipulated in a fully factorial design, and after 27 generations of experimental evolution, the responses of male and female CHCs were assessed. The effects of natural and sexual selection differed greatly across the sexes. The responses of female CHCs were generally small, but CHCs evolved predominantly in the direction of natural selection. For males, profiles evolved via sexual and natural selection, as well as through the interaction between the two, with some male CHC components only evolving in the direction of natural selection when sexual selection was relaxed. These results indicate sex‐specific responses to selection, and that sexual and natural selection act antagonistically for at least some combinations of CHCs.  相似文献   

2.
Sexually dimorphic traits are likely to have evolved through sexually antagonistic selection. However, recent empirical data suggest that intralocus sexual conflict often persists, even when traits have diverged between males and females. This implies that evolved dimorphism is often incomplete in resolving intralocus conflict, providing a mechanism for the maintenance of genetic variance in fitness-related traits. We used experimental evolution in Drosophila melanogaster to directly test for ongoing conflict over a suite of sexually dimorphic cuticular hydrocarbons (CHCs) that are likely targets of sex-specific selection. Using a set of experimental populations in which the transmission of genetic material had been restricted to males for 82 generations, we show that CHCs did not evolve, providing experimental evidence for the absence of current intralocus sexual conflict over these traits. The absence of ongoing conflict could indicate that CHCs have never been the target of sexually antagonistic selection, although this would require the existing dimorphism to have evolved via completely sexlinked mutations or as a result of former, but now absent, pleiotropic effects of the underlying loci on another trait under sexually antagonistic selection. An alternative interpretation, and which we believe to be more likely, is that the extensive CHC sexual dimorphism is the result of past intralocus sexual conflict that has been fully resolved, implying that these traits have evolved genetic independence between the sexes and that genetic variation in them is therefore maintained by alternative mechanisms. This latter interpretation is consistent with the known roles of CHCs in sexual communication in this species and with previous studies suggesting the genetic independence of CHCs between males and females. Nevertheless, direct estimates of sexually antagonistic selection will be important to fully resolve these alternatives.  相似文献   

3.
The relatively small number of ova produced by a female can be fertilized by a single ejaculate in most species. Why females of many species mate with multiple males is therefore enigmatic, especially given that costs associated with remating have been well documented. Recently, it has been argued that females may remate at a maladaptive rate as an outcome of sexually antagonistic coevolution: the evolutionary tug-of-war between manipulation by one sex and resistance to being manipulated by the other sex. We tested this hypothesis experimentally for the evolution of the female remating interval in a naturally promiscuous species, Drosophila melanogaster. In two replicate populations, sexual selection was removed through enforced monogamous mating with random mate assignment, or retained in polyandrous controls. Monogamy constrains the reproductive success of mates to be identical, thereby converting prior conflicts between mates into opportunities for mutualism. Under these experimental conditions, the sexually antagonistic coevolution hypothesis generates explicit predictions regarding the direction of evolutionary change in female remating behaviour. These predictions are contingent upon the mechanism of male manipulation, which may be mediated biochemically by seminal fluids or behaviourally by courtship. Levels of divergence in female remating interval across lines, and in male ejaculatory and courtship effects on female remating, were quantified after 84 generations of selection. Data refute the hypothesis that the evolutionary change in female remating behaviour was due to sexually antagonistic coevolution of courtship signal and receiver traits. The data were, however, consistent with a hypothesis of sexual conflict mediated through ejaculate manipulation. Monogamy-line males evolved ejaculates that were less effective in inducing female non-receptivity and monogamy-line females evolved to remate less frequently, symptomatic of lowered resistance to ejaculate manipulation. The consistency of the results with alternative hypotheses to explain female promiscuity are discussed.  相似文献   

4.
Conflicts of interest between mates can promote the evolution of male traits that reduce female fitness and that drive coevolution between the sexes. The rate of adaptation depends on the intensity of selection and its efficiency, which depends on drift and genetic variability. This leads to the largely untested prediction that coevolutionary adaptations such as those driven by sexual conflict should evolve faster in large populations. We tested this using the bruchid beetle Callosobruchus maculatus, a species where harm inflicted by males is well documented. Although most experimental evolution studies remove sexual conflict, we reintroduced it in populations in which it had been experimentally removed. Both population size and standing genetic variability were manipulated in a factorial experimental design. After 90 generations of relaxed conflict (monogamy), the reintroduction of sexual conflicts for 30 generations favored males that harmed females and females that were more resistant to the genital damage inflicted by males. Males evolved to become more harmful when population size was large rather than when initial genetic variation was enriched. Our study shows that sexual selection can create conditions in which males can benefit from harming females and that selection may tend to be more intense and effective in larger populations.  相似文献   

5.
Theory predicts that males adapt to sperm competition by increasing their investment in testis mass to transfer larger ejaculates. Experimental and comparative data support this prediction. Nevertheless, the relative importance of sperm competition in testis size evolution remains elusive, because experiments vary only sperm competition whereas comparative approaches confound it with other variables, in particular male mating rate. We addressed the relative importance of sperm competition and male mating rate by taking an experimental evolution approach. We subjected populations of Drosophila melanogaster to sex ratios of 1:1, 4:1, and 10:1 (female:male). Female bias decreased sperm competition but increased male mating rate and sperm depletion. After 28 generations of evolution, males from the 10:1 treatment had larger testes than males from other treatments. Thus, testis size evolved in response to mating rate and sperm depletion, not sperm competition. Furthermore, our experiment demonstrated that drift associated with sex ratio distortion limits adaptation; testis size only evolved in populations in which the effect of sex ratio bias on the effective population size had been compensated by increasing the numerical size. We discuss these results with respect to reproductive evolution, genetic drift in natural and experimental populations, and consequences of natural sex ratio distortion.  相似文献   

6.
7.
A proposed benefit to sexual selection is that it promotes purging of deleterious mutations from populations. For this benefit to be realized, sexual selection, which is usually stronger on males, must purge mutations deleterious to both sexes. Here, we experimentally test the hypothesis that sexual selection on males purges deleterious mutations that affect both male and female fitness. We measured male and female fitness in two panels of spontaneous mutation‐accumulation lines of the fly, Drosophila serrata, each established from a common ancestor. One panel of mutation accumulation lines limited both natural and sexual selection (LS lines), whereas the other panel limited natural selection, but allowed sexual selection to operate (SS lines). Although mutation accumulation caused a significant reduction in male and female fitness in both the LS and SS lines, sexual selection had no detectable effect on the extent of the fitness reduction. Similarly, despite evidence of mutational variance for fitness in males and females of both treatments, sexual selection had no significant impact on the amount of mutational genetic variance for fitness. However, sexual selection did reshape the between‐sex correlation for fitness: significantly strengthening it in the SS lines. After 25 generations, the between‐sex correlation for fitness was positive but considerably less than one in the LS lines, suggesting that, although most mutations had sexually concordant fitness effects, sex‐limited, and/or sex‐biased mutations contributed substantially to the mutational variance. In the SS lines this correlation was strong and could not be distinguished from unity. Individual‐based simulations that mimick the experimental setup reveal two conditions that may drive our results: (1) a modest‐to‐large fraction of mutations have sex‐limited (or highly sex‐biased) fitness effects, and (2) the average fitness effect of sex‐limited mutations is larger than the average fitness effect of mutations that affect both sexes similarly.  相似文献   

8.
Whether sexual selection generally promotes or impedes population persistence remains an open question. Intralocus sexual conflict (IaSC) can render sexual selection in males detrimental to the population by increasing the frequency of alleles with positive effects on male reproductive success but negative effects on female fecundity. Recent modeling based on fitness landscape theory, however, indicates that the relative impact of IaSC may be reduced in maladapted populations and that sexual selection therefore might promote adaptation when it is most needed. Here, we test this prediction using bean beetles that had undergone 80 generations of experimental evolution on two alternative host plants. We isolated and assessed the effect of maladaptation on sex‐specific strengths of selection and IaSC by cross‐rearing the two experimental evolution regimes on the alternative hosts and estimating within‐population genetic (co)variance for fitness in males and females. Two key predictions were upheld: males generally experienced stronger selection compared to females and maladaptation increased selection in females. However, maladaptation consistently decreased male‐bias in the strength of selection and IaSC was not reduced in maladapted populations. These findings imply that sexual selection can be disrupted in stressful environmental conditions, thus reducing one of the potential benefits of sexual reproduction in maladapted populations.  相似文献   

9.
In a verbal model, Trivers and Willard proposed that, whenever there is sexual selection among males, natural selection should favor mothers that produce sons when in good condition but daughters when in poor condition. The predictions of this model have been the subject of recent debate. We present an explicit population genetic model for the evolution of a maternal-effect gene that biases offspring sex ratio. We show that, like local mate competition, sexual selection favors female-biased sex ratios whenever maternal condition affects the reproductive competitive ability of sons. However, Fisherian sex-ratio selection, which favors a balanced sex ratio, is an opposing force. We show that the evolution of maternal sex-ratio biasing by these opposing selection forces requires a positive covariance across environments between the sex-ratio bias toward sons (b) and the mating success of sons (r). This covariance alone is not a sufficient condition for the evolution of maternal sex-ratio biasing; it must be sufficiently positive to outweigh the opposing sex-ratio selection. To identify the necessary and sufficient conditions, we partition total evolutionary change into three components: (1) maternal sex-ratio bias, (2) sexual selection on sons, and (3) sex-ratio selection. Because the magnitude of the first component asymmetrically affects the strength of the second, biasing broods toward females in a poor environment evolves faster than the same degree of bias toward males in a good environment. Consequently, female-biased sex ratios, rather than male-biased sex ratios, are more likely to evolve. We discuss our findings in the context of the primary sex-ratio biases observed in strongly sexually selected species and indicate how this perspective can assist the experimental study of sex ratio evolution.  相似文献   

10.
Sexual-selection research increasingly focuses on reproductive conflicts between the sexes. Sexual conflict, divergent evolutionary interests of males and females, can cause rapid antagonistic coevolution of reproductive traits and is a potentially powerful speciation engine. This idea has theoretical and comparative support but remains controversial. Recent experimental evidence from Sepsis cynipsea indicates that populations with greater sexual conflict diverged more quickly; females were less likely to mate with males from other populations when flies had evolved under high levels of sexual conflict. The consequences of this divergence have not been addressed, so here we assess two female fitness surrogates after 44 generations of evolving (and diverging) under three different levels of sexual conflict. Longevity after copulation was negatively associated with the degree of sexual conflict under which flies evolved, and housing females with males also reduced female longevity. Female lifetime reproductive success (LRS) also tended to decrease with increasing conflict. However, there was evidence of either sexual-selection fitness benefits at intermediate levels of sexual selection and conflict or inbreeding depression in the smallest populations (those with the lowest levels of conflict). Nevertheless, the results indicate that there can be a fitness load associated with sexual selection and support claims that sexual conflict can lead to reproductive isolation.  相似文献   

11.
Processes that affect the evolution of female preferences or male display traits involved in mating decisions in different geographic areas have the potential to result in within-species divergence. This could occur via reinforcement of mate recognition in species using the same traits for species recognition and sexual selection. Sympatric individuals experience reinforcement of female preferences and male display traits, whereas allopatric individuals do not, creating the potential for divergent sexual selection in sympatric and allopatric populations. Sexual selection operates on the cuticular hydrocarbons (CHCs) of Drosophila serrata, and reinforcement on the CHCs of populations sympatric with D. birchii. Here, we manipulate sexual selection in D. serrata populations generated by hybridizing natural sympatric and allopatric populations. Under the influence of sexual selection, male CHCs evolved from an intermediate phenotype to resemble an allopatric phenotype, which was driven by female choice. Additionally, female choice resulted in evolution of an allopatric female preference, so that allopatric males were preferred to sympatric males. Allopatric CHCs and preferences represent a sexual selection optimum via female choice. Sympatric populations display suboptimal phenotypes relative to their allopatric conspecifics. The combination of reinforcement and sexual selection can therefore generate divergence in female preferences and male display traits.  相似文献   

12.
Theory predicts that intralocus sexual conflict can constrain the evolution of sexual dimorphism, preventing each sex from independently maximizing its fitness. To test this idea, we limited genome-wide gene expression to males in four replicate Drosophila melanogaster populations, removing female-specific selection. Over 25 generations, male fitness increased markedly, as sexually dimorphic traits evolved in the male direction. When male-evolved genomes were expressed in females, their fitness displayed a nearly symmetrical decrease. These results suggest that intralocus conflict strongly limits sex-specific adaptation, promoting the maintenance of genetic variation for fitness. Populations may carry a heavy genetic load as a result of selection for separate genders.  相似文献   

13.
Postcopulatory sexual selection affects the evolution of numerous features ranging from mating behavior to seminal fluid toxicity to the size of gametes. In an earlier study of the effect of sperm competition risk on sperm size evolution, experimental populations of the nematode Caenorhabditis elegans were maintained either by outcrossing (sperm competition present) or by selfing (no sperm competition), and after 60 generations, significantly larger sperm had evolved in the outcrossing populations. To determine the effects of this selection on population genetic variation, we assessed genetic diversity in a large number of loci using random amplification of polymorphic DNA-PCR. Nearly 80% of the alleles present in parental strain populations persisted in the 6 experimental populations after the 60 generations and, despite a 2.2-fold difference in expected heterozygosity, the resulting levels of genetic variation were equivalent between the outcrossing and selfing experimental populations. By inference, we conclude that genetic hitchhiking due to sexual selection in the experimental populations dramatically reduced genetic diversity. We use the levels of variation in the selfing populations as a control for the effects of drift, and estimate the strength of sexual selection to be strong in obligatorily outcrossing populations. Although sequential hermaphrodites like C. elegans probably experience little sexual selection in nature, these data suggest that sexual selection can profoundly affect diversity in outcrossing taxa.  相似文献   

14.
Historically, bird song complexity was thought to evolve primarily through sexual selection on males; yet, in many species, both sexes sing and selection pressure on both sexes may be broader. Previous research suggests competition for mates and resources during short, synchronous breeding seasons leads to more elaborate male songs at high, temperate latitudes. Furthermore, we expect male–female song structure and elaboration to be more similar at lower, tropical latitudes, where longer breeding seasons and year‐round territoriality yield similar social selection pressures in both sexes. However, studies seldom take both types of selective pressures and sexes into account. We examined song in both sexes in 15 populations of nine‐fairy‐wren species (Maluridae), a Southern Hemisphere clade with female song. We compared song elaboration (in both sexes) and sexual song dimorphism to latitude and life‐history variables tied to sexual and social selection pressures and sex roles. Our results suggest that song elaboration evolved in part due to sexual competition in males: male songs were longer than female songs in populations with low male survival and less male provisioning. Also, female songs evolved independently of male songs: female songs were slower paced than male songs, although only in less synchronously breeding populations. We also found male and female songs were more similar when parental care was more equal and when male survival was high, which provides strong evidence that sex role similarity correlates with male–female song similarity. Contrary to Northern Hemisphere latitudinal patterns, male and female songs were more similar at higher, temperate latitudes. These results suggest that selection on song can be sex specific, with male song elaboration favored in contexts with stronger sexual selection. At the same time, selection pressures associated with sex role similarity appear to favor sex role similarity in song structure.  相似文献   

15.
The outcome of sexual conflict can depend on the social environment, as males respond to changes in the inclusive fitness payoffs of harmfulness and harm females less when they compete with familiar relatives. Theoretical models also predict that if limited male dispersal predictably enhances local relatedness while maintaining global competition, kin selection can produce evolutionary divergences in male harmfulness among populations. Experimental tests of these predictions, however, are rare. We assessed rates of dispersal in female and male seed beetles Callosobruchus maculatus, a model species for studies of sexual conflict, in an experimental setting. Females dispersed significantly more often than males, but dispersing males travelled just as far as dispersing females. Next, we used experimental evolution to test whether limiting dispersal allowed the action of kin selection to affect divergence in male harmfulness and female resistance. Populations of C. maculatus were evolved for 20 and 25 generations under one of three dispersal regimens: completely free dispersal, limited dispersal and no dispersal. There was no divergence among treatments in female reproductive tract scarring, ejaculate size, mating behaviour, fitness of experimental females mated to stock males or fitness of stock females mated to experimental males. We suggest that this is likely due to insufficient strength of kin selection rather than a lack of genetic variation or time for selection. Limited dispersal alone is therefore not sufficient for kin selection to reduce male harmfulness in this species, consistent with general predictions that limited dispersal will only allow kin selection if local relatedness is independent of the intensity of competition among kin.  相似文献   

16.
The net effect of sexual selection on nonsexual fitness is controversial. On one side, elaborate display traits and preferences for them can be costly, reducing the nonsexual fitness of individuals possessing them, as well as their offspring. In contrast, sexual selection may reinforce nonsexual fitness if an individual's attractiveness and quality are genetically correlated. According to recent models, such good-genes mate choice should increase both the extent and rate of adaptation. We evolved 12 replicate populations of Drosophila serrata in a powerful two-way factorial experimental design to test the separate and combined contributions of natural and sexual selection to adaptation to a novel larval food resource. Populations evolving in the presence of natural selection had significantly higher mean nonsexual fitness when measured over three generations (13-15) during the course of experimental evolution (16-23% increase). The effect of natural selection was even more substantial when measured in a standardized, monogamous mating environment at the end of the experiment (generation 16; 52% increase). In contrast, and despite strong sexual selection on display traits, there was no evidence from any of the four replicate fitness measures that sexual selection promoted adaptation. In addition, a comparison of fitness measures conducted under different mating environments demonstrated a significant direct cost of sexual selection to females, likely arising from some form of male-induced harm. Indirect benefits of sexual selection in promoting adaptation to this novel resource environment therefore appear to be absent in this species, despite prior evidence suggesting the operation of good-genes mate choice in their ancestral environment. How novel environments affect the operation of good-genes mate choice is a fundamental question for future sexual selection research.  相似文献   

17.
Sexual selection is responsible for the evolution of male ornaments and armaments, but its role in the evolution of cognition—the ability to process, retain and use information—is largely unexplored. Because successful courtship is likely to involve processing information in complex, competitive sexual environments, we hypothesized that sexual selection contributes to the evolution and maintenance of cognitive abilities in males. To test this, we removed mate choice and mate competition from experimental populations of Drosophila melanogaster by enforcing monogamy for over 100 generations. Males evolved under monogamy became less proficient than polygamous control males at relatively complex cognitive tasks. When faced with one receptive and several unreceptive females, polygamous males quickly focused on receptive females, whereas monogamous males continued to direct substantial courtship effort towards unreceptive females. As a result, monogamous males were less successful in this complex setting, despite being as quick to mate as their polygamous counterparts with only one receptive female. This diminished ability to use past information was not limited to the courtship context: monogamous males (but not females) also showed reduced aversive olfactory learning ability. Our results provide direct experimental evidence that the intensity of sexual selection is an important factor in the evolution of male cognitive ability.  相似文献   

18.
Theory assumes that postcopulatory sexual selection favors increased investment in testes size because greater numbers of sperm within the ejaculate increase the chance of success in sperm competition, and larger testes are able to produce more sperm. However, changes in the organization of the testes tissue may also affect sperm production rates. Indeed, recent comparative analyses suggest that sperm competition selects for greater proportions of sperm‐producing tissue within the testes. Here, we explicitly test this hypothesis using the powerful technique of experimental evolution. We allowed house mice (Mus domesticus) to evolve via monogamy or polygamy in six replicate populations across 24 generations. We then used histology and image analysis to quantify the proportion of sperm‐producing tissue (seminiferous tubules) within the testes of males. Our results show that males that had evolved with sperm competition had testes with a higher proportion of seminiferous tubules compared with males that had evolved under monogamy. Previously, it had been shown that males from the polygamous populations produced greater numbers of sperm in the absence of changes in testes size. We thus provide evidence that sperm competition selects for an increase in the density of sperm‐producing tissue, and consequently increased testicular efficiency.  相似文献   

19.
Sexual selection is a major force influencing the evolution of sexually reproducing species. Environmental factors such as larval density can manipulate adult condition and influence the direction and strength of sexual selection. While most studies on the influence of larval crowding on sexual selection are either correlational or single-generation manipulations, it is unclear how evolution under chronic larval crowding affects sexual selection. To answer this, we measured the strength of sexual selection on male and female Drosophila melanogaster that had evolved under chronic larval crowding for over 250 generations in the laboratory, along with their controls which had never experienced crowding, in a common garden high-density environment. We measured selection coefficients on male mating success and sex-specific reproductive success, as separate estimates allowed dissection of sex-specific effects. We show that experimental evolution under chronic larval crowding decreases the strength of sexual and fecundity selection in males but not in females, relative to populations experiencing crowding for the first time. The effect of larval crowding in reducing reproductive success is almost twice in females than in males. Our study highlights the importance of studying how evolution in a novel, stressful environment can shape adult fitness in organisms.  相似文献   

20.
Interspecific aggression originating from mistaken species recognition may cause selection on secondary sexual characters, but this hypothesis has remained untested. Here we report a field experiment designed to test directly whether interspecific aggression causes selection on secondary sexual characters, wing spots, in wild damselfly populations. Males of Calopteryx virgo are more aggressive toward males of C. splendens with large than with small wing spots. This differential interspecific aggression may cause negative selection on wing spot size. Indeed, our results show that directional survival selection on wing spot size of C. splendens males was changed by experimental removal of C. virgo males. Without removal, directional selection went from positive to negative with increasing relative abundance of C. virgo males. In populations where C. virgo males were removed, this relationship disappeared. These results verify that interspecific aggression can cause negative selection on sexual characters. Thus, interspecific aggression has the potential to cause divergence on these characters between two species offering an alternative explanation for reinforcement for generating character displacement in secondary sexual characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号