首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
肾缺血引起大鼠儿茶酚胺神经元Fos表达   总被引:1,自引:1,他引:1  
Ding YF 《生理学报》2001,53(6):445-450
实验应用Fos蛋白和酪氨酸羟化酶(tyrosine hydroxylase,TH)的双重免疫组化方法,观察肾脏动脉阻断(renal artery occlusion,RAO)是否激活脑干中核团的儿荷酚胺能神经元。所得结果如下:(1)脑干中Fos样蛋白的基础性表达低;RAO可诱发孤束核(nucleus tractus solitarius,NTS)、最后区(area postrema,AP)、巨细胞旁外侧核(paragi-gantocellularis lateralis,PGL)和蓝斑(locus coeruleus,LC)核团中许多神经元显示Fos样免疫反应(Fos-like immunoreactivi-ty,FLI)。(2)NTS、AP、PGL和LC核团中含有较多的儿茶酚胺能神经元;RAO能激活其中的部分儿荷酚胺能神经元。(3)腺苷受体阻断剂8-苯茶碱可明显减弱RAO所致的上述效应。以上结果表明,肾脏短暂缺血能激活脑干内的一些神经核团以及其中的部分儿荷酚胺能神经元。此效应可能是肾缺血时腺苷释放作用于肾内腺苷受体后引起肾传入神经活动增加的结果。  相似文献   

2.
Xue BJ  Zhang XX  Ding YF  Shi GM  He RR 《生理学报》2001,53(1):66-71
实验采用NADPH-d组化技术和Fos蛋白免疫组化技术相结合的方法,观察了颈动脉注射辣椒不时,大鼠脑干心血管相关核团内NOS和Fos蛋白的分布以及两者的共存关系。结果显示:(1)颈动脉注射辣椒不可诱发脑干中最后区(AP)、孤束核(NTS)、巨细胞旁外侧核(PGL)和蓝斑(LC)等多个部位Fos样免疫反应(FLI)神经元显著增加 中脑中央灰质(PAG)和中缝核群(RN)的FLI神经元无明显改变。(2)PGL和NTS内NO合成神经元以及PGL内双标神经元数量也明显增加,而AG和RN中NO合成神经元无明显变化,在LC和AP仅偶见或未见NO合成神经元。(3)预先应用辣椒素受体阻断剂钌红或NMDA受体阻断剂MK-801,则明显减弱辣椒素的上述效应,以上结果表明,颈动脉注射辣椒素可兴奋脑干心血管活动相关核团神经元,NO在脑干核团对辣椒素的反应中发挥间接的调制作用,辣椒素的效应由香草酸受体(辣椒素受体)介导并有谷氨酸参与。  相似文献   

3.
研究大鼠在福尔马林诱发胃伤害性刺激时脑干内星形胶质细胞及神经元的变化。应用免疫组织化学三重标记法在脑原位切片同时显示脑干内Fos蛋白,胶质原纤维酸性蛋白(GFAP),酪氨酸羟化酶(TH)的表达,结果显示:1、在福尔马林诱发胃伤害性刺激后,脑干胶质细胞GFAP表达阳性,并表现出明显的核团或亚核定位特点,在延髓内脏带(MVZ0,中缝大核(RMg),蓝斑(LC),臂旁外侧核(LPB),中缝背核(DR),中脑导水管周围灰质腹外侧区(vlPAG),上丘中灰层(IngSC)等脑区有较多的Fos阳性细胞,而且Fos阳性表达的分布与上述GFAP阳性分布基本一致;2、MVZ,LC,DR,vlPAG等部位有大量Fos及TH双标阳性神经元,周围有密集的GFAP阳性细胞;3、随着刺激后存活时间的变化,GFAP与Fos阳性细胞的反应均经历逐渐升高后又渐降低直至消失的变化。结果表明:上述核团的神经元和星形胶质细胞可能同时参与了内脏痛及其调节过程。  相似文献   

4.
Yang B  Zhang LC  Zeng YM 《生理学报》2003,55(5):577-582
用Fos免疫组织化学、烟酰胺腺嘌呤二核苷酸磷酸黄递酶(nicotinamide adenine dinucleotide phosphate—di—aphorase,NADPH-d)组织化学及微量注射技术,观察大鼠乙状结肠注射甲醛(5%)诱发的大鼠乙状结肠炎性痛过程中中缝背核一氧化氮合酶(nitric oxide synthase,NOS)神经元的变化,同时观察中缝背核微量注射L-N-硝基精氨酸甲酯(LNAME)对乙状结肠痛的调控作用。结果表明,(1)乙状结肠注射甲醛后,大鼠出现明显的内脏痛反应,中缝背核NOS神经元表达明显增多,中缝背核内出现大量Fos蛋白,在整个中缝背核内均有分布,并且出现Fos/NOS双标神经元,约占中缝背核NOS神经元总数的8%,与生理盐水对照组相比差异有显著性;(2)中缝背核注射L-NAME后,可以明显减少乙状结肠炎性痛大鼠的疼痛学评分及脊髓相应节段Fos蛋白。上述结果提示,中缝背核NOS神经元参与调控大鼠乙状结肠痛,NO在中缝背核促进内脏伤害性信息的传递。  相似文献   

5.
Ji SM  Wang ZM  Li XP  He RR 《生理学报》2004,56(3):328-334
本研究利用Fos蛋白和一氧化氮合酶(nNOS)双重免疫组化方法,观察侧腑脑室注射肾上腺髓质素(adrenomedullin,ADM)对大鼠心血管相关核中c-fos表达及一氧化氮神经元的影响,以探讨ADM在中枢的作用部位并研究其在中枢的作用是否有NO神经元参与。侧脑室注射ADM(1nmol/kg,3nmol/kg)诱发脑干的孤束核、最后区、蓝斑核、臂旁核和外侧巨细胞旁核,下丘脑的室旁核、视上核才腹内侧核以及前脑的中央杏仁核和外侧缰核等多个部位的心血管中枢出现大量Fos样免疫反应神经元。侧脑室注射ADM(3nmol/kg),引起脑干的孤束核、外侧巨细胞旁核,下丘脑的室旁核、视上核内的Fos-nNOS双标神经元增加;ADM(1nmol/kg)亦可引起室旁核、视上核内的Fos-nNOS双标神经元增加,而对孤束核、外侧巨细胞旁核内的Fos-nNOS双标神经元无影响。降钙素基因相关肽(calcitonin gene—related peptide,CGRP)受体拈抗剂CGRP8-37(30nmol/kg)可明显减弱此效应。以上结果表明,ADM可兴奋脑内多个心血管相关核闭的神经元并激活室旁核、视上核、孤束核及外侧巨细胞核内一氧化氮神经元,此效应可能部分山CGRP受体介导。  相似文献   

6.
胃肠道伤害性刺激诱导中缝背核触液神经元Fos表达   总被引:3,自引:0,他引:3  
本文以CB-HRP逆行追踪和原癌基因c-fos表达技术相结合,观察胃肠道伤害性刺激后中缝背核触液神经元Fos的表达。在中缝背核发现三种标记神经元,包括CB-HRP逆行标记神经元(308)、Fos阳性神经元(42)和CB-HRP/Fos双重标记神经元(5)。本研究提示中缝背核含有一些具有双重功能的神经元,它们既在脑-脑脊液神经体液回路中传递信息,又在胃肠道伤害性刺激的中枢传递和功能调控中起一定的作用  相似文献   

7.
Kwon YB  Lee HJ  Han HJ  Mar WC  Kang SK  Yoon OB  Beitz AJ  Lee JH 《Life sciences》2002,71(2):191-204
We recently demonstrated that bee venom (BV) injection into the Zusanli acupoint produced a significantly more potent anti-inflammatory and antinociceptive effect than injection into a non-acupoint in a Freund's adjuvant induced rheumatoid arthritis (RA) model. However, the precise BV constituents responsible for these antinociceptive and/or anti-inflammatory effects are not fully understood. In order to investigate the possible role of the soluble fraction of BV in producing the anti-arthritic actions of BV acupuncture, whole BV was extracted into two fractions according to solubility (a water soluble fraction, BVA and an ethylacetate soluble fraction, BVE) and the BVA fraction was further tested.Subcutaneous BVA injection (0.9 mg/kg/day) into the Zusanli acupoint was found to dramatically inhibit paw edema and radiological change (i.e. new bone proliferation and soft tissue swelling) caused by Freund's adjuvant injection. BVA treatment also reduced the increase in serum interleukin-6 caused by RA induction to levels observed in non-arthritic animals. In addition, BVA therapy significantly reduced arthritis-induced nociceptive behaviors (i.e. nociceptive scores for mechanical hyperalgesia and thermal hyperalgesia). Finally, BVA treatment significantly suppressed adjuvant-induced Fos expression in the lumbar spinal cord at 3 weeks post-adjuvant injection. In contrast, BVE treatment (0.05 mg/kg/day) failed to show any anti-inflammatory or antinociceptive effects on RA.The results of the present study demonstrate that BVA is the effective fraction of whole BV responsible for the antinociception and anti-inflammatory effects of BV acupuncture treatment. Thus it is recommended that this fraction of BV be used for long-term treatment of RA-induced pain and inflammation. However, further study is necessary to clarify which constituents of the BVA fraction are directly responsible for these anti-arthritis effects.  相似文献   

8.
辣椒素引起脑干内心血管活动相关核团中c-fos的表达   总被引:1,自引:0,他引:1  
Xue BJ  Zhang XX  Shi GM  He RR 《生理学报》2000,52(2):159-162
在16只切断两侧缓冲神经的大鼠,观察颈总动脉注射辣椒素对脑干内心血管活动相关核团c-fos原癌基因表达的影响。在剂对照组大鼠脑干,仅见少数Fos蛋白样免疫反应(FLI)神经元。与对照组相比,颈总动脉注射辣椒素(10μmol,0.1ml)时,脑干内巨细胞旁外侧核(PGL)、蓝斑(LC)、最后区(AP)和孤束核(NTS)等部位的FLI神经元显著增加,而中脑中央灰质(PAG)和中缝核群(RN)的FLI神  相似文献   

9.
Peripheral chemoreceptor afferent information is sent to the nucleus tractus solitarii (nTS), integrated, and relayed to other brain regions to alter cardiorespiratory function. The nTS projects to the hypothalamic paraventricular nucleus (PVN), but activation and phenotype of these projections during chemoreflex stimulation is unknown. We hypothesized that activation of PVN-projecting nTS neurons occurs primarily at high intensities of hypoxia. We assessed ventilation and cardiovascular parameters in response to increasing severities of hypoxia. Retrograde tracers were used to label nTS PVN-projecting neurons and, in some rats, rostral ventrolateral medulla (RVLM)-projecting neurons. Immunohistochemistry was performed to identify nTS cells that were activated (Fos-immunoreactive, Fos-IR), catecholaminergic, and GABAergic following hypoxia. Conscious rats underwent 3 h normoxia (n = 4, 21% O(2)) or acute hypoxia (12, 10, or 8% O(2); n = 5 each). Hypoxia increased ventilation and the number of Fos-IR nTS cells (21%, 13 ± 2; 12%, 58 ± 4; 10%, 166 ± 22; 8%, 186 ± 6). Fos expression after 10% O(2) was similar whether arterial pressure was allowed to decrease (-13 ± 1 mmHg) or was held constant. The percentage of PVN-projecting cells activated was intensity dependent, but contrary to our hypothesis, PVN-projecting nTS cells exhibiting Fos-IR were found at all hypoxic intensities. Notably, at all intensities of hypoxia, ~75% of the activated PVN-projecting nTS neurons were catecholaminergic. Compared with RVLM-projecting cells, a greater percentage of PVN-projecting nTS cells was activated by 10% O(2). Data suggest that increasing hypoxic intensity activates nTS PVN-projecting cells, especially catecholaminergic, PVN-projecting neurons. The nTS to PVN catecholaminergic pathway may be critical even at lower levels of chemoreflex activation and more important to cardiorespiratory responses than previously considered.  相似文献   

10.
Atrial mechanoreceptors, sensitive to stretch, contribute in regulating heart rate and intravascular volume. The information from those receptors reaches the nucleus tractus solitarius and then the paraventricular nucleus (PVN), known to have a crucial role in the regulation of cardiovascular function. Neurons in the PVN synthesize CRF, AVP, and oxytocin (OT). Stimulation of atrial mechanoreceptors was performed in awake rats implanted with a balloon at the junction of the superior vena cava and right atrium. Plasma ACTH, AVP, and OT concentrations and Fos, CRF, AVP, and OT immunolabeling in the PVN were determined after balloon inflation in hydrated and water-deprived rats. The distension of the balloon increased the plasma ACTH concentrations, which were higher in water-deprived than in hydrated rats (P < 0.05). In addition, the distension in the water-deprived group decreased plasma AVP concentrations (P < 0.05), compared with the respective control group. The distension increased the number of Fos- and double-labeled Fos/CRF neurons in the parvocellular PVN, which was higher in the water-deprived than in the hydrated group (P < 0.01). There was no difference in the Fos expression in magnocellular PVN neurons after distension in hydrated and water-deprived groups, compared with respective controls. In conclusion, parvocellular CRF neurons showed an increase of Fos expression induced by stimulation of right atrial mechanoreceptors, suggesting that CRF participates in the cardiovascular reflex adjustments elicited by volume loading. Activation of CRF neurons in the PVN by cardiovascular reflex is affected by osmotic stimulation.  相似文献   

11.
The goal of this study was to identify the source of baroreceptor-related noradrenergic innervation of the diagonal band of Broca (DBB). Male Sprague-Dawley rats underwent sinoaortic denervation (SAD, n = 13) or sham SAD surgery (n = 13). We examined Fos expression produced by baroreceptor activation and dopamine-beta-hydroxylase immunofluorescence in hindbrain regions that contain noradrenergic neurons. Baroreceptors were stimulated by increasing blood pressure >40 mmHg with phenylephrine (10 microgram. kg(-1). min(-1) iv) in sham SAD and SAD rats. Controls were infused with 0.9% saline. Only the locus ceruleus (LC) demonstrated a baroreceptor-dependent increase in Fos immunoreactivity in dopamine-beta-hydroxylase-positive neurons. In a second experiment, normal rats received rhodamine-labeled microsphere injections in the DBB (n = 12) before phenylephrine or vehicle infusion. In these experiments, only the LC consistently contained Fos-positive cells after phenylephrine infusion that were retrogradely labeled from the DBB. Finally, we lesioned the LC with ibotenic acid and obtained extracellular recordings from identified vasopressin neurons in the supraoptic nucleus. LC lesions significantly reduced the number of vasopressin neurons that were inhibited by acute baroreceptor stimulation. Together, these results suggest that noradrenergic neurons in the LC participate in the baroreflex activation of the DBB and may thus be important in the baroreflex inhibition of vasopressin-releasing neurons in the supraoptic nucleus.  相似文献   

12.
In this study, we have investigated the ultrastructure and function of the catecholaminergic circuitry modulating the output of airway-related vagal preganglionic neurons (AVPNs) in ferrets. Immunoelectron microscopy was employed to characterize the nature of catecholaminergic innervation of AVPN at the ultrastructural level. In addition, immunofluorescence was used to examine the expression of the alpha(2A)-adrenergic receptor (alpha(2A)-AR) on AVPNs, and norepinephrine release within the rostral nucleus ambiguous (rNA) was measured by using microdialysis. Physiological experiments were performed to determine the effects of stimulation of the noradrenergic locus coeruleus (LC) cell group on airway smooth muscle tone. The results showed that 1) catecholaminergic nerve endings terminate in the vicinity of identified AVPNs but very rarely form axosomatic or axodendritic synapses with the AVPNs that innervate the extrathoracic trachea; 2) AVPNs express the alpha(2A)-AR; 3) LC stimulation-induced norepinephrine release within the rNA region was associated with airway smooth muscle relaxation; and 4) blockade of alpha(2A)-AR on AVPNs diminished the inhibitory effects of LC stimulation on airway smooth muscle tone. It is concluded that a noradrenergic circuit originating within the LC is involved in the regulation of AVPN activity within the rNA, and stimulation of the LC dilates the airways by the release of norepinephrine and activation of alpha(2A)-AR expressed by AVPNs, mainly via volume transmission.  相似文献   

13.
实验在56只水合氯醛麻醉的成年雄性大鼠上进行。实验结果表明:电刺激中缝背核(DR)能减慢蓝斑(LC)大多数神经元自发放电频率;而损毁DR则增加大多数LC神经元的自发放电频率。电刺激下丘脑弓状核(ARC)能抑制LC神经元对外周坐骨神经伤害性刺激的反应。刺激DR可增强此种抑制作用;相反,损毁DR能部分减弱此种抑制效应。结果提示,DR对LC神经元有紧张性抑制作用,并对刺激ARC抑制LC神经元伤害性反应起着调制作用。  相似文献   

14.
To develop an index of the activation of abdominal sympathetic nerves, we used Fos immunostaining of the celiac ganglion (CG) taken from rats receiving nicotine, preganglionic nerve stimulation, or glucopenic agents. Subcutaneous nicotine injection moderately increased Fos expression in the principal ganglionic cells of the CG (17 +/- 4 Fos+ per mm(2), approximately 12% of all principal CG cells), whereas subcutaneous saline had no effect (0 +/- 0 Fos+ per mm(2); n = 7; P < 0.01). Greater Fos expression was obtained by applying nicotine topically to the CG (71 +/- 8 Fos+ per mm(2); 52% of all principal CG cells, n = 5; P < 0.01 vs. topical saline, n = 4) and by preganglionic nerve stimulation (126 +/- 9 Fos+ per mm(2); 94% of all principal CG cells, n = 11; P < 0.01 vs. nerve isolation, n = 7). Moderate Fos expression was also observed in the CG after intraperitoneal 2-deoxy-D-glucose (2DG) injection (21 +/- 2 Fos+ per mm(2); 16% of all principal CG cells, n = 5; P < 0.01 vs. saline ip) or insulin injection (16 +/- 2 Fos+ per mm(2); 12% of all principal CG cells, n = 6; P < 0.01 vs. saline ip). Furthermore, Fos expression induced by 2DG was dose and time dependent. These data demonstrate significant Fos expression in the CG in response to chemical, electrical, and reflexive stimulation. Thus Fos expression in the CG may be a useful index to describe various levels of activation of its postganglionic sympathetic neurons.  相似文献   

15.
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease involving both upper and lower motor neurons. The mechanism of motor neuron degeneration is still unknown. Although many studies have been performed on spinal motor neurons, few have been reported on brainstem and its motor nuclei. The aim of this study was to investigate oxidative stress and autophagic changes in the brainstem and representative motor nuclei of superoxide dismutase 1 (SOD1)-G93A mouse model of ALS. The expression levels of cluster of differentiation molecule 11b (CD11b), glial fibrillary acidic protein, glutamate–cysteine ligase catalytic subunit, heme oxygenase-1, NAD(P)H: quinone oxidoreductase 1, voltage-dependent anion-selective channel protein 1, Sequestosome 1/p62 (p62), microtubule-associated protein 1 light chain 3B (LC3), and SOD1 proteins in brainstem were examined by Western blot analysis. Immunohistochemistry and immunofluorescence were performed to identify the cellular localization of SOD1, p62, and LC3B, respectively. The results showed that there were progressive asctrocytic proliferation and microglial activation, induction of antioxidant proteins, and increased p62 and LC3II expression in brainstem of SOD1-G93A mice. Additionally, SOD1 and p62 accumulated in hypoglossal, facial, and red nuclei, but not in oculomotor nucleus. Furthermore, electron microscope showed increased autophagic vacuoles in affected brainstem motor nuclei. Our results indicate that brainstem share similar gliosis, oxidative stress, and autophagic changes as the spinal cord in SOD1-G93A mice. Thus, SOD1 accumulation in astrocytes and neurons, oxidative stress, and altered autophagy are involved in motor neuron degeneration in the brainstem, similar to the motor neurons in spinal cord. Therefore, therapeutic trials in the SOD1G93A mice need to target the brainstem in addition to the spinal cord.  相似文献   

16.
In female rats, sexual behavior requires the convergence of ovarian hormone signals, namely estradiol and progesterone, and sensory cues from the male on a motor output pathway. Estrogen and progestin receptors (ER and PR) are found in neurons in the hypothalamic ventromedial nucleus (VMH), a brain region necessary for lordosis, the stereotypic female copulatory posture. A subset of VMH neurons sends axonal projections to the periaqueductal gray (PAG) to initiate a motor output relay, and some of these projection neurons express PR. Previous studies showed that VMH neurons are activated during mating, based on the expression of the immediate early gene Fos. Many of the activated neurons expressed ER; however, it is not known if such activated neurons co-express PR. Fluorogold, a retrograde tracer, was injected into the PAG of ovariectomized rats to label neurons projecting from the VMH. Hormone-treated animals then were mated, and their brains were immunohistochemically stained for PR and Fos. Of the Fos-positive neurons, 33% were double-labeled for PR, 19% were double-labeled with Fluorogold, and 5% were triple-labeled for Fos, PR, and the retrograde tracer. The majority of triple-labeled neurons were found in the rostral, rather than caudal, portion of the VMH. These results show that PR-containing neurons are engaged during sexual behavior, which suggests that these neurons are the loci of hormonal-sensory convergence and hormonal-motor integration.  相似文献   

17.
Fos, a protein product of immediate early gene c-fos, has been used as a marker for activation of nociceptive neurons in central nervous system including spinal trigeminal nucleus (Vsp). By noxious stimulation applied to orofacial area, the expression of Fos occurred in the Vsp pars oralis (Vo), the subnucleus receiving inputs from trigeminal primary afferents that predominantly innervate intraoral receptive fields. The present study demonstrates that the in vitro activation of group I metabotropic glutamate receptors (mGluRs; mGluR1 and 5) by bath-application of their well-known agonist (S)-3,5-dihydroxyphenylglycine (DHPG) increased the number of Fos-expressing neurons in the Vo area. In addition, bath application of DHPG caused inward currents, a parameter of neuronal excitation, in the Vo neurons held at −70 mV in voltage-clamp mode of whole-cell recordings. In further experiments characterizing two phenomena, the increased Fos expression in the Vo was mediated by an additive activation of both mGluR1 and mGluR5, which required the activation of N-methyl-D-aspartate (NMDA) receptors, protein kinase C (PKC) and extracellular signal-regulated kinase (ERK). In contrast, the inward currents were mediated only by mGluR1, but not by others. The data resulting from this in vitro study indicate that the DHPG-induced membrane depolarisation or neuronal excitation may be upstream to, or skip, the NMDA receptor, PKC and ERK pathways for the DHPG-induced Fos expression.  相似文献   

18.
Peptide YY (3-36) [PYY(3-36)] inhibits feeding in rodents, nonhuman primates and humans, yet the neural circuits underlying this action remain to be determined. Here we assessed whether PYY(3-36) inhibits feeding by activating neurons in forebrain and hindbrain sites containing Y2 receptors and linked to control of food intake, or in hindbrain sites immediately downstream of vagal afferent neurons. Rats received an anorexigenic dose of PYY(3-36), and the number of neurons expressing Fos, an indicator of neuronal activation, was determined in anterior hypothalamus (AH), arcuate nucleus (ARC), dorsomedial hypothalamus (DMH), lateral hypothalamus (LH), ventromedial hypothalamus (VMH), central nucleus of the amygdala (CeA), area postrema (AP), and caudal medial nucleus tractus solitarius (cmNTS), commissural NTS (cNTS), and gelatinosus NTS (gNTS). Expression of tyrosine hydroxylase (TH), an indicator of catecholamine synthesis, was also measured in the cmNTS. PYY(3-36) increased Fos in ARC, cmNTS, gNTS and AP. Approximately 10% of Fos+ neurons in the cmNTS were TH+. These results suggest that PYY(3-36) inhibits feeding through direct activation of ARC neurons, and direct and/or indirect activation via vagal afferent nerves of cmNTS, gNTS and AP, including some catecholaminergic neurons in the cmNTS.  相似文献   

19.
To identify neurochemical phenotypes of esophageal myenteric neurons synaptically activated by vagal preganglionic efferents, we immunohistochemically detected the expression of Fos, an immediate early gene product, in whole-mount preparations of the entire esophagus of rats following electrical stimulation of the vagus nerves. When electrical stimulation was applied to either the cervical left (LVN) or right vagus nerve (RVN), neurons with nuclei showing Fos immunoreactivity (IR) were found to comprise approximately 10% of the total myenteric neurons in the entire esophagus. These neurons increased from the oral toward the gastric end of the esophagus, with the highest frequency in the abdominal portion of the esophagus. A significant difference was not found in the number of Fos neurons between the LVN-stimulated and RVN-stimulated esophagus. Double-immunolabeling showed that nitric oxide synthase (NOS)-IR occurred in most (86% and 84% in the LVN-stimulated and RVN-stimulated esophagus, respectively) of the Fos neurons in the entire esophagus. Furthermore, the stimulation of either of the vagus nerves resulted in high proportions (71%-90%) of Fos neurons with NOS-IR, with respect to the total Fos neurons in each segment, in the entire esophagus. However, a small proportion (8% and 7% in the LVN-stimulated and RVN-stimulated esophagus, respectively) of the Fos neurons in the esophagus exhibited choline acetyltransferase (ChAT)-IR. The occurrence-frequency of Fos neurons with ChAT-IR was less than 4% of the total Fos neurons in any segment of the LVN-stimulated and RVN-stimulated esophagus. Some of the Fos neurons with ChAT-IR appeared to be innervated by numerous varicose ChAT-positive nerve terminals. The present results showing that electrical stimulation of the vagus nerves induces a high proportion of Fos neurons with NOS-IR suggests the preferential activation of NOS neurons in the esophagus by vagal preganglionic efferents. This connectivity between the vagal efferents and intrinsic nitrergic neurons might be involved in inhibitory actions on esophageal motility.This study was supported by Grant-in Aids for Scientific Research from Ministry of Education, Sports, and Culture of Japan to H.K. (no. 15500236) and to M.K. (no. 14570065).  相似文献   

20.
Results of electrophysiological studies suggest a significant role of the lateral spinal nucleus (LSpN) in the transmission of nociceptive signals. In our study, the presence of Fos immunoreactivity and NADPH-diaphorase positivity was observed in the rat LSpN following noxious peripheral subcutaneous stimulation. Formalin-induced unilateral hindpaw stimulation in the rat caused bilateral NADPH-d reactivity and ipsilateral Fos expression in this nucleus. In the LSpN of the L3–L5 segments of stimulated rats, on average, 4.1 ± 1.2 NADPH-d-positive, NADPH-d(+), 5.1+1.8 Fos-immunoreactive, Fos(+), and 3.0 ± 1.1 double-labeled neurons per 25-μm-thick section were found unilaterally. A close anatomical relationship between NADPH-d(+) processes and Fos(+) cell nuclei in the LSpN was also observed following noxious peripheral stimulation. These neuroanatomical findings support the hypothesis that the LSpN is involved in pain processing and suggest an important role of nitric oxide-mediated signal transduction in this nucleus. Neirofiziologiya/Neurophysiology, Vol. 40, No. 1, pp. 38–42, January–February, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号