首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic turnover of tight junctions (TJs) is essential for epithelial-mesenchymal transitions and/or mesenchymal-epithelial transitions during epithelial morphogenesis. We previously demonstrated that Rab13 specifically mediates the endocytic recycling of occludin. Here, we identified MICAL-L2 (molecule interacting with CasL-like 2) as a novel Rab13-binding protein. Immunoprecipitation and immunofluorescence microscopy showed that MICAL-L2 specifically bound to the GTP-bound form of Rab13 via its C terminus, which contained a coiled-coil domain, and localized at TJs in epithelial MTD-1A cells. Recycling assay demonstrated that a MICAL-L2 mutant lacking the Rab13-binding domain (MICAL-L2-N) specifically inhibited the endocytic recycling of occludin but not transferrin receptor. Ca2+ switch assay further revealed that MICAL-L2-N as well as Rab13 Q67L inhibited the recruitment of occludin to the plasma membrane, the development of transepithelial electrical resistance, and the formation of a paracellular diffusion barrier. MICAL-L2 was displaced from TJs upon actin depolymerization and was distributed along radiating actin cables and stress fibers in Ca2+-depleted MTD-1A and fibroblastic NIH3T3 cells, respectively. These results suggest that MICAL-L2 mediates the endocytic recycling of occludin and the formation of functional TJs by linking Rab13 to actin cytoskeleton. We rename MICAL-L2 as JRAB (junctional Rab13-binding protein).  相似文献   

2.
The assembly of tight junctions (TJs) and adherens junctions (AJs) is regulated by the transport of integral TJ and AJ proteins to and/or from the plasma membrane (PM) and it is tightly coordinated in epithelial cells. We previously reported that Rab13 and a junctional Rab13-binding protein (JRAB)/molecule interacting with CasL-like 2 (MICAL-L2) mediated the endocytic recycling of an integral TJ protein occludin and the formation of functional TJs. Here, we investigated the role of Rab13 and JRAB/MICAL-L2 in the transport of other integral TJ and AJ proteins claudin-1 and E-cadherin to the PM by using a Ca(2+)-switch model. Although knockdown of Rab13 specifically suppressed claudin-1 and occludin but not E-cadherin transport, knockdown of JRAB/MICAL-L2 and expression of its Rab13-binding domain (JRAB/MICAL-L2-C) inhibited claudin-1, occludin, and E-cadherin transport. We then identified Rab8 as another JRAB/MICAL-L2-C-binding protein. Knockdown of Rab8 inhibited the Rab13-independent transport of E-cadherin to the PM. Rab8 and Rab13 competed with each other for the binding to JRAB/MICAL-L2 and functionally associated with JRAB/MICAL-L2 at the perinuclear recycling/storage compartments and PM, respectively. These results suggest that the interaction of JRAB/MICAL-L2 with Rab8 and Rab13 coordinates the assembly of AJs and TJs.  相似文献   

3.
Tight junctions (TJs) are cell-cell adhesive structures that undergo continuous remodeling. We previously demonstrated that Rab13 and a junctional Rab13-binding protein (JRAB)/molecule interacting with CasL-like 2 (MICAL-L2) localized at TJs and mediated the endocytic recycling of the integral TJ protein occludin and the formation of functional TJs. Here, we investigated how JRAB/MICAL-L2 was targeted to TJs. Using a series of deletion mutants, we found the plasma membrane (PM)-targeting domain within JRAB/MICAL-L2. We then identified actinin-4, which was originally isolated as an actin-binding protein associated with cell motility and cancer invasion/metastasis, as a binding protein for the PM-targeting domain of JRAB/MICAL-L2, using a yeast two-hybrid system. Actinin-4 was colocalized with JRAB/MICAL-L2 at cell-cell junctions and linked JRAB/MICAL-L2 to F-actin. Although actinin-4 bound to JRAB/MICAL-L2 without Rab13, the actinin-4-JRAB/MICAL-L2 interaction was enhanced by Rab13 activation. Depletion of actinin-4 by using small interfering RNA inhibited the recruitment of occludin to TJs during the Ca(2+) switch. During the epithelial polarization after replating, JRAB/MICAL-L2 was recruited from the cytosol to cell-cell junctions. This JRAB/MICAL-L2 recruitment as well as the formation of functional TJs was delayed in actinin-4-depleted cells. These results indicate that actinin-4 is involved in recruiting JRAB/MICAL-L2 to cell-cell junctions and forming functional TJs.  相似文献   

4.
In well polarized epithelial cells, closely related ZO-1 and ZO-2 are thought to function as scaffold proteins at tight junctions (TJs). In epithelial cells at the initial phase of polarization, these proteins are recruited to cadherin-based spotlike adherens junctions (AJs). As a first step to clarify the function of ZO-1, we successfully generated mouse epithelial cell clones lacking ZO-1 expression (ZO-1-/- cells) by homologous recombination. Unexpectedly, in confluent cultures, ZO-1-/- cells were highly polarized with well organized AJs/TJs, which were indistinguishable from those in ZO-1+/+ cells by electron microscopy. In good agreement, by immunofluorescence microscopy, most TJ proteins including claudins and occludin appeared to be normally concentrated at TJs of ZO-1-/- cells with the exception that a ZO-1 deficiency significantly up- or down-regulated the recruitment of ZO-2 and cingulin, another TJ scaffold protein, respectively, to TJs. When the polarization of ZO-1-/- cells was initiated by a Ca2+ switch, the initial AJ formation did not appear to be affected; however, the subsequent TJ formation (recruitment of claudins/occludin to junctions and barrier establishment) was markedly retarded. This retardation as well as the disappearance of cingulin were rescued completely by exogenous ZO-1 but not by ZO-2 expression. Quantitative evaluation of ZO-1/ZO-2 expression levels led to the conclusion that ZO-1 and ZO-2 would function redundantly to some extent in junction formation/epithelial polarization but that they are not functionally identical. Finally, we discussed advantageous aspects of the gene knock-out system with cultured epithelial cells in epithelial cell biology.  相似文献   

5.
Tight and adherens junctions (TJs, AJs) between neurons, epithelial and glial cells provide barrier and adhesion properties in the olfactory epithelium (OE), and subserve functions such as compartmentalization and axon growth in the fila olfactoria (FO). Immunofluorescence and immunoelectronmicroscopy were combined in sections of rat OE and FO to document the cellular and subcellular localization of TJ proteins occludin(Occl), claudins(Cl) 1-5 and zonula occludens(ZO) proteins 1-3, and of AJ proteins N-cadherin(cad), E-cad, and alpha-, beta- and p120-catenin(cat). With the exception of Cl2, all TJ proteins were colocalized in OE junctions. Differences in relative immunolabeling intensities were noted between neuronal and epithelial TJs. In the FO, Cl5-reactivity was localized in olfactory ensheathing cell (OEC) junctions, Cl1-reactivity in the FO periphery, with differential colocalization with ZOs. Supporting cells formed N-cad-immunoreactive (ir) AJs with olfactory sensory neurons, E-cad-ir junctions with microvillar and gland duct cells, and both N-cad and E-cad-ir junctions in homotypic contacts. Alpha, beta- and p120-cat were localized in all AJs of the OE. AJs were scarce in the globose basal cell layer. Immature and mature neurons formed numerous contacts. In the FO, AJs were documented between OECs, between OECs and axons, and between axons. Most AJs colocalized N-cad with catenins, occasionally E-cad-ir AJs were found in the FO periphery. Characteristics of molecular composition suggest differential properties of TJs formed by neuronal, epithelial and glial cells in the OE and FO. The presence and molecular composition of AJs are consistent with a role of AJ proteins in neuroplastic processes in the peripheral olfactory pathway.  相似文献   

6.
The adherens junction (AJ) and tight junction (TJ) are key regulators of epithelial polarity and barrier function. Loss of epithelial phenotype is accompanied by endocytosis of AJs and TJs via unknown mechanisms. Using a model of calcium depletion, we defined the pathway of internalization of AJ and TJ proteins (E-cadherin, p120 and beta-catenins, occludin, JAM-1, claudins 1 and 4, and ZO-1) in T84 epithelial cells. Proteinase protection assay and immunocytochemistry revealed orchestrated internalization of AJs and TJs into a subapical cytoplasmic compartment. Disruption of caveolae/lipid rafts did not prevent endocytosis, nor did caveolin-1 colocalize with internalized junctional proteins. Furthermore, AJ and TJ proteins did not colocalize with the macropinocytosis marker dextran. Inhibitors of clathrin-mediated endocytosis blocked internalization of AJs and TJs, and junctional proteins colocalized with clathrin and alpha-adaptin. AJ and TJ proteins were observed to enter early endosomes followed by movement to organelles that stained with syntaxin-4 but not with markers of late and recycling endosomes, lysosomes, or Golgi. These results indicate that endocytosis of junctional proteins is a clathrin-mediated process leading into a unique storage compartment. Such mechanisms may mediate the disruption of intercellular contacts during normal tissue remodeling and in pathology.  相似文献   

7.
Tight junctions (TJs) are sealing complexes between adjacent epithelial cells, functioning by controlling paracellular passage and maintaining cell polarity. These functions of TJs are primarily based on structural integrity as well as dynamic regulatory balance, indicating plasticity of TJ in response to external stimuli. An indispensable role of TJs involved in pathogen infection has been widely demonstrated since disruption of TJs leads to a distinct increase in paracellular permeability and polarity defects which facilitate viral or bacterial entry and spread. In addition to pathological changes in TJ integrity, TJ proteins such as occludin and claudins can either function as receptors for pathogen entry or interact with viral/bacterial effector molecules as an essential step for characterizing an infective stage. This suggests a more complicated role for TJ itself and especially specific TJ components. Thus, this review surveys the role of the epithelial TJs involved in various pathogen infections, and extends TJ targeted therapeutic and pharmacological application prospects.  相似文献   

8.
Tight junctions mediate the intercellular diffusion barrier found in epithelial tissues but they are not static complexes; instead there is rapid movement of individual proteins within the junctions. In addition some tight junction proteins are continuously being endocytosed and recycled back to the plasma membrane. Understanding the dynamic behaviour of tight junctions is important as they are altered in a range of pathological conditions including cancer and inflammatory bowel disease. In this study we investigate the effect of treating epithelial cells with a small molecule inhibitor (YM201636) of the lipid kinase PIKfyve, a protein which is involved in endocytic trafficking. We show that MDCK cells treated with YM201636 accumulate the tight junction protein claudin-1 intracellularly. In contrast YM201636 did not alter the localization of other junction proteins including ZO-1, occludin and E-cadherin. A biochemical trafficking assay was used to show that YM201636 inhibited the endocytic recycling of claudin-1, providing an explanation for the intracellular accumulation. Claudin-2 was also found to constantly recycle in confluent MDCK cells and treatment with YM201636 blocked this recycling and caused accumulation of intracellular claudin-2. However, claudin-4 showed negligible endocytosis and no detectable intracellular accumulation occurred following treatment with YM201636, suggesting that not all claudins show the same rate of endocytic trafficking. Finally, we show that, consistent with the defects in claudin trafficking, incubation with YM201636 delayed formation of the epithelial permeability barrier. Therefore, YM201636 treatment blocks the continuous recycling of claudin-1/claudin-2 and delays epithelial barrier formation.  相似文献   

9.
Cadherins are key Ca(2+)-dependent cell-cell adhesion molecules at adherens junctions (AJs) in fibroblasts and epithelial cells, whereas claudins are key Ca(2+)-independent cell-cell adhesion molecules at tight junctions (TJs) in epithelial cells. The formation and maintenance of TJs are dependent on the formation and maintenance of AJs. Nectins are Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules which comprise a family of four members, nectin-1, -2, -3, and -4, and are involved in the formation of AJs in cooperation with cadherins, and the subsequent formation of TJs. We show here that the velocity of the formation of the E-cadherin-based AJs is increased by overexpression of nectin-1 and is reduced by addition of the nectin-1 inhibitors to the medium in L cells stably expressing E-cadherin and Madin-Darby canine kidney cells. Moreover, the velocity of the formation of the claudin-based TJs is increased by overexpression of nectin-1 and is reduced by addition of the nectin-1 inhibitors to the medium in Madin-Darby canine kidney cells. These results indicate that nectins regulate the velocity of the formation of the E-cadherin-based AJs and the subsequent formation of the claudin-based TJs.  相似文献   

10.
11.
The molecular mechanisms of how primordial adherens junctions (AJs) evolve into spatially separated belt-like AJs and tight junctions (TJs) during epithelial polarization are not well understood. Previously, we reported the establishment of ZO-1/ZO-2-deficient cultured epithelial cells (1[ko]/2[kd] cells), which lacked TJs completely. In the present study, we found that the formation of belt-like AJs was significantly delayed in 1(ko)/2(kd) cells during epithelial polarization. The activation of Rac1 upon primordial AJ formation is severely impaired in 1(ko)/2(kd) cells. Our data indicate that ZO-1 plays crucial roles not only in TJ formation, but also in the conversion from "fibroblastic" AJs to belt-like "polarized epithelial" AJs through Rac1 activation. Furthermore, to examine whether ZO-1 itself mediate belt-like AJ and TJ formation, respectively, we performed a mutational analysis of ZO-1. The requirement for ZO-1 differs between belt-like AJ and TJ formation. We propose that ZO-1 is directly involved in the establishment of two distinct junctional domains, belt-like AJs and TJs, during epithelial polarization.  相似文献   

12.
Tight junctions (TJs) are the most apical cell-cell junctions, and claudins, the recently identified TJ proteins, are critical for maintaining cell-cell adhesion in epithelial cell sheets. Based on their in vivo distribution and the results of overexpression studies, certain claudins, including claudin-1 and -4, are postulated to increase, whereas other claudins, especially claudin-2, are postulated to decrease the overall transcellular resistance. The overall ratio among claudins expressed in a cell/tissue has been hypothesized to define the complexity of TJs. Disruption of the TJs contributes to various human diseases, and a correlation between reduction of TJ function and tumor dedifferentiation has been postulated. The epidermal growth factor (EGF) receptor (EGFR) is overexpressed in a wide spectrum of epithelial cancers, and its expression correlates with a more metastatic cancer phenotype. However, normal functioning of EGFR is essential for normal epithelial cell proliferation and differentiation. The role of EGFR-dependent signaling in the development and maintenance of epithelial TJ integrity has not been studied in detail. This study demonstrates that, in polarized Madin-Darby canine kidney II cells, EGF-induced EGFR activation significantly inhibited claudin-2 expression while simultaneously inducing cellular redistribution and increased expression of claudin-1, -3, and -4. Accompanying these EGF-induced changes in claudin expression was a 3-fold increase in transepithelial resistance, a functional measure of TJs. In contrast, there were no alterations in protein expression and/or intracellular localization of other TJ-related proteins (ZO-1 and occludin) or adherens junction-associated proteins (E-cadherin and beta-catenin), suggesting that EGF regulates TJ function through selective and differential regulation of claudins.  相似文献   

13.
Tight junctions (TJs) link adjacent cells and are critical for maintenance of apical-basolateral polarity in epithelial monolayers. The TJ protein occludin functions in disparate processes, including wound healing and Hepatitis C Virus infection. Little is known about steady-state occludin trafficking into and out of the plasma membrane. Therefore, we determined the mechanisms responsible for occludin turnover in confluent Madin-Darby canine kidney (MDCK) epithelial monolayers. Using various biotin-based trafficking assays we observed continuous and rapid endocytosis of plasma membrane localised occludin (the majority internalised within 30 minutes). By 120 minutes a significant reduction in internalised occludin was observed. Inhibition of lysosomal function attenuated the reduction in occludin signal post-endocytosis and promoted co-localisation with the late endocytic system. Using a similar method we demonstrated that ∼20% of internalised occludin was transported back to the cell surface. Consistent with these findings, significant co-localisation between internalised occludin and recycling endosomal compartments was observed. We then quantified the extent to which occludin synthesis and transport to the plasma membrane contributes to plasma membrane occludin homeostasis, identifying inhibition of protein synthesis led to decreased plasma membrane localised occludin. Significant co-localisation between occludin and the biosynthetic secretory pathway was demonstrated. Thus, under steady-state conditions occludin undergoes turnover via a continuous cycle of endocytosis, recycling and degradation, with degradation compensated for by biosynthetic exocytic trafficking. We developed a mathematical model to describe the endocytosis, recycling and degradation of occludin, utilising experimental data to provide quantitative estimates for the rates of these processes.  相似文献   

14.
ZO-2, a member of the MAGUK family, was thought to be specific for tight junctions (TJs) in contrast to ZO-1, another MAGUK family member, which is localized at TJs and adherens junctions (AJs) in epithelial and nonepithelial cells, respectively. Mouse ZO-2 cDNA was isolated, and a specific polyclonal antibody was generated using corresponding synthetic peptides as antigens. Immunofluorescence microscopy with this polyclonal antibody revealed that, similarly to ZO-1, in addition to TJs in epithelial cells, ZO-2 was also concentrated at AJs in nonepithelial cells such as fibroblasts and cardiac muscle cells lacking TJs. When NH2-terminal dlg-like and COOH-terminal non-dlg-like domains of ZO-2 (N-ZO-2 and C-ZO-2, respectively) were separately introduced into cultured cells, N-ZO-2 was colocalized with endogenous ZO-1/ZO-2, i.e. at TJs in epithelial cells and at AJs in non-epithelial cells, whereas C-ZO-2 was distributed along actin filaments. Consistently, occludin as well as alpha catenin directly bound to N-ZO-2 as well as the NH2-terminal dlg-like portion of ZO-1 (N-ZO-1) in vitro. Furthermore, immunoprecipitation experiments revealed that the second PDZ domain of ZO-2 was directly associated with N-ZO-1. These findings indicated that ZO-2 forms a complex with ZO-1/occludin or ZO-1/alpha catenin to establish TJ or AJ domains, respectively.  相似文献   

15.
E-Cadherin plays critical roles in many aspects of cell adhesion, epithelial development, and the establishment and maintenance of epithelial polarity. The fate of E-cadherin once it is delivered to the basolateral cell surface, and the mechanisms which govern its participation in adherens junctions, are not well understood. Using surface biotinylation and recycling assays, we observed that some of the cell surface E-cadherin is actively internalized and is then recycled back to the plasma membrane. The pool of E-cadherin undergoing endocytosis and recycling was markedly increased in cells without stable cell-cell contacts, i.e., in preconfluent cells and after cell contacts were disrupted by depletion of extracellular Ca2+, suggesting that endocytic trafficking of E-cadherin is regulated by cell-cell contact. The reformation of cell junctions after replacement of Ca2+ was then found to be inhibited when recycling of endocytosed E-cadherin was disrupted by bafilomycin treatment. The endocytosis and recycling of E-cadherin and of the transferrin receptor were similarly inhibited by potassium depletion and by bafilomycin treatment, and both proteins were accumulated in intracellular compartments by an 18 degrees C temperature block, suggesting that endocytosis may occur via a clathrin-mediated pathway. We conclude that a pool of surface E-cadherin is constantly trafficked through an endocytic, recycling pathway and that this may provide a mechanism for regulating the availability of E-cadherin for junction formation in development, tissue remodeling, and tumorigenesis.  相似文献   

16.
Crosstalk of tight junction components with signaling pathways   总被引:6,自引:0,他引:6  
Tight junctions (TJs) regulate the passage of ions and molecules through the paracellular pathway in epithelial and endothelial cells. TJs are highly dynamic structures whose degree of sealing varies according to external stimuli, physiological and pathological conditions. In this review we analyze how the crosstalk of protein kinase C, protein kinase A, myosin light chain kinase, mitogen-activated protein kinases, phosphoinositide 3-kinase and Rho signaling pathways is involved in TJ regulation triggered by diverse stimuli. We also report how the phosphorylation of the main TJ components, claudins, occludin and ZO proteins, impacts epithelial and endothelial cell function.  相似文献   

17.
Tight junctions (TJs) regulate the passage of ions and molecules through the paracellular pathway in epithelial and endothelial cells. TJs are highly dynamic structures whose degree of sealing varies according to external stimuli, physiological and pathological conditions. In this review we analyze how the crosstalk of protein kinase C, protein kinase A, myosin light chain kinase, mitogen-activated protein kinases, phosphoinositide 3-kinase and Rho signaling pathways is involved in TJ regulation triggered by diverse stimuli. We also report how the phosphorylation of the main TJ components, claudins, occludin and ZO proteins, impacts epithelial and endothelial cell function.  相似文献   

18.
Association with the actin cytoskeleton is critical for normal architecture and dynamics of epithelial tight junctions (TJs) and adherens junctions (AJs). Epithelial cells express β-cytoplasmic (β-CYA) and γ-cytoplasmic (γ-CYA) actins, which have different cellular localization and functions. This study elucidates the roles of cytoplasmic actins in regulating structure and remodeling of AJs and TJs in model intestinal epithelia. Immunofluorescence labeling and latrunculin B treatment reveal affiliation of dynamic β-CYA filaments with newly assembled and mature AJs, whereas an apical γ-CYA pool is composed of stable perijunctional bundles and rapidly turning-over nonjunctional filaments. The functional effects of cytoplasmic actins on epithelial junctions are examined by using isoform-specific small interfering RNAs and cell-permeable inhibitory peptides. These experiments demonstrate unique roles of β-CYA and γ-CYA in regulating the steady-state integrity of AJs and TJs, respectively. Furthermore, β-CYA is selectively involved in establishment of apicobasal cell polarity. Both actin isoforms are essential for normal barrier function of epithelial monolayers, rapid AJ/TJ reassembly, and formation of three-dimensional cysts. Cytoplasmic actin isoforms play unique roles in regulating structure and permeability of epithelial junctions.  相似文献   

19.
Epithelial cell-cell adhesion is controlled by multiprotein complexes that include E-cadherin-mediated adherens junctions (AJs) and ZO-1-containing tight junctions (TJs). Previously, we reported that reduction of E-cadherin N-glycosylation in normal and cancer cells promoted stabilization of AJs through changes in the composition and cytoskeletal association of E-cadherin scaffolds. Here, we show that enhanced interaction of hypoglycosylated E-cadherin-containing AJs with protein phosphatase 2A (PP2A) represents a mechanism for promoting TJ assembly. In MDCK cells, attenuation of cellular N-glycosylation with siRNA to DPAGT1, the first gene in the N-glycosylation pathway, reduced N-glycosylation of surface E-cadherin and resulted in increased recruitment of stabilizing proteins γ-catenin, α-catenin, vinculin and PP2A to AJs. Greater association of PP2A with AJs correlated with diminished binding of PP2A to ZO-1 and claudin-1 and with increased pools of serine-phosphorylated ZO-1 and claudin-1. More ZO-1 was found in complexes with occludin and claudin-1, and this corresponded to enhanced transepithelial resistance (TER), indicating physiological assembly of TJs. Similar maturation of AJs and TJs was detected after transfection of MDCK cells with the hypoglycosylated E-cadherin variant, V13. Our data indicate that E-cadherin N-glycans coordinate the maturity of AJs with the assembly of TJs by affecting the association of PP2A with these junctional complexes.  相似文献   

20.
Microinjection of fluorophore-tagged cytoskeletal proteins has been a useful tool in studies of formation of focal adhesions (FA). We used this method to study the maintenance of adherens junctions (AJ) and tight junctions (TJ) of epithelial Madin-Darby bovine kidney cells. We chose alpha-actinin and vinculin as markers, because they are present both at adherens junctions and focal adhesions and their binding partners have been well characterized. Isolated FITC-labelled chicken alpha-actinin and vinculin were injected into confluent cells where they were rapidly incorporated both in FAs and AJs. The FAs remained unchanged, whereas cell-cell contacts began to fade within an hour after injection and the cells were joined to polykaryons having 5 to 13 nuclei. Short fragments of cell membranes containing injected proteins, actin, beta-catenin, cadherin, claudin, occludin and ZO-1 were visible inside the polykaryons indicating that both AJs and TJs were disintegrated as a single complex. Microinjected FITC-labelled vinculin head domain was also incorporated to both AJs and FAs, but instead of fusions it rapidly induced the detachment of the cells from the substratum probably due to high affinity of vinculin head to talin. Vinculin tail domain had no apparent effect on the cell morphology. Since small GTPases are involved in the building up of AJs, we injected active and inactive forms of cdc42 and rac proteins together with vinculin to see their effect. Active forms reduced the formation of polykaryons presumably by strengthening AJs, whereas inactive forms had no apparent effect. We suggest that excess alpha-actinin and vinculin uncouple the cell-cell adhesion junctions from the intracellular cytoskeleton which leads to fragmentation of junctional complexes and subsequent cell fusion. The results show that cell-cell adhesion sites are more dynamic and more sensitive than FAs to an imbalance in the amount of free alpha-actinin and intact vinculin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号