首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
复苏性状是某些生物应对水分剧烈变化恶劣环境的一种特殊适应能力,在植物界广泛分布于苔藓和蕨类低等植物,一些高等植物也具有这种性状。复苏植物可以在损失体内95%以上的水分后,遇水而复苏,以此度过环境恶劣的时段。复苏性状的分子机制一直让人们着迷,但对其认知还十分有限。近年来的研究表明,一些小分子代谢物和特殊蛋白的大量积累在复苏植物脱水过程中对生物膜和大分子结构起保护作用;复苏性状中的信号转导与基因调控可能包括ABA在内的一系列信号分子和途径。随着“组学”技术的发展,更宽广角度的研究将会极大的促进人们对复苏性状的认知。对于复苏性状的深入研究,可能为农作物和蔬菜的改良提供一个全新的方向,具有很大的潜在应用价值。  相似文献   

2.
Water is a major limiting factor in growth and reproduction in plants. The ability of tissues to survive desiccation is commonly found in seeds or pollen but rarely present in vegetative tissues. Resurrection plants are remarkable as they can tolerate almost complete water loss from their vegetative tissues such as leaves and roots. Metabolism is shut down as they dehydrate and the plants become apparently lifeless. Upon rehydration these plants recover full metabolic competence and ‘resurrect’. In order to cope with desiccation, resurrection plants have to overcome a number of stresses as water is lost from the cells, among them oxidative stress, destabilization or loss of membrane integrity and mechanical stress. This review will mainly focus on the effect of dehydration in angiosperm resurrection plants and some of the strategies developed by these plants to tolerate desiccation. Resurrection plants are important experimental models and understanding the physiological and molecular aspects of their desiccation tolerance is of great interest for developing drought‐tolerant crop species adapted to semi‐arid areas.  相似文献   

3.
Resurrection Plants and the Secrets of Eternal Leaf   总被引:13,自引:3,他引:10  
SCOTT  PETER 《Annals of botany》2000,85(2):159-166
Most higher plants possess a phase in their life cycle in whichtissues can survive desiccation. However, this is restrictedto specialized tissues such as seeds and pollen. Resurrectionplants are remarkable in that they can tolerate almost completewater loss in their vegetative tissues. The desiccated plantcan remain alive in the dried state for several years. However,upon watering the plants rehydrate and are fully functionalwithin 48 h. Underpinning this amazing ability is the capacityto accumulate large amounts of sucrose in the tissues. Thissugar has the property of stabilizing enzymes and cellular structuresin the absence of water. The sources of carbon that fuel sucrosesynthesis are not known, but temporary carbohydrate stores andphotosynthesis are the most likely candidates. On rewatering,the sucrose is metabolized rapidly as the tissues rehydrate.Increased expression of a number of genes in response to droughtstress have been noted. A number of these are associated withmetabolic pathways linked with primary carbohydrate metabolism.However, some genes related to LEA (Late Embryogenic Abundant)proteins have been isolated which suggests they too may playa role in maintaining tissue integrity during desiccation. Howthese mechanisms are integrated to enable resurrection plantsto survive desiccation is discussed. Copyright 2000 Annals ofBotany Company ABA, Craterostigma, desiccation tolerance, poikilohydric, resurrection.  相似文献   

4.
Tolerance to near complete desiccation of vegetative organs is a widespread capability in bryophytes and is also shared by a small group of vascular plants known as resurrection plants. To date more than 300 species, belonging to pteridophytes and angiosperms, have been identified that possess this kind of desiccation-tolerance. The vegetative desiccation-tolerance of resurrection plants is an inductive process displayed only under environmental stress with or without the involvement of abscisic acid as molecular signal. The different problems associated with desiccation encountered by resurrection plants render the employment of many interacting mechanisms necessary. Preservation of cell order and correct structure of membranes and macromolecules is underpinned by the synthesis of large amounts of sugars, amino acids, and small polypeptides such as late embryogenesis abundant (LEA) proteins and dehydrins. Some of these compatible solutes, such as sucrose and LEA proteins, are also involved in cytoplasm vitrification, which occurs during the last phase of desiccation. Mechanical damage due to vacuole shrinkage in dehydrating cells is avoided by cell wall folding or by replacing the water in vacuoles with nonaqueous substances. Oxidative stress, due to enhanced production of reactive oxygen species (ROS) especially by chloroplasts, is minimized through two different strategies. The homoiochlorophyllous resurrection plants, which conserve chloroplasts with chlorophylls and thylakoids upon drying, fold leaf blades and synthesize anthocyanins, as both sunscreens and free radical scavengers, and additionally increase the activity of antioxidant systems in cells. In contrast, the chloroplasts in poikilochlorophyllous species degrade chlorophylls and thylakoid membranes yielding desiccoplasts that are devoid of any internal structures. These adaptive mechanisms preserve cells from damage by desiccation and allow them to resume vital functions once rehydrated. Even if based mainly on cell protection during drying, the vegetative desiccation-tolerance of resurrection plants also relies on systems of cell recovery and repair upon rehydration. However, most of these systems are prepared during cell dehydration.  相似文献   

5.
6.
7.
8.
The relic endemic nature of Haberlea rhodopensis, which grows in Balkan Peninsula, in combination with its high vegetative desiccation-tolerance, makes this species a good model to study mechanisms behind plant adaptation to severe drought stress. The aim of this study was to evaluate the antioxidant protection provided by Superoxide dismutase (SOD) and Peroxidase (PO) in H. rhodopensis after exposure to and recovery from dehydration at different developmental stages. During dehydration the electrolyte leakage from leaf tissue increased more significantly in post-flowering plants than in flowering plants, while upon subsequent rehydration this parameter showed a very fast decrease to the basic value of fresh leaves and did not depend on developmental stage. Like other higher plant species, SOD and PO demonstrated in H. rhodopensis an ability to adjust their activity very promptly to changing water supply. In addition, the leaves of this resurrection species retained significant activities of SOD and PO even in air-dried state, considered as the most severe form of water stress. The enhanced activity of antioxidant enzymes may either enable the scavenging of the active oxygen species produced at very severe water deficit, and/or carry a potential for resurrection on subsequent rehydration. Upon stress treatment total activities of both enzymes were higher in flowering than post-flowering plants which reveals that developmental stage might be a factor affecting plant stress tolerance. This work identified for the first time SOD isoforms of H. rhodopensis. Native PAGE showed at least six multiple isoforms in the protein extract from leaf tissue of flowering plants, and the differential visualization revealed that four of them were Cu, Zn-SOD isoforms, one was Mn-SOD and one Fe-SOD. These findings provide a good starting point for future study of the SOD gene family of this rare resurrection plant at the molecular level.  相似文献   

9.
Expression of many genes is induced during dehydration in vegetative tissues of the desiccation tolerant resurrection plantCraterostigma plantagineum. The most abundant group of desiccation-related gene products belong to the LEA (= Late Embryogenesis Abundant) proteins. Here we describe structures and expression patterns of members of group 3 and group 4Lea genes fromC. plantagineum. The most intriguing observation is the strong conservation of repeat motifs inLea genes found across divers plant species includingC. plantagineum and non-desiccation tolerant plants. This conservation of structural elements leads to speculations about evolution of desiccation tolerance in the resurrection plant.  相似文献   

10.
11.
A modification of the ‘cold plaque’ screening technique (Hodge et al., Plant Journal1992, 2, 257–260) was used to screen a cDNA library constructed from drought‐stressed leaf tissue of the desiccation tolerant (‘resurrection’) grass Sporobolus stapfianus. This technique allowed a large number of clones representing genes expressed at low abundance to be isolated. An examination of expression profiles revealed that several of these genes are induced in desiccation‐tolerant tissue experiencing severe drought stress. Further characterization indicated that the gene products encoded include an eIF1 protein translation initiation factor and a glycine‐ and proline‐rich protein which have not previously been associated with drought stress. In addition, genes encoding a serine/threonine phosphatase type 2C, a tonoplast‐intrinsic protein (TIP) and an early light‐inducible protein (ELIP) were isolated. A number of these genes are expressed differentially in desiccation‐tolerant and desiccation‐sensitive tissues, suggesting that they may be associated with the desiccation tolerance response of S. stapfianus. The results indicate that there may be unique gene regulation processes occurring during induction of desiccation tolerance in resurrection plants which allow different drought‐responsive genes to be selectively expressed at successive levels of water loss.  相似文献   

12.
更苏植物是一类在极度干燥条件下组织会迅速脱水后遇水又能很快复苏的植物.极少数被子植物有这种能力,在双子叶植物中尤其罕见,而且脱水时叶绿素含量和叶绿体完整性变化较少,称为叶绿素保持型(HDT).该类植物的复苏机理简单,研究方便,因而得到更广泛注意.更苏被子植物光合作用的最新研究进展说明,光化学活性是研究更苏植物脱水复苏生理状态的灵敏指标.和普通植物一样,在光下,更苏被子植物的光化学活性随着叶片失水而受到抑制,但奇怪的是在失去95%以上的水分后复水仍可迅速复活.在脱水过程中叶黄素循环和抗氧化系统的上调以及光合膜完整性和稳定性的保持,可能对更苏被子植物的耐脱水性起非常重要的作用.磷酸盐对复苏的影响也表现在复水阶段而且与上述两种保护机理关系不大,因此应该加强更苏被子植物复水阶段的研究.  相似文献   

13.
更苏被子植物的光合作用   总被引:4,自引:0,他引:4  
更苏植物是一类在极度干燥条件下组织会迅速脱水后遇水又能很快复苏的植物。极少数被子植物有这种能力,在双子叶植物中尤其罕见,而且脱水时叶绿素含量和叶绿体完整性变化较少,称为叶绿素保持型(HDT)。该类植物的复苏机理简单,研究方便,因而得到更广泛注意。更苏被子植物光合作用的最新研究进展说明,光化学活性是研究更苏植物脱水复苏生理状态的灵敏指标。和普通植物一样,在光下,更苏被子植物的光化学活性随着叶片失水而受到抑制,但奇怪的是在失去95%以上的水分后复水仍可迅速复活。在脱水过程中叶黄素循环和抗氧化系统的上调以及光合膜完整性和稳定性的保持,可能对更苏被子植物的耐脱水性起非常重要的作用。磷酸盐对复苏的影响也表现在复水阶段而且与上述两种保护机理关系不大,因此应该加强更苏被子植物复水阶段的研究。  相似文献   

14.
15.
Responses of plants to dehydration stress: a molecular analysis   总被引:5,自引:0,他引:5  
Over more than a decade molecular techniques have been applied to analyse the response of plants to drought with the objective to identify genes which contribute to drought tolerance. The studies have used a variety of experimental strategies, and they have resulted in the characterization of a large number of genes which are expressed upon dehydration. A very prominent group among these genes are the so-called Lea (=late embryogenesis abundant) genes which appear to occur ubiquitously in most higher plants. A challenge for future research is still to identify the role of the gene products in dehydration stress; it is particularly necessary to distinguish gene products with a potential in osmoprotection and those which are only involved in secondary reactions. Another area of research activities has been to elucidate the dehydration stress-triggered signal transduction and the role of ABA in this process. For this part transgenic plants have been used to evaluate promoter sequences and to characterize cis-acting regulatory promoter elements crucial for a distinct expression pattern.  相似文献   

16.
17.
18.
Dehydrins (DHNs), or group 2 LEA (Late Embryogenesis Abundant) proteins, play a fundamental role in plant response and adaptation to abiotic stresses. They accumulate typically in maturing seeds or are induced in vegetative tissues following salinity, dehydration, cold and freezing stress. The generally accepted classification of dehydrins is based on their structural features, such as the presence of conserved sequences, designated as Y, S and K segments. The K segment representing a highly conserved 15 amino acid motif forming amphiphilic a-helix is especially important since it has been found in all dehydrins. Since more than 20 y, they are thought to play an important protective role during cellular dehydration but their precise function remains unclear. This review outlines the current status of the progress made toward the structural, physico-chemical and functional characterization of plant dehydrins and how these features could be exploited in improving stress tolerance in plants.Key words: abiotic stress, dehydration stress, drought, cold acclimation, freezing tolerance, LEA proteins, dehydrins  相似文献   

19.
Because of their unique tolerance to desiccation, the so‐called resurrection plants can be considered as excellent models for extensive research on plant reactions to environmental stresses. The vegetative tissues of these species are able to withstand long dry periods and to recover very rapidly upon re‐watering. This study follows the dynamics of key components involved in leaf tissue antioxidant systems under desiccation in the resurrection plant Haberlea rhodopensis and the related non‐resurrection species Chirita eberhardtii. In H. rhodopensis these parameters were also followed during recovery after full drying. A well‐defined test system was developed to characterise the different responses of the two species under drought stress. Results show that levels of H2O2 decreased significantly both in H. rhodopensis and C. eberhardtii, but that accumulation of malondialdehyde was much more pronounced in the desiccation‐tolerant H. rhodopensis than in the non‐resurrection C. eberhardtii. A putative protective role could be attributed to accumulation of total phenols in H. rhodopensis during the late stages of drying. The total glutathione concentration and GSSG/GSH ratio increased upon complete dehydration of H. rhodopensis. Our data on soluble sugars suggest that sugar ratios might be important for plant desiccation tolerance. An array of different adaptations could thus be responsible for the resurrection phenotype of H. rhodopensis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号