首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cervical cancer remains a malignant type of tumor and is the fourth leading cause of cancer-related death among females. MALAT1 has been identified as a tumor oncogene in various cancers. Our present study aimed to explore the biological role of MALAT1 in cervical cancer. We observed that MALAT1 was significantly upregulated in human cervical cancer cell lines compared with the ectocervical epithelial cells. MALAT1 was repressed by transfection with LV-shMALAT1, whereas increased by LV-MALAT1 in HeLa and Caski cells. Silencing of MALAT1 obviously reduced cervical cell viability, induced cell apoptosis, and repressed cell invasion capacity. Conversely, overexpression of MALAT1 exhibited an opposite phenomenon. Furthermore, miR-429 was predicted as a direct target of MALAT1, and it was dramatically decreased in cervical cancer cells. It has been shown that miR-429 plays a crucial role in cervical cancer progression. In our current study, the targeting correlation between MALAT1 and miR-429 was confirmed by luciferase reporter assays and RIP experiments. Finally, in vivo animal models were established, and we indicated that MALAT1 inhibited cervical cancer progression via targeting miR-429. These findings revealed that MALAT1 can sponge miR-429 and regulate cervical cancer pathogenesis in vivo and in vitro. In conclusion, we indicated that the MALAT1/miR-429 axis was involved in cervical cancer development.  相似文献   

3.
4.
Gastric cancer (GC) is the fifth utmost common malignant cancer type globally, in which ferroptosis acts a critical function in the progress of GC. Long noncoding RNA ZEB1-AS1 has been recognized in numerous cancers, but the role of ZEB1-AS1 in ferroptosis remains obscure. Hence, we investigated the efficacy of ZEB1-AS1 on ferroptosis of GC cells. The cell growth and viability were analyzed via cell counting kit assay and xenograft tumor model in vivo and in vitro, respectively. The RNA and protein expression were measured by qRT-PCR and western blot analysis assay, respectively. The levels of Fe2+, malondialdehyde (MDA), and lipid reactive oxygen species (ROS) were tested to determine ferroptosis. The erastin and RSL3 were used to induce ferroptosis. The mechanism was analyzed via luciferase reporter gene and RIP assays. The treatment of ferroptosis inducer Erastin and RSL3 suppressed the viability of GC cells and the ZEB1-AS1 overexpression rescued the phenotype in the cells. The levels of Fe2+, MDA, and ROS were enhanced through the depletion of ZEB1-AS1 in Erastin/RSL3 treated GC cells. ZEB1-AS1 directly sponged miR-429 in GC cells and miR-429 targeted BGN in GC cells, and the inhibition of miR-429 rescued ZEB1-AS1 depletion-inhibited BGN expression. We validated that miR-429 induced and BGN-repressed ferroptosis in cancer cells. The BGN overexpression and miR-429 suppression could reverse the efficacy of ZEB1-AS1 on proliferation and ferroptosis in cancer cells. The expression of ZEB1-AS1 and BGN was enhanced and miR-429 expression was decreased in clinical GC tissues. ZEB1-AS1 attenuated ferroptosis of cancer cells by modulating miR-429/BGN axis.  相似文献   

5.
The water temperature of aquacultures is a primary factor of fish welfare, reproductive patterns, and immunity. To elucidate the molecular and biological processes of the temperature modulation of reproduction and immunity, female Nile tilapia (190 ± 10g) were allocated into five groups following acclimatization (150 females, three replicates, each n = 10). Each group was subjected to various temperatures (28 °C, 30 °C, 32 °C, 34 °C, and 37 °C), the group at 28 °C representing the control. Their serum levels of estradiol, cortisol, and vitellogenin were measured as well as serum triiodothyronine (T3) hormone, thyroxine (T4) hormone, and non-specific immunity (phagocytic and lysozyme activity). In addition, steroidogenic acute regulatory protein (STAR), vitellogenin gene receptor, and heat shock protein 70 (HSP70) gene expression were evaluated. The serum levels of estradiol, cortisol, and vitellogenin markedly declined (P < 0.05) in fish group at higher temperatures. In addition to T3, T4 was significantly affected (P < 0.05) in the control group. The expressions of the STAR gene (steroidogenesis) and vitellogenin receptors were also considerably down-regulated. The histopathological photomicrograph of fish subjected to high water temperature revealed injuries in ovary tissues, demonstrating its harmful effects. The experimental results verified the possible role of water temperature as a main stressor on Nile tilapia’ physiology through modulation of steroidogenesis-related gene expression and immunity.  相似文献   

6.
7.
A Pavlovian conditioning paradigm was used to induce a connection between a conditioned stimulus, light (CS), associated with an unconditioned stimulus, confinement (US) in Nile tilapia Oreochromis niloticus , which resulted in a conditioned endocrine response (CR) to the CS alone manifested as an increase in plasma cortisol. Individual isolated Nile tilapia were submitted for 10 days to the conditioning treatment consisting of turning on a light (CS) for 1 min with subsequent 30 min confinement (US). On the 10th day of the experiment, plasma cortisol was not increased when fish were subjected to no handling at all, or only light, or even a daily stressor for the 9 days. On the other hand, at the 10th day cortisol was significantly increased only when light was presented either with or without pairing with the stressor. These results confirmed that the cue, light (CS), was not stressful in itself, but when given as the CS in the absence of the US post conditioning the hypothalamus–pituitary–interrenal axis was activated. Therefore, it was concluded that memory of a previous experience with a stressor can be recalled by a conditioned stimulus and induce stress, which is the first demonstration of a memory‐induced stress in fishes.  相似文献   

8.
Social fish raised in farms are usually kept in groups of similar-sized individuals. However, social animals of similar size typically have similar fighting ability, which increases aggressive interaction for social rank establishment, as well as social stress. We compared Thai strain Nile tilapia fish, Oreochromis niloticus (L.), held under two treatments: (1) The Homogeneous one, with five adult male fish of similar size and (2) the Heterogeneous treatment with five adult males of different sizes. We recorded the frequency of aggressive interactions and checked social stability and stress levels (cortisol) after five days in the groups. Grouping similar sized Thai Nile tilapia increased the aggressive interactions and delayed rank stability with increased body injuries as a consequence. Homogeneous-sized individuals showed a similar level of stress while heterogeneous-sized individuals showed different stress levels with dominants being more stressed than subordinates. The data indicate that the practice of selecting fish of similar size in aquaculture management could reduce the welfare of social fish and that the effect is observed in different lineages.  相似文献   

9.
10.
11.
The present study investigated the effects of sodium butyrate (SB) on the growth performance, histomorphology, immune response, and stress related markers of Nile tilapia subjected to heat stress. SB was incorporated at 0, 0.5, 1, 1.5, and 2 g per kg diet and fed to fish for 8 weeks. The obtained results revealed significantly improved growth performance with a decreased feed conversion ratio in the fish fed SB (P < 0.05). In the anterior, middle, and distal parts of the intestine, villus length and width and internal villi distance as well as the number of goblet cells were increased in the fish fed SB (P < 0.05). The blood total protein, hemoglobin, and white and red blood cell counts showed a significant quadratic influence (P < 0.05). The survival rate for Nile tilapia exposed to heat stress for 48 h revealed that the SB fed groups had noticeably higher survival rates. Dietary SB significantly increased the phagocytic index and lysozyme and phagocytic activities both before and after heat stress (P < 0.05). After heat stress, blood glucose decreased significantly with SB feeding at 0.5, 1, or 1.5 g per kg diet, while cortisol was reduced in fish fed 1.5 or 2 g per kg diet (P < 0.05). Additionally, in fish fed SB, superoxide dismutase (SOD), catalase, and glutathione peroxidase activities were significantly increased both before and after heat stress, while malondialdehyde was decreased by SB feeding (P < 0.05). Liver heat shock protein 70 and SOD gene expression were significantly upregulated in fish fed on SB at 1 g per kg diet (P < 0.05). Thus, supplementation with SB at 1–2 g per kg diet can be used effectively in tilapia diets for improving growth, feed efficiency, and immune response as well as for tolerance to heat stress.  相似文献   

12.
13.
14.
Summary We established an in vitro hepatocyte primary culture system from Oreochromis niloticus, a tropical fish species of great economical importance, and evaluated its ability to express albumin, a liver-specific protein, consistently for a period of 3 wk. Serum requirements for fish hepatocyte cultures were assessed. A one-step in situ perfusion of tilapia liver retrogradely followed by collagenase liver dissociation and subsequent washing produced nearly 90% homogenous viable hepatocytes, as shown by trypan blue exclusion test. Mixed primary monolayer and aggregate hepatocyte cultures achieved by 10% fetal calf serum medium supplements expressed consistent levels of albumin. The results of light and electron microscopy showed that the hepatocytes did not significantly proliferate (P<0.05) but remained viable for at least 3 wk. The results of this study show that in vitro cultures of mixed primary hepatocyte monolayers and aggregates established from Nile tilapia may be useful models for studying transient cellular stress induction.  相似文献   

15.
Bisphenol A (BPA) is one of the industrial chemical compound which is used in the production of polycarbonate plastics and epoxy resins. BPA is used throughout the world and it could enter the aquatic ecosystems causing serious problems. To evaluate the potential effects of BPA toxicity on Nile tilapia, Oreochromis niloticus (L.) performance, its lethal concentration (LC50) was determined and it was 13.13 µg/L. After that, fish (33.9 ± 0.55 g/fish) were exposed to 0.0, 1.64, or 3.28 µg/L of BPA for 6 weeks after which growth performance, biochemical variables, and oxidative defense system were assessed. The results showed that fish growth and feed intake were significantly reduced as BPA levels increased with no significant difference in fish survival. Total protein, albumin, globulin, and acetylcholine esterase decreased significantly; meanwhile, aspartate transferase, alanine transferase, alkaline phosphatase, uric acid, and creatinine increased significantly with exposure to BPA in a dose dependent manner. Furthermore, malondialdehyde value and the activities of superoxide dismutase and catalase increased significantly; while glutathione peroxidase and glutathione S‐transferase decreased significantly as BPA levels increased. In conclusion, BPA exposure in aquatic environment deteriorated fish performance and health causing liver and kidney dysfunction. Thus, fish exerted oxidative defense enzymes as a protection tool against BPA toxicity.  相似文献   

16.
Chen WB  Wang X  Zhou YL  Dong HY  Lin HR  Li WS 《动物学研究》2011,32(3):285-292
该文采用RT-PCR和cDNA末端快速扩增技术(rapid-amplification of cDNA ends,RACE)的方法,从尼罗罗非鱼(Oreochromis niloticus)下丘脑总RNA中获得了尼罗罗非鱼Orexin前体基因的cDNA全长序列。该cDNA全长648bp,其中开放阅读框的长423bp,编码Orexin前体蛋白为140个氨基酸,包括37个氨基酸的信号肽、43个氨基酸的Orexin-A、28个氨基酸的Orexin-B和末尾32个氨基酸组成的功能不详的多肽。采用Real-time PCR技术对尼罗罗非鱼Orexin前体基因的组织表达模式以及在摄食前后、饥饿和再投喂状态下的表达量变化进行了研究。结果显示,在脑部和外周等18个组织中都检测到了Orexin前体基因的表达,其中在下丘脑中表达量最高;在摄食前后,尼罗罗非鱼Orexin前体基因的表达量显著低于在摄食状态中;饥饿2、4、6和8d后,Orexin前体基因在下丘脑中的表达量与正常投喂组相比均显著升高,饥饿4d再投喂后,表达量又恢复至正常水平。这些结果表明,Orexin在尼罗罗非鱼摄食中可能有着重要的调节作用。  相似文献   

17.
18.
Summary The role of the paraventricular nucleus (PVN) and biogenic amines (BA) in regulating the level of corticoids in the serum of osmotically stressed mallard ducks (Anas platyrhynchos) was analyzed employing three experimental approaches: 1) pharmacologic alteration of central BA levels, 2) microscopic evaluation of BA distribution, and 3) placement of electrolytic lesions into the PVN. Reserpine and -methyl-p-tyrosine (mpt), agents that decrease the amount of BA's in the central nervous system, produced a fivefold increase in the concentration of serum corticoids. Conversely, pargyline and amphetamine, agents that increase the functional pool of BA's, prevented the rise in serum corticoid concentration normally observed in birds challenged with an intraperitoneal injection of hypertonic saline. When the topographic distribution of BA's was analyzed in the brains of osmotically stressed and nonstressed ducks distinct changes in the intensity of catecholamine (CA) fluorescence were observed in only one location, the PVN of the hypothalamus. Additionally, electrolytic lesions stereotaxically placed in the PVN blocked the osmotic stress-induced rise in serum corticoid concentration. These data therefore indicate that the PVN in the mallard duck plays some role in regulating the observed stress-induced rise in serum corticoid concentration, and that this regulatory function is probably inhibited by catecholamines.This research was supported by research grant No. GB 33321 from the National Science Foundation. We wish to express our sincere thanks to Mr. Howard Funk, research director, Colorado Division of Wildlife, for the use of the State's animal facilitiesThis research was submitted as partial fulfillment for the degree of Doctor of Philosophy, Department of Physiology and Biophysics, Colorado State University, Ft. Collins, CO 80521  相似文献   

19.
In vertebrates, the neuropeptide Y (NPY) family peptides have been recognized as key players in food intake regulation. NPY centrally promotes feeding, while peptide YY (PYY) and pancreatic polypeptide (PP) mediate satiety. The teleost tetraploidization is well-known to generate duplicates of both NPY and PYY; however, the functional diversification between the duplicate genes, especially in the regulation of food intake, remains unknown. In this study, we identified the two duplicates of NPY and PYY in Nile tilapia (Oreochromis niloticus). Both NPYa and NPYb were primarily expressed in the central nervous system (CNS), but the mRNA levels of NPYb were markedly lower than those of NPYa. Hypothalamic mRNA expression of NPYa, but not NPYb, decreased after feeding and increased after 7-days of fasting. However, both NPYa and NPYb caused a significant increase in food intake after an intracranial injection of 50 ng/g body weight dose. PYYb, one of the duplicates of PYY, had an extremely high expression in the foregut and midgut, whereas another form of duplicate PYYa showed only moderate expression in the CNS. Both hypothalamic PYYa and foregut PYYb mRNA expression increased after feeding and decreased after 7-days of fasting. Furthermore, the intracranial injection of PYYb decreased food intake, but PYYa had no significant effect. Our results suggested that although the mature peptides of NPYa and NPYb can both stimulate food intake, NPYa is the main endogenous functional NPY for feeding regulation. A functional division has been identified in the duplicates of PYY, which deems PYYb as a gut-derived anorexigenic peptide and PYYa as a CNS-specific PYY in Nile tilapia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号