首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aldehyde dehydrogenase in tobacco pollen   总被引:5,自引:0,他引:5  
  相似文献   

3.
Using the transgenic AEQUORIN system, we showed that the cotyledons and leaves of Arabidopsis thaliana seedlings developed a biphasic luminescence response to anoxia, indicating changes in cytosolic Ca2+ levels. A fast and transient luminescence peak occurred within minutes of anoxia, followed by a second, prolonged luminescence response that lasted 1.5 to 4 h. The Ca2+ channel blockers Gd3+, La3+, and ruthenium red (RR) partially inhibited the first response and promoted a larger and earlier second response, suggesting different origins for these responses. Both Gd3+ and RR also partially inhibited anaerobic induction of alcohol dehydrogenase gene expression. However, although anaerobic alcohol dehydrogenase gene induction occurred in seedlings exposed to water-agar medium and in roots, related luminescence responses were absent. Upon return to normoxia, the luminescence of cotyledons, leaves, and roots dropped quickly, before increasing again in a Gd3+, La3+, ethyleneglycol-bis(beta-aminoethyl ether)-N,N'-tetraacetic acid-, and RR-sensitive fashion.  相似文献   

4.
A principal pathway of 2-methoxyethanol (ME) metabolism is to the toxic oxidative product, methoxyacetaldehyde (MALD). To assess the role of aldehyde dehydrogenase (ALDH) in MALD metabolism, in vitro MALD oxidation was examined with liver subcellular fractions from Japanese subjects who carried three different ALDH2 genotypes and Aldh2 knockout mice, which were generated in this study. The activity was distributed in mitochondrial fractions of ALDH2*1/*1 and wild type (Aldh2+/+) mice but not ALDH2*1/*2, *2/*2 subjects or Aldh2 homozygous mutant (Aldh2-/-) mice. These data suggest that ALDH2 is a key enzyme for MALD oxidation and ME susceptibility may be influenced by the ALDH2 genotype.  相似文献   

5.
Pathogen/microbe- or plant-derived signaling molecules (PAMPs/MAMPs/DAMPs) or elicitors induce increases in the cytosolic concentration of free Ca(2+) followed by a series of defense responses including biosynthesis of antimicrobial secondary metabolites called phytoalexins; however, the molecular links and regulatory mechanisms of the phytoalexin biosynthesis remains largely unknown. A putative voltage-gated cation channel, OsTPC1 has been shown to play a critical role in hypersensitive cell death induced by a fungal xylanase protein (TvX) in suspension-cultured rice cells. Here we show that TvX induced a prolonged increase in cytosolic Ca(2+), mainly due to a Ca(2+) influx through the plasma membrane. Membrane fractionation by two-phase partitioning and immunoblot analyses revealed that OsTPC1 is localized predominantly at the plasma membrane. In retrotransposon-insertional Ostpc1 knock-out cell lines harboring a Ca(2+)-sensitive photoprotein, aequorin, TvX-induced Ca(2+) elevation was significantly impaired, which was restored by expression of OsTPC1. TvX-induced production of major diterpenoid phytoalexins and the expression of a series of diterpene cyclase genes involved in phytoalexin biosynthesis were also impaired in the Ostpc1 cells. Whole cell patch clamp analyses of OsTPC1 heterologously expressed in HEK293T cells showed its voltage-dependent Ca(2+)-permeability. These results suggest that OsTPC1 plays a crucial role in TvX-induced Ca(2+) influx as a plasma membrane Ca(2+)-permeable channel consequently required for the regulation of phytoalexin biosynthesis in cultured rice cells.  相似文献   

6.
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) plays a major role in acetaldehyde detoxification. The alcohol sensitivity is associated with a genetic deficiency of ALDH2. We have previously reported that this deficiency influences the risk for late-onset Alzheimer's disease. However, the biological effects of the deficiency on neuronal cells are poorly understood. Thus, we obtained ALDH2-deficient cell lines by introducing mouse mutant Aldh2 cDNA into PC12 cells. The mutant ALDH2 repressed mitochondrial ALDH activity in a dominant negative fashion, but not cytosolic activity. The resultant ALDH2-deficient transfectants were highly vulnerable to exogenous 4-hydroxy-2-nonenal, an aldehyde derivative generated by the reaction of superoxide with unsaturated fatty acid. In addition, the ALDH2-deficient transfectants were sensitive to oxidative insult induced by antimycin A, accompanied by an accumulation of proteins modified with 4-hydroxy-2-nonenal. Thus, these findings suggest that mitochondrial ALDH2 functions as a protector against oxidative stress.  相似文献   

7.
To compare the regulation of anaerobic metabolism during germination in anoxia-tolerant and intolerant plants, enzymes associated with anaerobic metabolism such as sucrose synthase, aldolase, enolase, pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), and aldehyde dehydrogenase (ALDH) were assayed in two varieties of Echinochloa crus-galli, formosensis (tolerant) and praticola (intolerant). The initial and intervening enzymes of the pathway (sucrose synthase and aldolase) and enzymes in the last part of the pathway (PDC, ADH and ALDH) revealed similar changing patterns in activities during germination. This implies that each group of enzymes may be controlled by an identical regulatory mechanism. During anoxia, activities of all enzymes increased 1.5-30-fold in both varieties compared to their activities under aerobic conditions. Activities of sucrose synthase, enolase and ADH exhibited the same induction patterns under anoxia in formosensis and praticola. However, the activities of aldolase, ALDH and PDC were more strongly induced in formosensis under anoxia (1.2-2-fold) than in praticola. These enzymes were also assayed in F(3) families which varied in their anaerobic germinability. For PDC, activities under anoxia in anoxia-tolerant families were similar to those of an anoxia-intolerant family during the whole period although the family did not exhibit anaerobic germinability. This suggests that there is no correlation between PDC activity and anaerobic germinability. For ALDH, activities were more strongly induced under anoxia in anoxia-tolerant families than in anoxia-intolerant families, a trend also exhibited by the parents. This indicates that ALDH may play a role in detoxifying acetaldehyde formed through alcoholic fermentation during anaerobic germination.  相似文献   

8.
Changes in cytoplasmic Ca2+ levels are involved in the regulation of several plant genes. However, to our knowledge, no regions of genes or specific cis elements have been shown to be involved in the regulation of plant gene expression by cytosolic Ca2+ signaling. The maize (Zea mays) gene cab-m1, which encodes a light-harvesting chlorophyll a/b-binding apoprotein, is positively photoregulated in mesophyll cells (MC) but not in bundle-sheath cells (BSC). This gene is highly preferentially expressed in maize MC versus BSC. In situ transient expression assays have revealed that exposure of tissues to ethyleneglycol-bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA), which chelates Ca2+, blocks the photostimulation of cab-m1 full promoter (-1026 to + 14) activity in MC of leaf segments of dark-grown maize seedlings. EGTA has no effect on expression in BSC. These results suggest that light-induced elevation of the cytosolic Ca2+ concentration in MC is required for the enhancement of cab-m1 expression in MC. Deletion of the sequence from -1026 to -360 completely abolished Ca2+ responsiveness of cab-m1 expression in MC. On the other hand, a 54-bp fragment in the 5' flanking region (-953 to -899 relative to the translation start site) conferred Ca2+ responsiveness on a -359 core promoter: reporter gene, suggesting that Ca2+ signaling is mediated via specific sequences in this short fragment. Furthermore, possible involvement of Ca(2+)-calmodulin in the signal transduction chain for regulating cab-m1 expression was suggested by the results of inhibitor experiments.  相似文献   

9.
When 3 d old aerobic rice seedlings are subjected to 48 h ofanaerobiosis a strong alcoholic fermentation system is inducedwhich operates at a constant rate during the treatment. Ethanol accumulates in seedling tissues during the first hoursof anaerobiosis to reach a limit value which is maintained thereafter.Of the total ethanol production during the anaerobic treatment,only 2% is accounted for by ethanol stored in tissues, the remaining98% is found in the growth medium. Concomitant effects of anaerobiosis on seedling growth, consumptionof endosperm reserves, and variations in the level of activityof alcohol dehydrogenase (ADH) and soluble proteins are reported.  相似文献   

10.
Ability of metabolic adaptation in upland and lowland rice (Oryza sativa L.) seedlings to flooding stress was compared. Flooding stress increased alcohol dehydrogenase (ADH) activity and ethanol concentration in shoots and roots of the upland and lowland rice seedlings. The difference in ADH activity and ethanol concentration in shoots between the upland and lowland rice was not apparent. However, both ADH activity and ethanol concentration in roots of the lowland rice were 2-fold greater than those in roots of the upland rice, suggesting that flooding-induction of ethanolic fermentation in lowland rice roots may be significantly greater than that in the upland rice roots. Since flooding often causes the anaerobic conditions in rooting zone than aerial part of plants and ethanolic fermentation is essential to survive in the anaerobic conditions, the ability of metabolic adaptation in lowland rice seedlings to flooding stress may be greater than that in upland rice seedlings.  相似文献   

11.
Ethanolic fermentation is classically associated with flooding tolerance when plant cells switch from respiration to anaerobic fermentation. However, recent studies have suggested that fermentation also has important functions in the presence of oxygen, mainly in germinating pollen and during abiotic stress. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we characterize the PDC gene family in Arabidopsis. PDC is encoded by four closely related genes. By using real-time quantitative polymerase chain reaction, we determined the expression levels of each individual gene in different tissues, under normal growth conditions, and when the plants were subjected to anoxia or other environmental stress conditions. We show that PDC1 is the only gene induced under oxygen limitation among the PDC1 gene family and that a pdc1 null mutant is comprised in anoxia tolerance but not other environmental stresses. We also characterize the expression of the aldehyde dehydrogenase (ALDH) gene family. None of the three genes is induced by anoxia but ALDH2B7 reacts strongly to ABA application and dehydration, suggesting that ALDH may play a role in aerobic detoxification of acetaldehyde. We discuss the possible role of ethanolic fermentation as a robust back-up energy production pathway under adverse conditions when mitochondrial function is disturbed.  相似文献   

12.
The enzyme aldehyde dehydrogenase (ALDH) is essential for ethanol metabolism in mammals, converting the highly toxic intermediate acetaldehyde to acetate. The role of ALDH in Drosophila has been debated, with some authors arguing that, at least in larvae, acetaldehyde detoxification is carried out mainly by alcohol dehydrogenase (ADH), the enzyme responsible for converting ethanol to acetaldehyde. Here, we report the creation and characterization of four null mutants of Aldh, the putative structural locus for ALDH. Aldh null larvae and adults are poisoned by ethanol concentrations easily tolerated by wild-types; their ethanol sensitivity is in fact comparable to that of Adh nulls. The results refute the view that ALDH plays only a minor role in ethanol detoxification in larvae, and suggest that Aldh and Adh may be equally important players in the evolution of ethanol resistance in fruit-breeding Drosophila.  相似文献   

13.
Reactive lipid aldehydes are implicated in the pathogenesis of various oxidative stress-mediated diseases, including non-alcoholic steatohepatitis, atherosclerosis, Alzheimer's and cataract. In the present study, we sought to define which hepatic Aldh isoform plays a major role in detoxification of lipid-derived aldehydes, such as acrolein and HNE by enzyme kinetic and gene expression studies. The catalytic efficiencies for metabolism of acrolein by Aldh1a1 was comparable to that of Aldh3a1 (V(max)/K(m)=23). However, Aldh1a1 exhibits far higher affinity for acrolein (K(m)=23.2 μM) compared to Aldh3a1 (K(m)=464 μM). Aldh1a1 displays a 3-fold higher catalytic efficiency for HNE than Aldh3a1 (218 ml/min/mg vs 69 ml/min/mg). The endogenous Aldh1a1 gene was highly expressed in mouse liver and a liver-derived cell line (Hepa-1c1c7) compared to Aldh2, Aldh1b1 and Aldh3a1. Aldh1a1 mRNA levels was 34-fold and 73-fold higher than Aldh2 in mouse liver and Hepa-1c1c7 cells respectively. Aldh3a1 gene was absent in mouse liver, but moderately expressed in Hepa-1c1c7 cells compared to Aldh1a1. We demonstrated that knockdown of Aldh1a1 expression by siRNA caused Hepa-1c1c7 cells to be more sensitive to acrolein-induced cell death and resulted in increased accumulation of acrolein-protein adducts and caspase 3 activation. These results indicate that Aldh1a1 plays a major role in cellular defense against oxidative damage induced by reactive lipid aldehydes in mouse liver. We also noted that hepatic Aldh1a1 mRNA levels were significantly increased (≈3-fold) in acrolein-fed mice compared to control. In addition, hepatic cytosolic ALDH activity was induced by acrolein when 1mM NAD(+) was used as cofactor, suggesting an Aldh1a1-protective mechanism against acrolein toxicity in mice liver. Thus, mechanisms to induce Aldh1a1 gene expression may provide a useful rationale for therapeutic protection against oxidative stress-induced pathologies.  相似文献   

14.
ALDH3A1 (aldehyde dehydrogenase 3A1) is abundant in the mouse cornea but undetectable in the lens, and ALDH1A1 is present at lower (catalytic) levels in the cornea and lens. To test the hypothesis that ALDH3A1 and ALDH1A1 protect the anterior segment of the eye against environmentally induced oxidative damage, Aldh1a1(-/-)/Aldh3a1(-/-) double knock-out and Aldh1a1(-/-) and Aldh3a1(-/-) single knock-out mice were evaluated for biochemical changes and cataract formation (lens opacification). The Aldh1a1/Aldh3a1- and Aldh3a1-null mice develop cataracts in the anterior and posterior subcapsular regions as well as punctate opacities in the cortex by 1 month of age. The Aldh1a1-null mice also develop cataracts later in life (6-9 months of age). One- to three-month-old Aldh-null mice exposed to UVB exhibited accelerated anterior lens subcapsular opacification, which was more pronounced in Aldh3a1(-/-) and Aldh3a1(-/-)/Aldh1a1(-/-) mice compared with Aldh1a1(-/-) and wild type animals. Cataract formation was associated with decreased proteasomal activity, increased protein oxidation, increased GSH levels, and increased levels of 4-hydroxy-2-nonenal- and malondialdehyde-protein adducts. In conclusion, these findings support the hypothesis that corneal ALDH3A1 and lens ALDH1A1 protect the eye against cataract formation via nonenzymatic (light filtering) and enzymatic (detoxification) functions.  相似文献   

15.
C C Subbaiah  D S Bush    M M Sachs 《The Plant cell》1994,6(12):1747-1762
Based on pharmacological evidence, we previously proposed that intracellular Ca2+ mediates the perception of O2 deprivation in maize seedlings. Herein, using fluorescence imaging and photometry of Ca2+ in maize suspension-cultured cells, the proposal was further investigated. Two complementary approaches were taken: (1) real time analysis of anoxia-induced changes in cytosolic Ca2+ concentration ([Ca]i) and (2) experimental manipulation of [Ca]i and then assay of the resultant anoxia-specific responses. O2 depletion caused an immediate increase in [Ca2+]i, and this was reversible within a few seconds of reoxygenation. The [Ca]i elevation proceeded independent of extracellular Ca2+. The kinetics of the Ca2+ response showed that it occurred much earlier than any detectable changes in gene expression. Ruthenium red blocked the anoxic [Ca]i elevation and also the induction of adh1 (encoding alcohol dehydrogenase) and sh1 (encoding sucrose synthase) mRNA. Ca2+, when added along with ruthenium red, prevented the effects of the antagonist on the anoxic responses. Verapamil and bepridil failed to block the [Ca]i rise induced by anoxia and were equally ineffective on anoxic gene expression. Caffeine induced an elevation of [Ca]i as well as ADH activity under normoxia. The data provide direct evidence for [Ca]i elevation in maize cells as a result of anoxia-induced mobilization of Ca2+ from intracellular stores. Furthermore, any manipulation that modified the [Ca]i rise brought about a parallel change in the expression of two anoxia-inducible genes. Thus, these results corroborate our proposal that [Ca]i is a physiological transducer of anoxia signals in plants.  相似文献   

16.
17.
We have studied the distribution of the ALDH3A1, ALDH1A1 and ALDH2 proteins in the cornea and stomach of several animal species, including mammals (C57BL/6J and SWR/J mice, rat and pig), birds (chicken and turkey), amphibians (frog) and fish (trout and zebrafish). High ALDH3A1 protein levels and catalytic activities were detected in C57BL/6J mouse, rat and pig. We found complete absence of the ALDH3A1 protein in SWR/J mice, which carry the Aldh3a1(c) allele characterized by four amino acid substitutions (G88R, I154N, H305R and I352V) and lack of enzymatic activity. This indicates that the SWR/J mouse strain is a natural gene knockout model for ALDH3A1. Traces of ALDH3A1 were detected in rabbit, whereas expression was absent from chicken, turkey, frog, trout, and zebrafish. Interestingly, significant levels of the cytosolic ALDH1A1 and mitochondrial ALDH2 proteins were detected by immunoblot analysis in all examined species that are deficient in ALDH3A1 expression. In contrast, no ALDH1A1 or ALDH2 protein was detected in the species expressing ALDH3A1. It can, therefore, be concluded that corneal expression of ALDH3A1 or ALDH1A1/ALDH2 occurs in a taxon-specific manner, supporting the protective role of these ALDHs in cornea against the UV-induced oxidative damage.  相似文献   

18.
The present study aimed to experimentally confirm that long-term alcohol drinking causes a high risk of oral and esophageal cancer in aldehyde dehydrogenase 2 (ALDH2)-deficient individuals. Aldh2 knockout mice, an animal model of ALDH2-deficiency, were treated with 8% ethanol for 14 months. Levels of acetaldehyde-derived DNA adducts were increased in esophagus, tongue and submandibular gland. Our finding that a lack of Aldh2 leads to more DNA damage after chronic ethanol treatment in mice supports epidemiological findings on the carcinogenicity of alcohol in ALDH2-deficient individuals who drink chronically.  相似文献   

19.
《Biomarkers》2013,18(3):269-274
The present study aimed to experimentally confirm that long-term alcohol drinking causes a high risk of oral and esophageal cancer in aldehyde dehydrogenase 2 (ALDH2)-deficient individuals. Aldh2 knockout mice, an animal model of ALDH2-deficiency, were treated with 8% ethanol for 14 months. Levels of acetaldehyde-derived DNA adducts were increased in esophagus, tongue and submandibular gland. Our finding that a lack of Aldh2 leads to more DNA damage after chronic ethanol treatment in mice supports epidemiological findings on the carcinogenicity of alcohol in ALDH2-deficient individuals who drink chronically.  相似文献   

20.
Qu X  Qi Y  Lan P  Li Q 《FEBS letters》2002,529(2-3):325-331
HAP, a novel human apoptosis-inducing protein, was identified to localize exclusively to the endoplasmic reticulum (ER) in our previous work. In the present work, we reported that ectopic overexpression of HAP proteins caused the rapid and sustained elevation of the intracellular cytosolic Ca(2+), which originated from the reversible ER Ca(2+) stores release and the extracellular Ca(2+) influx. The HeLa cells apoptosis induced by HAP proteins was not prevented by establishing the clamped cytosolic Ca(2+) condition, or by buffering of the extracellular Ca(2+) with EGTA, suggesting that the depletion of ER Ca(2+) stores rather than the elevation of cytosolic Ca(2+) or the extracellular Ca(2+) entry contributed to HAP-induced HeLa cells apoptosis. Caspase-3 was also activated in the process of HAP-triggered apoptotic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号