首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lower leaf surface of Hevea brasiliensis was more susceptible to infection by Colletotrichum gloeosporioides than the upper. Few lesions were produced if spore drops on susceptible leaves were allowed to dry. Lesion development after 72 h was quickest at 21 oC, slower at 26.5 oC and was stopped at 32 oC, probably because of bacteria in the inoculation drop. On leaflets aged 7 days from bud-burst, the effective spore dose for 50% of leaflets infected (ED50) after 16 h incubation, was 260 spores and after 46 h, 120 spores/infection droplet; the minimum ED50 for the upper leaf surface was about 4 spores/mm2. Leaflets 15 days old, which are normally resistant, were rendered susceptible by abrading the surface with carborundum powder. Spores caught in a Hirst spore trap reached a daily maximum at 23 h, at rates of up to 440 spores/m3 air/h, but fell to low concentrations as the humidity dropped during the daytime, and also during rain. There was some correlation between disease severity and duration of 97–100% relative humidity, and moderate to severe defoliation of clone PB 86 occurred when this reached 13.5 h/day. Rainfall increases infection by prolonging the period of atmospheric saturation and leaf wetness.  相似文献   

2.
The optimum temperature for growth and sporulation of Colletotrichum gloeosporioides from Hevea brasiliensis was between 26 and 32 oC, whereas spore germination exceeded 90% between 21.5 and 30.5 oC. Germination decreased in culture after 3 days, and on exposure of spores to sunlight or oven heat (46 oC) for 10 min. Spore viability and germination were sensitive to atmospheric humidity; at 99% r.h. germination was half that at 100% r.h. and was negligible below 97% r.h. Germination decreased by up to 30% after 3 h storage at 80% r.h. Continuous light favoured spore production in vitro, but spores produced in the dark had a higher percentage germination. No differences were detected between the numbers of spores germinating on leaves of different ages, although there were slightly more on susceptible cultivars and in the presence of extracts of uninfected susceptible leaves. Extracts from, infected leaves depressed spore germination, as did concentrations above 5 times 105 spores/ml. The highest % germination was observed when naturally infected leaves were dry-stored for up to 20 days and then incubated for 2 days in a moist chamber.  相似文献   

3.
Botrytis fabae spore suspensions containing c. 1, 10, 102, 103, 104, 105, or 106 spores/ml were used to inoculate 5, 17 or 30-day-old field bean leaves. The percentages of the leaf areas covered by, chocolate spot lesions and the percentages of the leaf areas bearing conidiophores were assessed 1, 6, 12, 14, and 19 days after inoculation. The percentage of the area covered by lesions and the percentage of the area bearing conidiophores (logit-transformed) increased linearly with increasing spore concentration (log10-transformed). The proportions of leaf areas covered by lesions and bearing conidiophores were both greater on 17 and 30-day-old leaves than on 5-day-old leaves. The rate of lesion growth increased with both increasing inoculum dose and increasing leaf age. Generally there was no interaction between the effects of leaf age and the effects of inoculum dose on either lesion growth or sporulation. Two days after inoculation with suspensions of either 104 or 106 spores/ml, 7-day-old leaves grown at 15°C were transferred to –16°C or 2.5°C or kept at 15°C for 4 days. Two days later more spores had been produced on leaves which had been frozen (–16°C) than on, leaves kept at 2.5°C.  相似文献   

4.
Inoculating whole carrot roots at 4°C with mycelial/agar discs of the grey mould fungus Botrytis cinerea gives a measure of their resistance and hence storage potential to this pathogen, but results are not obtained for at least 33 days. In the present investigation a more rapid method was used which involved inoculating root slices with spore suspensions containing 5 × 103–5 × 106 spores/cm3 at 24°C. Resistance was assessed visually and by a chitin estimation 48 h after inoculation. Both methods were used to measure the resistance of cold stored carrot roots during two storage seasons, 1976/77 and 1977/78. In each season there was a particular inoculum level which most clearly recorded the increasing susceptibility of roots with time in store. In 1976/77 this was 1 × 105 spores/cm3 whereas in 1977/78 it was the lower inoculum concentration of 5 × 104 spores/cm3, suggesting the roots were generally more susceptible in 1977/78 than the previous season. This was in accord with the results from the whole root method of assessment. A chitin estimation proved to be the more sensitive method of assessment for inoculum potential experiments.  相似文献   

5.
Heavy infestations of whitefly on glasshouse cucumber plants were controlled below the level of economic crop damage by fortnightly or monthly sprays of Verticillium lecanii spores. The fungus did not spread from glasshouse to glasshouse, or from plant to plant, and often not from diseased whitefly scales bearing fungal spore heads to nearby healthy scales. Some scales survived and the resulting adults laid eggs on new leaves bearing no infected scales, creating another, healthy, generation. This makes regular spraying of new leaves essential. Blastospores were as effective as conidia in controlling scales when sprayed to ‘run off’ at concentrations near 107 spores ml-1 sprayed on to the undersurfaces of leaves. A fivefold increase in spore concentration at levels near 107 spores ml-1 usually caused significant improvement in mortality, but increase above this concentration is likely to be unrewarding. Thorough coverage of leaves was found to be vital. Control was impaired by dry conditions and by prolonged air temperatures above 25 °C. The fungicide dimethirimol, used against cucumber mildew, did not impair whitefly control by V. lecanii.  相似文献   

6.
Cryptococcus laurentii (Kufferath) Skinner was evaluated for its activity in reducing postharvest blue mold decay of oranges caused by Penicillium italicum in vitro and in vivo. The results showed that washed cell suspensions of yeast provided control of blue mold decay better than yeast in culture broth. Autoclaved cell culture and cell-free culture filtrate failed to provide protection against the pathogen. The concentrations of antagonist had significant effects on biocontrol effectiveness. When the washed yeast cell suspension reached the concentration of 1 × 109 CFU/ml, challenged with pathogen spore suspension at 1 × 104 spores/ml, the blue mold decay was completely inhibited during 5 days of incubation at 20 °C. No complete control was obtained when oranges were stored at 4 °C for 30 days, but the decay was distinctly prevented. Efficacy of C. laurentii was maintained when applied simultaneously or prior to inoculation with P. italicum. Efficacy was reduced when C. laurentii was applied after inoculation. In drop-inoculated wounds of oranges, the populations of C. laurentii increased by approximately 50-fold during the first 24 h at 20 °C. The maximum yeast populations, approximately 250-fold over the initial populations, were reached 15 days after inoculation at 4 °C.  相似文献   

7.
The production of biomass and lovastatin by spore-initiated submerged fermentations of Aspergillus terreus ATCC 20542 was shown to depend on the age of the spores used for inoculation. Cultures started from older spores produced significantly higher titers of lovastatin. For example, the lovastatin titer increased by 52% when the spore age at inoculation rose from 9 to 16 days. The lovastatin titer for a spore age of 16 days was 186.5±20.1 mg L−1. The time to sporulation on surface cultures was sensitive to the light exposure history of the fungus and the spore inoculation concentration levels. A light exposure level of 140 μE m−2 s−1 and a spore concentration of 1,320 spore cm−2 produced the greatest extent of sporulation within about 50 h of inoculation. Sporulation was slowed in the dark and with diluted inoculants. A rigorous analysis of the data of statistically designed experiments showed the above observations to be highly reproducible.  相似文献   

8.
Summary Penicillium chrysogenum spores have been immobilized by adsorption on two grades of wet or dry diatomaceous earth particles, Chromosorb-W and Celite R-633. Almost 90% of the spores were adsorbed within 2 h and those remaining in suspension were removed by washing to minimise the growth of free mycelia. After germination the immobilized biomass was almost independent of the spore loading on the particles and whether or not the spore suspension was added to wet or dry particles. The free biomass obtained was less than 5% of the immobilized biomass.  相似文献   

9.
Bacillus amyloliquefaciens strain DGA14 was tested for in vitro antagonism towards Colletotrichum gloeosporioides, a causal pathogen of anthracnose in mango cv. ‘Carabao’. DGA14 produced extracellular metabolites in solid and liquid media that suppressed the growth of C. gloeosporioides. The cells of DGA14 were often observed adjacent to the pathogen so affecting its spore germination and mycelium development. DGA14 colonised mango fruit 48 h after artificial inoculation and persisted 14 days after storage at 18–20°C. On fruit surfaces, DGA14 attached and produced dents to spores of C. gloeosporioides. Dipping mangoes in aqueous cell suspension (108 mL L?1) of DGA14 significantly decreased the incidence of anthracnose as compared to untreated fruit.  相似文献   

10.
Infection of leaves and stems of Psophocarpus tetragonolobus by Synchytrium psophocarpi only occurred following spray inoculation of motile zoospore suspensions and incubation for a minimum of 12 h in polyethylene bags or a mist chamber. The incubation period was 7 days and generation time 22 days at temperatures of 31 oC max, 24 oC min and r.h. of 90% max, 70% min. Young, 1–2 day-old leaves were most susceptible; there was no infection on 10 day-old leaves and susceptibility was not increased by the removal of leaf waxes. No infection occurred when plants were grown from seed from infected pods, seed inoculated with zoospores or sporangia and seed sown in soil containing infected leaf debris. Resting spores were not found in infected tissues stored for 12 wk or in plant debris. S. psophocarpi did not infect Arachis hypogaea, Glycine max, Phaseolus aureus, P. coccineus, P. vulgaris, Pisum sativum, Psophocarpus scandens, Vicia faba, Vigna sesquipedalis and V. unguiculata. S. minutum did not infect winged bean. Inoculation confirmed the susceptibility of the winged bean lines UPS 62, UPS 122, UPS 126 and resistance of two Thai winged bean lines 1602/1 and 1611/2.  相似文献   

11.
Spore yields were measured for various fungal entomopathogens grown in six nutritionally different liquid media with low and high carbon concentrations (8 and 36 g l–1, respectively) at carbon-to-nitrogen (C:N) ratios of 10:1, 30:1 and 50:1. Six fungi were tested: two Beauveria bassiana strains, three Paecilomyces fumosoroseus strains and one Metarhizium anisopliae strain. Spore yields were examined after 2, 4 or 7 days growth. In general, highest spore yields were obtained in media containing 36 g/l and a C:N ratio of 10:1. After 4 days growth, highest spore yields were measured in the three Paecilomyces isolates (6.9–9.7 × 108 spores ml–1). Spore production by the B. bassiana isolates was variable with one isolate producing high spore yields (12.2 × 108 spores ml–1) after 7 days growth. The M. anisopliae isolate produced low spore concentrations under all conditions tested. Using a commercial production protocol, a comparison of spore yields for the coffee berry borer P. fumosoroseus and a commercial B. bassiana isolate showed that highest spore concentrations (7.2 × 108 spores ml–1) were obtained with the P. fumosoroseus isolate 2-days post-inoculation. The ability of the P. fumosoroseus strain isolated from the coffee berry borer to rapidly produce high concentrations of spores prompted further testing to determine the desiccation tolerance of these spores. Desiccation studies showed that ca. 80% of the liquid culture produced P. fumosoroseus spores survived the air-drying process. The virulence of freshly produced, air-dried and freeze-dried coffee berry borer P. fumosoroseus blastospores preparations were tested against silverleaf whiteflies (Bemisia argentifolii). While all preparations infected and killed B. argentifolii, fresh and air-dried preparations were significantly more effective. These results suggest that screening potential fungal biopesticides for amenability to liquid culture spore production can aid in the identification of commercially viable isolates. In this study, P. fumosoroseus was shown to possess the production and stabilization attributes required for commercial development.  相似文献   

12.
The thermal requirements for the pre-oviposition period, egg, larval, pupal and adult stages of the carrot fly were measured under field conditions and at a range of constant temperatures in the laboratory. In the laboratory, the pre-oviposition period lasted from 4 days at 24oC to 28 days at 9oC. In general, female carrot flies laid about 20–40 eggs in each batch. Once the first eggs had been laid, subsequent batches were laid after an average of 3 days at 24oC to 7 days at 11.5oC. The numbers of days required for egg, larval and pupal development ranged from 5, 31 and 24 days respectively at 21.5oC to 25, 145 and 84 days respectively at 9oC. Under laboratory conditions, complete development from egg to adult required from 60 days at 21.5oC to 254 days at 9oC. Newly-formed carrot fly pupae were exposed to temperatures of 22–30oC for various 5–10 day periods during pupal development. Exposure to temperatures of 24oC and 26oC caused some, and exposure to 28oC and 30oC caused all, of the pupae to delay development. Pupae were sensitive to high temperatures only for approximately 4–10 days after pupation. Under field conditions between mid-May and early September, full carrot fly development (egg-adult) took 84–100 days. The numbers of day-degrees required (base temperatures of 2oC and 4oC) for carrot fly development in the laboratory and in the field were similar for egg hatching but not for the pre-oviposition period or for egg-adult development. The thermal requirement for fly development in the field varied between inoculation dates, fewest day-degrees being required when development was rapid.  相似文献   

13.
Penicillium digitatum, an aggressive fungus causes post-harvest decay of mandarin sweet orange and Washington navel. In vitro Trichoderma harzianum or humic acid (HA) or powdered cloves of garlic caused inhibition of fungal growth of isolates P1 and P2. Under storage conditions, the fruit citrus is protected by using T. harzianum with standard volume 2.0?ml (9.6?×?106?conidia/ml) and application 24?h before inoculation reduces disease incidence and disease severity after seven?days from inoculation with P. digitatum spore suspension (1.0?×?106?spores/ml) compared to control. Spraying the fruit citrus by standard volume of 2.0?ml of either HA or powder cloves of garlic 1% on each fruit 24?h before inoculation reduces disease incidence and disease severity after seven?days from inoculation with P. digitatum (1.0?×?106 spores/ml) compared to control. The lowest percentage of disease incidence and disease severity were associated with powder of cloves garlic and followed by HA and T. harzianum during two growing seasons compared with the untreated and control.  相似文献   

14.
Simulated raindrops, diameter c. 3 or 4 mm, fell 13 m down a raintower onto suspensions of Septoria nodorum pycnidiospores, depth 0.5 mm, or infected straw pieces. Splash droplets were collected on pieces of fixed photographic film. It was estimated that one drop generated c. 300 spore carrying splash droplets, containing c. 6000 spores, from a concentrated spore suspension (6.5 × 105 spores/ml) and c. 25 spore-carrying droplets, containing c. 30 spores, from infected straw pieces (11 × 106 spores/g dry wt). When the target was a spore suspension in water without surfactant, most spore-carrying droplets were in the 200—400 μm size category and most spores were carried in droplets with diameter >1000 μm. When surfactant was added to spore suspensions, most spore-carrying droplets were in the 0–200 μm category and most spores were carried in droplets with diameter 200–400 μm and none in droplets >1000 μm. Regression analyses showed a significant (p < 0.001) relationship between square root (number of spores per droplet) and droplet diameter; the slope of the regression line was greatest when surfactant was added to the spore suspensions. The distribution of splash droplets with distance travelled from the target was better fitted by an exponential model than by power law or Gaussian models. The distributions of spore-carrying droplets and spores with distance were fitted better by an exponential model than by a power law model. Thus regressions of log, (number collected) against distance were all significant (p < 0.01); the slopes of the regression lines were steepest when surfactant was added to the spore suspension. At a distance of 10 cm from target spore suspensions most splash droplets and spore-carrying droplets were collected at height 10–20 cm, with none above 40 cm; at a distance of 20 cm there were most at heights 0–10 cm and 40–50 cm.  相似文献   

15.
When leaves of oilseed rape (cv. Cobra) were inoculated with conidial suspensions of Mycosphaerella capsellae (white leaf spot) and incubated in controlled environments, the lag period from inoculation to the appearance of the first lesions decreased, and the total number of lesions produced increased, as temperature increased from 5oC to 20oC, although differences between 15oC and 20oC were small. With incubation period estimated as the time from inoculation until 5%, 50% or 95% of the lesions were produced, there was a linear relationship between l/(incubation period in days) and temperature over the range 5oC to 20oC, from which values at intermediate temperatures could be estimated. Summed mean daily temperatures from inoculation to the production of 5% of the lesions were estimated as 115–130 degree-days in the controlled environment experiments at 5oC to 20oC. When pods or leaves of plants in oilseed rape crops (cv. Cobra or cv. Libravo) were inoculated with conidial suspensions of M. capsellae on five occasions from January to October, with variable temperatures during the incubation period, degree-days until the first appearance of lesions were in the range 115–230. The numbers of white leaf spot lesions cm-2 which developed on inoculated leaves differed greatly between nine oilseed rape cultivars, with most on cv. Tapidor and fewest on cv. Libravo, but the incubation period differed little between cultivars. Similarly, the number of lesions which developed differed between four M. capsellae isolates from different regions but the incubation period did not.  相似文献   

16.
Effects of reactive oxygen species (ROS) on the release of putative elicitors from spores of rice blast causal fungus Magnaporthe grisea (Hebert) Barr were studied. While studying the influence of exogenous ROS, the spores were germinated for 5 h in the presence of 50 μM H2O2 and then treated with catalase to decompose hydrogen peroxide. The spore germination fluid was then boiled to inactivate catalase. When the resulting diffusate was applied onto rice (Oryza sativa L.) leaves, it caused necroses and stimulated superoxide (O2) production. Both effects were observed with the resistant rice cultivar but not with the cultivar susceptible to the fungal strain. The susceptible cultivar did not acquire resistance to challenge with fungal spores, which were applied one day after the treatment. The fractionation of the spore diffusate showed that both low- and high-molecular compounds (mol wt < 3 kD and >3 kD, respectively) should be present in combination to induce O2 production by leaves. The diffusates from spores germinated in water also caused necroses and stimulated O2 generation, though to a weaker extent than diffusates from spores germinated in H2O2. The effect of diffusates from spores germinated in water was abolished by catalase or superoxide dismutase added initially to the spore suspension. The results suggest that germinating spores of M. grisea are able to release elicitors and this ability depends on ROS formation by spores. Presumably, the yield of elicitors is increased additionally if fungus M. grisea is stressed or subjected to exogenous ROS. The described phenomena may be involved in incompatibility mechanisms.  相似文献   

17.
The vesicular-arbuscular mycorrhizal fungi (VAMF) Glomus clarum (Nicol. and Schenck) isolate NT4, G. mosseae (Nicol. and Gerd.) Gerd. and Trappe isolate NT6 and G. versiforme (Karst.) Berch isolate NT7 coexist in wheat field soils in Saskatchewan. This study assessed the response of lentil (Lens esculenta L.) and wheat (Triticum aestivum L.) to monospecific and mixed cultures of these VAMF isolates. Seedlings were inoculated with 100 spores of a VAMF isolate, or an equal mixture of spores of two isolates, and grown in a sterile soil mix in a growth chamber. Both crops responded differently to these different VAMF isolates. In the case of lentil, G. clarum NT4 was more effective than G. mosseae NT6 and G. versiforme NT7, and significantly increased (P<0.05) the shoot dry weight (43%) and grain yield (57%) compared with the uninoculated control. There was a significant positive correlation between the percentage of VAMF colonized roots and shoot dry weight (r=0.672***) and shoot phosphorus concentration (r=0.608***) of lentil. In the case of wheat, G. clarum NT4 had no effect on shoot dry weight, but produced significant (P<0.08) increases in grain yield (12%) and the phosphorus concentration of the shoot and grain. Although G. clarum NT4 and G. mosseae NT6 both produced similar levels of VAM colonization in wheat, the only response of wheat to isolate NT6 was an increase in plant height at harvest. The efficacy of G. clarum NT4 on both crops appeared to be related to its ability to produce more arbuscular colonization than G. mosseae NT6. Dual inoculation of seedlings with G. clarum NT4 and G. mosseae NT6 resulted in competition between these two isolates. This was evident from a comparison of plant shoot dry weight and grain yield, and VAMF spore production on the two crops inoculated either with isolate NT4 alone or in combination with NT6. G. mosseae NT6 reduced the efficacy of G. clarum NT4 by 16% when dual inoculated on lentil, but had no effect when the host was wheat. Based on spore production, it was found that G. clarum NT4 was more competitive than G. mosseae NT6 when dual inoculated on lentil or wheat. Isolate NT4 produced ca. 2000 and 500 spores/ 100 g substrate, respectively, in the lentil and wheat pots, which was approximately 2–3 times more spores than those produced by isolate NT6 with either crop. When the plants were dual inoculated, there was a 15–19% reduction in spore production by G. clarum NT4 and a 50–70% decrease in spore production by G. mosseae NT6. Our results show that G. clarum NT4 was more competitive and effective in its ability to colonize and increase the growth and yield of lentil and wheat than G. mosseae NT6 or G. versiforme NT7. The relative performance of isolate NT4 with different host plants suggests that this VAMF isolate exhibits a host preference for lentil.  相似文献   

18.
Flavones and isoflavones are a major group of phenolic secondary metabolites which occur in leaves of narrow leafed lupine (Lupinus angustifolius) either as free aglycones or in a form of glycosides and malonyl-glycosides. Profiles of phenolic compounds in leaves of seedlings infected with anthracnose causing fungus Colletotrichum lupini were compared to those of healthy plants. A HPLC with diode array UV detector was used as the analytical method and identification of these secondary metabolites was confirmed with a HPLC/MSn instrument. Isomers of several target compounds differing in the glycosilation and/or malonylation pattern were detected in the studied samples. However, the application of standard HPLC with C18 columns resulted in the co-elution of several glyconjugates in single chromatographic peaks whereas for isoflavonoid aglycones complete resolution was achieved. Lupine plants grown in a greenhouse were either sprayed with the C. lupini spore suspension or the suspension was spotted on to wounded leaves. Profiles of the isoflavones were altered in result to infection with both methods. In particular, the concentration of isoflavone free aglycones detected in extracts from diseased plants was substantially increased in all of the studied samples. However, the pattern of these compounds depended on the age of lupine leaves as well as on the method of infection. Synthesis of luteone and 2′-hydroxygenistein was enhanced in the youngest leaves of plants sprayed with spores as well as in wound-infected leaves. Wighteone synthesis was induced mainly in older leaves of plants sprayed with the spore suspension.  相似文献   

19.
Mandeel QA 《Mycopathologia》2006,161(3):173-182
In earlier studies, biological control of Fusarium wilt of cucumber induced by Fusarium oxysporum f. sp. cucumerinum was demonstrated using nonpathogenic strains C5 and C14 of Fusarium oxysporum. Strain C14 induced resistance and competed for infection sites whether roots were wounded or intact, whereas strain C5 required wounds to achieve biocontrol. In the current work, additional attributes involved in enhanced resistance by nonpathogenic biocontrol agents strains to Fusarium wilt of cucumber and pea were further investigated. In pre-penetration assays, pathogenic formae specials exhibited a significantly higher percentage of spore germination in 4-day-old root exudates of cucumber and pea than nonpathogens. Also, strain C5 exhibited the lowest significant reduction in spore germination in contrast to strain C14 or control. One-day-old cucumber roots injected with strain C14 resulted in significant reduction in germ tube orientation towards the root surface, 48–96 h after inoculation with F. o. cucumerinum spores, whereas strain C5 induced significantly lower spore orientation of the pathogen and only at 72 and 96 h after inoculation. In post-penetration tests, passive transport of microconidia of pathogenic and nonpathogens in stems from base to apex were examined when severed plant roots were immersed in spore suspension. In repeated trials, strain C5, F. o. cucumerinum and F. o. pisi were consistently isolated from stem tissues of both cucumber and pea at increasing heights over a 17 days incubation period. Strain C14 however, was recovered at a maximum translocation distance of 4.6 cm at day 6 and later height of isolation significantly declined thereafter to 1.2 cm at day 17. In pea stem, the decline was even less. Significant induction of resistance to challenge inoculation by the pathogen in cucumber occurred 72 and 96 h after pre-inoculation with biocontrol agents. Nonetheless, strain C14 induced protection as early as 48 h and the maximum resistance was reached at 96 h. The presented data confirm the previous findings that attributes important for nonpathogenic fusaria to induce resistant are: rapid spore germination and orientation in response to root exudate; active root penetration and passive conidia transport in stem to initiate defence reaction without pathogenicity and enough lag period between induction and challenge inoculation. Strain C14 possesses all these qualifications and hence its ability to enhance host resistance is superior than strain C5.  相似文献   

20.
To test the suitability of DNA stable isotope probing (DNA-SIP) for characterizing bacterial spore populations in soils, the properties of Bacillus subtilis cells and spores intensely labeled with [13C]glucose were characterized. Spore germination, vegetative growth rates, and sporulation efficiency were indistinguishable on glucose versus [13C]glucose, as were spore wet heat and UV resistance. Unlabeled and 13C-labeled spores contained 1.0989 and 74.336 at.% 13C, and exhibited wet densities of 1.356 and 1.365 g/ml, respectively. Chromosomal DNAs containing 12C versus 13C were readily separated by their different buoyant densities in cesium chloride/ethidium bromide gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号