首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The initial rapid phase of ATP hydrolysis by bovine heart submitochondrial particles or by soluble F1-ATPase is insensitive to anion activation (sulphite) or inhibition (azide). 2. The second slow phase of ATP hydrolysis is hyperbolically inhibited by azide (Ki approximately 10(-5) M); the inosine triphosphatase activity of submitochondrial particles or F1-ATPase is insensitive to azide or sulphite. 3. The rate of interconversion between rapid azide-insensitive and slow azide-sensitive phases of ATP hydrolysis does not depend on azide concentration, but strongly depends on ATP concentration. 4. Sulphite prevents the interconversion of the rapid initial phase of the reaction into the slower second phase, and also prevents and slowly reverses the inhibition by azide. 5. The presence of sulphite in the mixture when ADP reacts with ATPase of submitochondrial particles changes the pattern of the following activation process. 6. Azide blocks the activation of ATP-inhibited ATPase of submitochondrial particles by phosphoenolpyruvate and pyruvate kinase. 7. The results obtained suggest that the inhibiting effect of azide on mitochondrial ATPase is due to stabilization of inactive E*.ADP complex formed during ATP hydrolysis; the activation of ATPase by sulphite is also realized through the equilibrium between intermediate active E.ADP complex and inactive E*.ADP complex.  相似文献   

2.
Cooperative interactions between nucleotide binding sites on beef heart mitochondrial F1-ATPase have been studied by measuring substrate-promoted release of 5'adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) from a single high affinity site. The site is initially loaded by incubating F1 with an equimolar amount of the nonhydrolyzable ATP analog. When unbound [3H]AMP-PNP is removed and the complex diluted to a concentration below the Kd, release of ligand shows an apparent absolute requirement for medium ADP. Release is biphasic with the extent of release during the initial rapid phase dependent on the concentration of medium ADP. Although phosphate alone has no effect, it enhances the rapid phase of ADP-promoted release over 2-fold with a half-maximal effect at 60 micrometers P1. The binding of efrapeptin (A23871) to the F1.AMP-PNP complex completely prevents ADP-promoted dissociation. Although AMP-PNP release also occurs in the presence of medium ATP, the F1.AMP-PNP complex does not dissociate if an ATP-regenerating system of sufficient capacity to prevent accumulation of medium ADP is added. Consistent with an inability of nucleoside triphosphate to promote release is the failure of medium, nonradioactive AMP-PNP to affect retention of the 3H-labeled ligand. The stability of F1.AMP-PNP complex in the absence of medium nucleotide and the highly specific ability of ADP plus P1 to promote rapid release of the ATP analog are interpreted as support for an ATP synthesis mechanism that requires substrate binding at one catalytic site for product release from an adjacent interacting site.  相似文献   

3.
Inactivation of the isolated ATPase portion of ATP synthase from beef-heart mitochondria (F1) by its natural inhibitor protein (IP) during steady-state ATP hydrolysis is accompanied by a trapping of 1 mol nucleotide/mol F1 in one of the catalytic sites. The trapped nucleotide is not released during incubation of IP-inhibited F1 in the presence of MgATP at pH 8.0 for at least 20 min, indicating a very low turnover rate of the IP.F1 complex. The ATP/ADP ratio of the trapped nucleotides is higher than that found for transitorily bound nucleotides under the same conditions but in the absence of IP. The IP impairs the acceleration of ATP hydrolysis and product release steps that results from the binding of ATP to an alternate catalytic site. It also inhibits ATP hydrolysis by a single catalytic site or shifts the equilibrium toward ATP formation from bound ADP and Pi. At high pH, an active acidic form of the free IP is transformed to the inactive basic one with a half-time of 3-4 s. This process seems to be prevented by IP binding to F1. The inactive basic form of IP does not compete with the active acidic IP for the binding to F1. The data do not favor the existence of a long-lived catalytically active IP.F1 intermediate during IP action on F1. The reactivation of IP-inhibited membrane-bound F1 by energization may be due to a conformational change in the IP.F1 complex allowing the transformation of IP into an inactive basic state that rapidly dissociates.  相似文献   

4.
1. A substantial increase of the initial rate of ATP hydrolysis was observed after preincubation of bovine heart submitochondrial particles with phosphoenolpyruvate and pyruvate kinase. 2. The activation was accompanied by an increase of Vmax, without change of Km for ATP. 3. The activated particles catalysed the biphasic hydrolysis of ATP in the presence of an ATP-regenerating system; the initial rapid phase was followed by a second, slower, phase in a time-dependent fashion. 4. The higher the ATP concentration used as a substrate, the higher is the rate of transition between these two phases. 5. The particles catalysed the hydrolysis of ITP with a lag phase; after preincubation with phosphoenolpyruvate and pyruvate kinase, ITP was hydrolysed at a constant rate. 6. Qualitatively the same phenomena were observed when soluble mitochondrial ATPase (F1-ATPase) prepared by the conventional method in the presence of ATP was used as nucleotide triphosphatase. 7. A kinetic scheme is proposed, in which the intermediate active enzyme-product complex (E.ADP) formed during ATP hydrolysis is in slow equilibrium with the inactive E*.ADP complex forming as a result of dislocation of ADP from the active site of ATPase to the other site, which is not in rapid equilibrium with the surrounding medium.  相似文献   

5.
It is shown that methanol significantly decreases the rate of ATP-dependent activation of submitochondrial particle ATPase blocked by low (approximately 1 microM) ADP concentrations, having an insignificant effect on the initial rate of ATP hydrolysis. The dissociation rate constant for the F1.ADP complex (Kd = approximately 2.10(-8) M) decreases thereby from 0.28 to 0.12 min-1. Within a narrow range of ADP concentrations (2-40 microM) used to inhibit ATPase, the activation rate constant measured in the presence of methanol changes from the minimum (0.12 min-1) to the maximum (0.48 min-1) value. The rate of dissociation of the enzyme-inhibitor complexes formed in the presence of low (approximately 1 microM) or high (greater than or equal to 40 microM) ADP concentrations depends on the concentration of ATP in a similar way. In the presence of EDTA, the enzyme-inhibitor complex (ADP.F1.ADP) is activated within 1-3 minutes, whereas the dissociation of the F1.ADP complex proceeds on an hour scale. The results obtained are interpreted as the interaction of at least three nucleotide-binding sites in the membrane-bound F1.  相似文献   

6.
7.
The interactions between ADP, Mg2+, and azide that result in the inhibition of the chloroplast F1 ATPase (CF1) have been explored further. The binding of the inhibitory Mg2+ with low Kd is shown to occur only when tightly bound ADP is present at a catalytic site. Either the tightly bound ADP forms part of the Mg(2+)-binding site or it induces conformational changes creating the high-affinity site for inhibitory Mg2+. Kinetic studies show that CF1 forms two catalytically inactive complexes with Mg2+. The first complex results from Mg2+ binding with a Kd for Mg2+ dissociation of about 10-15 microM, followed by a slow conversion to a complex with a Kd of about 4 microM. The rate-limiting step of the CF1 inactivation by Mg2+ is the initial Mg2+ binding. When medium Mg2+ is chelated with EDTA, the two complexes dissociate with half-times of about 1 and 7 min, respectively. Azide enhances the extent of Mg(2+)-dependent inactivation by increasing the affinity of the enzyme for Mg2+ 3-4 times and prevents the reactivation of both complexes of CF1 with ADP and Mg2+. This results from decreasing the rate of Mg2+ release; neither the rate of Mg2+ binding to CF1 nor the rate of isomerization of the first inactive complex to the more stable form is affected by azide. This suggests that the tight-binding site for the inhibitory azide requires prior binding of both ADP and Mg2+.  相似文献   

8.
The effect of aurovertin on the binding parameters of ADP and ATP to native F1 from beef heart mitochondria in the presence of EDTA has been explored. Three exchangeable sites per F1 were titrated by ADP and ATP in the absence or presence of aurovertin. Curvilinear Scatchard plots for the binding of both ADP and ATP were obtained in the absence of aurovertin, indicating one high affinity site (Kd for ADP = 0.6-0.8 microM; Kd for ATP = 0.3-0.5 microM) and two lower affinity sites (Kd for ADP = 8-10 microM; Kd for ATP = 7-10 microM). With a saturating concentration of aurovertin capable of filling the three beta subunits of F1, the curvilinearity of the Scatchard plots was decreased for ATP binding and abolished for ADP binding, indicating homogeneity of ADP binding sites in the F1-aurovertin complex (Kd for ADP = 2 microM). When only the high affinity aurovertin site was occupied, maximal enhancement of the fluorescence of the F1-aurovertin complex was attained with 1 mol of ADP bound per mol of F1 and maximal quenching for 1 mol of ATP bound per mol of F1. When the F1-aurovertin complex was incubated with [3H]ADP followed by [14C]ATP, full fluorescence quenching was attained when ATP had displaced the previously bound ADP. In the case of the isolated beta subunit, both ADP and ATP enhanced the fluorescence of the beta subunit-aurovertin complex. The Kd values for ADP and ATP in the presence of EDTA were 0.6 mM and 3.7 mM, respectively; MgCl2 decreased the Kd values to 0.1 mM for both ADP and ATP. It is postulated that native F1 possesses three equivalent interacting nucleotide binding sites and exists in two conformations which are in equilibrium and recognize either ATP (T conformation) or ADP (D conformation). The negative interactions between the nucleotide binding sites of F1 are strongest in the D conformation. Upon addition of aurovertin, the site-site cooperativity between the beta subunits of F1 is decreased or even abolished.  相似文献   

9.
Two classes of ADP binding sites at 20 degrees C have been characterized in the F1-ATPase from the thermophilic bacterium, PS3 (TF1). One class is comprised of three sites which saturate with [3H]ADP in less than 10 s with a Kd of 10 microM which, once filled, exchange rapidly with medium ADP. The binding of ADP to these sites is dependent on Mg2+. [3H]ADP bound to these sites is removed by repeated gel filtrations on centrifuge columns equilibrated with ADP free medium. The other class is comprised of a single site which saturates with [3H]ADP in 30 min with a Kd of 30 microM. [3H]ADP bound to this site does not exchange with medium ADP nor does it dissociate on gel filtration through centrifuge columns equilibrated with ADP free medium. Binding of [3H]ADP to this site is weaker in the presence of Mg2+ where the Kd for ADP is about 100 microM. [3H]ADP dissociated from this site when ATP plus Mg2+ was added to the complex while it remained bound in the presence of ATP alone or in the presence of ADP, Pi, or ADP plus Pi with or without added Mg2+. Significant amounts of ADP in the 1:1 TF1.ADP complex were converted to ATP in the presence of Pi, Mg2+, and 50% dimethyl sulfoxide. Enzyme-bound ATP synthesis was abolished by chemical modification of a specific glutamic acid residue by dicyclohexylcarbodiimide, but not by modification of a specific tyrosine residue with 7-chloro-4-nitrobenzofurazan. Difference circular dichroism spectra revealed that the three Mg2+ -dependent, high affinity ADP binding sites that were not stable to gel filtration were on the alpha subunits and that the single ADP binding site that was stable to gel filtration was on one of the three beta subunits. It has also been demonstrated that enzyme-bound ATP is formed when the TF0.F1 complex containing bound ADP was incubated with Pi, Mg2+, and 50% dimethyl sulfoxide.  相似文献   

10.
Caldesmon is a component of smooth muscle thin filaments that inhibits the actomyosin ATPase via its interaction with actin-tropomyosin. We have performed a comprehensive transient kinetic characterization of the actomyosin ATPase in the presence of smooth muscle caldesmon and tropomyosin. At physiological ratios of caldesmon to actin (1 caldesmon/7 actin monomers) actomyosin ATPase is inhibited by about 75%. Inhibitory caldesmon concentrations had little effect upon the rate of S1 binding to actin, actin-S1 dissociation by ATP, and dissociation of ADP from actin-S1 x ADP; however the rate of phosphate release from the actin-S1 x ADP x P(i) complex was decreased by more than 80%. In addition the transient of phosphate release displayed a lag of up to 200 ms. The presence of a lag phase indicates that a step on the pathway prior to phosphate release has become rate-limiting. Premixing the actin-tropomyosin filaments with myosin heads resulted in the disappearance of the lag phase. We conclude that caldesmon inhibition of the rate of phosphate release is caused by the thin filament being switched by caldesmon to an inactive state. The active and inactive states correspond to the open and closed states observed in skeletal muscle thin filaments with no evidence for the existence of a third, blocked state. Taken together these data suggest that at physiological concentrations, caldesmon controls the isomerization of the weak binding complex to the strong binding complex, and this causes the inhibition of the rate of phosphate release. This inhibition is sufficient to account for the inhibition of the steady state actomyosin ATPase by caldesmon and tropomyosin.  相似文献   

11.
J Mendel-Hartvig  R A Capaldi 《Biochemistry》1991,30(45):10987-10991
The rate of trypsin cleavage of the epsilon subunit of Escherichia coli F1F0 (ECF1F0) is shown to be ligand-dependent as measured by Western analysis using monoclonal antibodies. The cleavage of the epsilon subunit was rapid in the presence of ADP alone, ATP + EDTA, or AMP-PNP + Mg2+, but slow when Pi was added along with ADP + Mg2+ or when ATP + Mg2+ was added to generate ADP + Pi (+Mg2+) in the catalytic site. Trypsin treatment of ECF1Fo was also shown to increase enzymic activity on a time scale corresponding to that of the cleavage of the epsilon subunit, indicating that the epsilon subunit inhibits ATPase activity in ECF1Fo. The ligand-dependent conformational changes in the epsilon subunit were also examined in cross-linking experiments using the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC). In the presence of ATP + Mg2+ or ADP + Pi + Mg2+, the epsilon subunit cross-linked product was much reduced. Prior reaction of ECF1Fo with dicyclohexylcarbodiimide (DCCD), under conditions in which only the Fo part was modified, blocked the conformational changes induced by ligand binding. When the enzyme complex was reacted with DCCD in ATP + EDTA, the cleavage of the epsilon subunit was rapid and yield of cross-linking of beta to epsilon subunit low, whether trypsin cleavage was conducted in ATP + EDTA or ATP + Mg2+. When enzyme was reacted with DCCD in ATP + Mg2+, cleavage of the epsilon subunit was slow and yield of cross-linking of beta to epsilon high, under all nucleotide conditions for proteolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Upon incubation with trypsin, the adenosine-5'-triphosphatase (ATPase) activity of the nucleotide-depleted F1 is first rapidly and slightly activated and then slowly inactivated. The first phase is simultaneous with the conversion of the alpha subunit into an alpha' fragment which migrates between alpha and beta on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The second phase is related to the proteolysis of the three main subunits, alpha', beta, and gamma. Preincubation of the enzyme with low concentrations of adenosine 5'-diphosphate (ADP) or adenosine 5'-triphosphate (ATP) does not modify the slight increase of activity but efficiently prevents the inactivation induced by trypsin. The alpha leads to alpha' conversion is not affected whereas the further proteolysis of alpha', beta, and gamma does not occur. On the contrary, even high concentrations of GDP only slightly lower the trypsin-induced inactivation. The presence of endogenous tightly bound nucleotides also partially lowers the sensitivity to trypsin since F1 is less rapidly inactivated and proteolyzed than the nucleotide-depleted F1. Phosphate, at high concentrations, both slows down the first phase of activation and simultaneous alpha leads to alpha' conversion and prevents the second phase of inactivation and proteolysis of the main subunits. Pretreatment of the nucleotide-depleted F1 with trypsin under conditions where the ATPase activity is largely inhibited only slightly modifies, however, the hysteretic behavior of the enzyme: the ADP binding and the concomitant hysteretic inhibition of the residual activity are not markedly diminished. The purified ATPase-ATP synthase complex binds very few ADP's and is not hysteretically inhibited. Its ATPase activity is rapidly activated but not further inhibited by trypsin. Preincubation of the complex with ADP does not modify the effects of trypsin.  相似文献   

13.
Preincubation of F1-ATPase with ADP and Mg2+ leads to ADP binding at regulatory site inducing a hysteretic inhibition of ATP hydrolysis, i.e., an inhibition that slowly develops after Mg-ATP addition (Di Pietro, A., Penin, F., Godinot, C. and Gautheron, D.C. (1980) Biochemistry 19, 5671-5678). It is shown here that inorganic phosphate (Pi) together with ADP during preincubation abolishes the time-dependence of the inhibition after the addition of the substrate Mg-ATP. This preincubation in the presence of both Pi and ADP slowly leads to a conformation of the enzyme immediately inhibited after the addition of the substrate Mg-ATP. The Pi effect is half-maximal at 35 microM and pH 6.6, whereas a limited effect is induced at pH 8.0. The preincubation of F1-ATPase with Pi and ADP must last long enough (t1/2 = 5 min). The effects can be correlated to the amount of Pi bound to the enzyme, 1 mol Pi per mol (apparent KD of 33 microM) at saturation. Pi neither modifies the ADP binding nor the final level of the concomitant inhibition. When Pi is not present in the preincubation, the final stable rate of ADP-induced hysteretic inhibition is always reached when a near-constant amount of Pi has been generated during Mg-ATP hydrolysis. Kinetic experiments indicate that preincubation with ADP and Pi decreases both Vmax and Km which would favor a conformational change of the enzyme. Taking into account the Pi effects, a more precise model of hysteretic inhibition is proposed. The natural protein inhibitor IF1 efficiently prevents the binding of Pi produced by ATP hydrolysis indicating that the hysteretic inhibition and the IF1-dependent inhibition obey different mechanisms.  相似文献   

14.
(1) Incubation of the beef heart mitochondrial ATPase, F1 with Mg-ATP was required for the binding of the natural inhibitor, IF1, to F1 to form the inactive F1-IF1 complex. When F1 was incubated in the presence of [14C]ATP and MgCl2, about 2 mol 14C-labeled adenine nucleotides were found to bind per mol of F1; the bound 14C-labeled nucleotides consisted of [14C]ADP arising from [14C]ATP hydrolysis and [14C]ATP. The 14C- labeled nucleotide binding was not prevented by IF1. These data are in agreement with the idea that the formation of the F1-IF1 complex requires an appropriate conformation of F1. (2) The 14C-labeled adenine nucleotides bound to F1 following preincubation of F1 with Mg-[14C] ATP could be exchanged with added [3H]ADP or [3H]ATP. No exchange occurred between added [3H]ADP or [3H]ATP and the 14 C-labeled adenine nucleotides bound to the F1-IF1 complex. These data suggest that the conformation of F1 in the isolated F1-IF1 complex is further modified in such a way that the bound 14C-labeled nucleotides are no longer available for exchange. (3) 32Pi was able to bind to isolated F1 with a stoichiometry of about 1 mol of Pi per mol of F1 (Penefsky, H.S. (1977) J. Biol. Chem. 252, 2891-2899). There was no binding of 32Pi to the F1-IF1 complex. Thus, not only the nucleotides sites, but also the Pi site, are masked from interaction with external ligands in the isolated F1-IF1 complex.  相似文献   

15.
F1-ATPase was treated so that it contained three tightly bound nucleotides per molecule. One of these was bound at a catalytic site and was rapidly exchangeable, the two remaining nucleotides were nonexchangeable. Incubation of this preparation with ADP in the presence of Mg2+ results in 40-45% inhibition of the ATPase activity. With 2-azido-ADP instead of ADP, the ligand was covalently bound to F1 by illumination, in the presence or absence of turnover of the enzyme, and the site of binding was determined. In this way, one site could be identified, which induces the inhibition. The attachment of the covalently bound 2-nitreno-ADP is at Tyr-368 of a beta-subunit, characterized in the literature as a non-catalytic site. A second, non-catalytic site also binds 2-azido-ADP, but this binding is partially reversed by the addition of ATP and does not cause further inhibition of the ATPase activity. It is concluded that the slowly exchangeable non-catalytic site is the site of inhibition by ADP.  相似文献   

16.
Under steady state photophosphorylating conditions, each ATP synthase complex from spinach thylakoids contains, at a catalytic site, about one tightly bound ATP molecule that is rapidly labeled from medium 32Pi. The level of this bound [32P]ATP is markedly reduced upon de-energization of the spinach thylakoids. The reduction is biphasic, a rapid phase in which the [32P] ATP/synthase complex drops about 2-fold within 10 s, followed by a slow phase, kobs = 0.01/min. A decrease in the concentration of medium 32Pi to well below its apparent Km for photophosphorylation is required to decrease the amount of tightly bound ATP/synthase found just after de-energization and before the rapid phase of bound ATP disappearance. The [32P]ATP that remains bound after the rapid phase appears to be mostly at a catalytic site as demonstrated by a continued exchange of the oxygens of the bound ATP with water oxygens. This bound [32P]ATP does not exchange with medium Pi and is not removed by the presence of unlabeled ATP. The levels of tightly bound ADP and ATP arising from medium ADP were measured by a novel method based on use of [beta-32P]ADP. After photophosphorylation and within minutes after the rapid phase of bound ATP loss, the measured ratio of bound ADP to ATP was about 1.4 and the sum of bound ADP plus ATP was about 1/synthase. This ratio is smaller than that found about 1 h after de-energization. Hence, while ATP bound at catalytic sites disappears, bound ADP appears. The results suggest that during and after de-energization the bound ATP disappears from the catalytic site by hydrolysis to bound ADP and Pi with subsequent preferential release of Pi. These and related observations can be accommodated by the binding change mechanism for ATP synthase with participation of alternating catalytic sites and are consistent with a deactivated state arising from occupancy of one catalytic site on the synthase complex by an inhibitory ADP without presence of Pi.  相似文献   

17.
Zharova TV  Vinogradov AD 《Biochemistry》2006,45(48):14552-14558
The presence of medium Pi (half-maximal concentration of 20 microM at pH 8.0) was found to be required for the prevention of the rapid decline in the rate of proton-motive force (pmf)-induced ATP hydrolysis by Fo.F1 ATP synthase in coupled vesicles derived from Paracoccus denitrificans. The initial rate of the reaction was independent of Pi. The apparent affinity of Pi for its "ATPase-protecting" site was strongly decreased with partial uncoupling of the vesicles. Pi did not reactivate ATPase when added after complete time-dependent deactivation during the enzyme turnover. Arsenate and sulfate, which was shown to compete with Pi when Fo.F1 catalyzed oxidative phosphorylation, substituted for Pi as the protectors of ATPase against the turnover-dependent deactivation. Under conditions where the enzyme turnover was not permitted (no ATP was present), Pi was not required for the pmf-induced activation of ATPase, whereas the presence of medium Pi (or sulfate) delayed the spontaneous deactivation of the enzyme which was induced by the membrane de-energization. The data are interpreted to suggest that coupled and uncoupled ATP hydrolysis catalyzed by Fo.F1 ATP synthases proceeds via different intermediates. Pi dissociates after ADP if the coupling membrane is energized (no E.ADP intermediate exists). Pi dissociates before ADP during uncoupled ATP hydrolysis, leaving the E.ADP intermediate which is transformed into the inactive ADP(Mg2+)-inhibited form of the enzyme (latent ATPase).  相似文献   

18.
Fo.F1-ATP synthase in inside-out coupled vesicles derived from Paracoccus denitrificans catalyzes Pi-dependent proton-translocating ATPase reaction if exposed to prior energization that relieves ADP.Mg2+ -induced inhibition (Zharova, T.V. and Vinogradov, A.D. (2004) J. Biol. Chem.,279, 12319-12324). Here we present evidence that the presence of medium ADP is required for the steady-state energetically self-sustained coupled ATP hydrolysis. The initial rapid ATPase activity is declined to a certain level if the reaction proceeds in the presence of the ADP-consuming, ATP-regenerating system (pyruvate kinase/phosphoenol pyruvate). The rate and extent of the enzyme de-activation are inversely proportional to the steady-state ADP concentration, which is altered by various amounts of pyruvate kinase at constant ATPase level. The half-maximal rate of stationary ATP hydrolysis is reached at an ADP concentration of 8 x 10(-6) M. The kinetic scheme is proposed explaining the requirement of the reaction products (ADP and Pi), the substrates of ATP synthesis, in the medium for proton-translocating ATP hydrolysis by P. denitrificans Fo.F1-ATP synthase.  相似文献   

19.
ADP (0.2-200 microM) stimulated the synthesis of prostacyclin (PGI2), as reflected by the release of 6-keto-prostaglandin F1 alpha (6-K-PGF1 alpha), in endothelial cells cultured from bovine aorta. This effect of ADP was mimicked by ATP, whereas AMP and adenosine were completely inactive. The release of 6-K-PGF1 alpha triggered by ADP was rapid and onset (within 5 min), transient (10 min) and followed by a period of refractoriness to a new ADP challenge. Growing and confluent cells were equally responsive to ADP. ADP stimulated the release of free arachidonic acid from the endothelial cells. ADP could thus exert two opposite actions on platelet aggregation in vivo: a direct stimulation and an inhibition mediated by PGI2. This last action might contribute to limit thrombus formation to areas of endothelial cell damage.  相似文献   

20.
The process of ATP or GTP synthesis by bovine heart submitochondrial particles involves the binding of ADP or GDP to 3 exchangeable sites I, II, and III, and only upon substrate occupation of site III does rapid ATP or GTP synthesis take place. The dissociation constants determined for ADP were KADPI less than or equal to 10(-8) M, KADPII approximately 10(-7) M, and KADPIII (equivalent to apparent KADPm), approximately 3 x 10(-6) M in the low Km mode and KADPIII approximately 150 x 10(-6) M in the high Km mode. For GDP, these constants were KGDPI approximately 10(-6)-10(-5) M, KGDPII approximately 10(-4) M, and KGDPIII approximately 10(-3) M when NADH was the respiratory substrate (Matsuno-Yagi, A., and Hatefi, Y. (1990) J. Biol. Chem. 265, 82-88). Because of its low affinity for the above binding sites, GDP at micromolar concentrations does not lead to GTP synthesis. However, as shown in this paper, micromolar [GDP] undergoes phosphorylation in the presence of micromolar concentrations of ADP. Under these conditions, both ATP and GTP are synthesized. GDP inhibits ATP synthesis with KGDPi congruent to 7 microM, while ADP promotes GTP synthesis in a reaction that requires inorganic phosphate (apparent KPim = 2-3 mM) and is inhibited by uncouplers and inhibitors of the ATP synthase complex. The ADP-promoted GTP synthesis exhibited an "apparent" KGDPm = 4 microM and an "apparent" Vmax = 11 nmol of GTP (min.mg of protein)-1. These results were interpreted to mean that (a) micromolar [ADP] occupies sites I and II, allowing site III to bind and phosphorylate GDP, and (b) the KGDPm and Vmax calculated under these conditions represent values for the low Km-low Vmax mode of GTP synthesis, which in the absence of ADP is not detectable because of the positive cooperativity phase of GTP synthesis with the high KGDPII approximately 10(-4) M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号