首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosynthesis of nonspecific lipid transfer proteins (ns-LTPs) in germinating castor bean (Ricinus communis L.) seeds were investigated. Lipid transfer activities of ns-LTPs in the cotyledons, axis, and endosperm increased with growth after germination. The activity increases were accompanied by increased amounts of ns-LTPs in each tissue, as measured by immunoblot using anti-ns-LTP serum. These results suggest that the ns-LTPs are synthesized de novo in each tissue after germination and not activated from inactive proteins synthesized before germination. Comparison of the immunoblot products in each tissue from 4-day-old seedlings indicate the occurrence of tissue-specific isoforms of ns-LTPs; 9 kilodaltons (major) and 7 kilodaltons (minor) in the cotyledons, and 7 kilodaltons (major) and 9 kilodaltons (minor) in the axis, whereas only the 8-kilodalton ns-LTP is present in the endosperm. In vitro translation from poly(A)+ RNAs from three tissues of castor bean seedlings and the detection of immunoprecipitated products indicate that translatable mRNAs for ns-LTPs exist in the three tissues a day before the synthesis of ns-LTPs; the translation products, which are 3.5 to 4.0 kilodaltons larger than ns-LTPs, were processed to the mature ns-LTPs. The production of mature ns-LTPs from translatable mRNAs without any delay suggests that gene expression of ns-LTPs in castor bean seedlings is controlled at a step before the formation of translatable mRNAs.  相似文献   

2.
Epoxide hydrolase (EC 3.3.2.3) activity was measured with [1-14C]cis-9,10-epoxystearic acid as the substrate. Homogenates were prepared from the endosperm tissue of germinating seeds of castor bean (Ricinus communis L. zanzibariensis). The activity of fatty-acid epoxide hydrolase was characterized with respect to dependence on time, amount of protein, pH and temperature. Analyses of enzyme distribution in endosperm, cotyledons, root and hypocotyl showed the highest total activity in the endosperm, less in the cotyledons and low activity in the root and hypocotyl. The specific activity was similar for cotyledons and endosperm. Analysis of the temporal expression of the enzyme in the endosperm during germination revealed high activity already in the imbibed seed. Activity was maximal between days four to six and then decreased at the end of one week. Subcellular fractionation of endosperm revealed a dual distribution of activity between the glyoxysomal and the cytosolic fractions.  相似文献   

3.
Post-germinative growth in castor bean ( Ricinus communis L. cv. Hale) seedlings was investigated to determine whether lipolytic enzyme synthesis and lipid breakdown was a function of the embryo axis or simply based on a source-sink mechanism connected with sucrose produced during mobilization of storage lipid. Endosperm and cotyledons were excised from the embryo axis at 24 h intervals and were then incubated in Petri dishes containing water or 0.1 M sucrose for 24 h. Excised endosperm showed similar or higher malate synthase (MS, EC 4.1.3.2) and isocitrate lyase (ICL, EC 4.1.3.1) activities and increased lipolysis when compared with endosperm obtained from similarly intact seedlings of the same age. In contrast, cotyledonary ICL and MS activity was up to 50% lower and lipolysis was only slightly affected in excised material when compared with cotyledons obtained from intact seedlings. Incubating endosperm in sucrose had no effect on the development of the above enzyme activities or lipid content, when compared with material incubated in water only. In contrast, cotyledonary MS and ICL activities were up to 70% lower in sucrose and lipolysis substantially inhibited. Lipid breakdown and the development of lipolytic enzyme activity in cotyledons seem to be dependent on the presence of the endosperm. It is concluded that enzyme regulation in castor bean seedlings cannot entirely be explained by axis control or source-sink relationships.  相似文献   

4.
Changes in the dry weights of various parts of the castor bean seedling showed that the rates of transfer of material through the cotyledons to the embryonic axis exceeded 2 mg/hour after 5 to 6 days of germination. The sugar present in the endosperm was predominantly, and in the cotyledon almost exclusively, sucrose. Anatomical features were described which contribute to the efficiency of the cotyledons as organs of absorption and transmittal of sucrose to the embryonic axis, where hexoses are much more prevalent.  相似文献   

5.
Proteins in the soluble and insoluble fractions, extracted frommature castor bean cv. Hale seed cotyledons, differ quantitativelyand qualitatively from their counterparts extracted from theendosperm. The soluble fraction contains no glycoproteins, andthe lectins RCA1 and ricin D are absent. While the insolubleproteins are electrophoretically and immunologically similarto those in the endosperm, they do not form the 100 kD subunitdimers which characterize some of the endosperm insoluble crystalloidproteins. Rapid rates of deposition of all of the soluble andinsoluble proteins present in the mature seed cotyledons commences30–35 d after pollination (DAP) and continues until 45DAP. These proteins are mobilized rapidly beginning 1–2d after seed imbibition and this coincides with an increasein specific activity, in the cotyledons, of two aminopeptidasesand a carboxypeptidase. The soluble and insoluble proteins inthe cotyledons of the mature seed probably function as storageproteins and support the growth of the germinated seed priorto the mobilization of the major protein storage reserves ofthe endosperm. Key words: Ricinus communis, Castor bean, Hale cultivar, Cotyledon, Storage protein, Seed development, Seed germination  相似文献   

6.
During germination and early growth of the castor bean (Ricinus communis) nitrogenous constituents from the endosperm are transferred via the cotyledons to the growing embryo. Exudate collected from the cut hypocotyl of 4-day seedlings contained 120 millimolar soluble amino nitrogen and glutamine was the predominant amino acid present, comprising 35 to 40% of the total amino nitrogen. To determine the nature of nitrogen transfer, the endosperm and hypocotyl were removed and glutamine uptake by the excised cotyledons was investigated. Uptake was linear for at least 2 hours and the cotyledons actively accumulated glutamine against a concentration gradient. The uptake was sensitive to respiratory inhibitors and uncouplers and efflux of glutamine from the excised cotyledons was negligible. Transport was specific for the l-isomer. Other neutral amino acids were transported at similar rates to glutamine. Except for histidine, the acidic and basic amino acids were transported at lower rates than the neutral amino acids. For glutamine transport, the K(m) was 11 to 12 millimolar and the V(max) was 60 to 70 micromoles per gram fresh weight per hour. Glutamine uptake was diminished in the presence of other amino acids and the extent of inhibition was greatest for those amino acids which were themselves rapidly transported into the cotyledons. The transport of amino acids, on a per seedling basis, was greatest for cotyledons from 4-to 6-day seedlings, when transfer of nitrogen from the endosperm is also maximal. It is concluded that the castor bean cotyledons are highly active absorptive organs transporting both sucrose and amino acids from the surrounding endosperm at high rates.  相似文献   

7.
Proprotein precursors of vacuolar components are transportedfrom endoplasmic reticulum to the dense vesicles, and then targetedto the vacuoles, where they are processed proteolytically totheir mature forms by a vacuolar processing enzyme. Immunoelectronmicroscopy of the maturing endosperm of castor bean (Ricinnscommunis) revealed that the vacuolar processing enzyme is selectivelylocalized in the dense vesicles as well as in the vacuolar matrix.This indicates that the vacuolar processing enzyme is transportedto vacuoles via dense vesicles as does IIS globulin, a majorseed protein. During seed maturation of castor bean, an increasein the activity of the vacuolar processing enzyme in the endospermpreceded increases in amounts of total protein. The enzymaticactivity reached a maximum at the late stage of seed maturationand then decreased during seed germination concomitantly withthe degradation of seed storage proteins. We examined the distributionof the enzyme in different tissues of various plants. The processingenzyme was found in cotyledons of castor bean, pumpkin and soybean,as well as in endosperm, and low-level processing activity wasalso detected in roots, hypocotyls and leaves of castor bean,pumpkin, soybean, mung bean and spinach. These results suggestthat the proprotein-processing machinery is widely distributedin vacuoles of various plant tissues. (Received July 11, 1993; Accepted August 17, 1993)  相似文献   

8.
《Plant science》1986,46(1):15-19
Only a part of the citric acid cycle seems to be functional in the endosperm of germinating castor bean seeds. Mitochondria isolated from the endosperm can oxidize all of the citric acid cycle substrates. This was investigated further by studying the enzymic activities of isolated mitochondria during germination. Whilst all enzymic activities increase during germination there is an imbalance in the absolute levels of activities, with very low activities of those enzymes involved in converting pyruvate to succinate. It is suggested that the enzymic activity represents a coarse control of the cycle in this tissue.  相似文献   

9.
Following germination of the castor bean (Ricinus communis L.) seed, levels of phytin decline in both the endosperm and the embryo. However, as seedling growth continues, phytin increase in the latter to a level exceeding that present in the mature dry embryo, while phytin declines concomitantly in the endosperm. It is likely that phosphate mobilized from phytin in the endosperm acts as a substrate for phytin synthesis in the embryo. This is supported by the observation that isolated embryos supplied with phosphate accumulate phytin, particularly in the cotyledons. This increase is enhanced whenmyo-inositol is provided concurrently as a carbon source. Phytin synthesis in the cotyledons of the isolated embryos can occur without the attached axis. Whether initially exposed to exogenous phosphate or not, the isolated cotyledons remain competent in their ability to synthesize phytin for an extended post-germinative period, even though the major reserves are being mobilized at this time.  相似文献   

10.
The capacity of polyadenylated RNA from developing castor bean endosperm to program protein synthesis in a wheat germ cell-free translational system has been examined. Although the use of micrococcal nuclease-treated wheat germ extracts demonstrated a low but significant content of translatable mRNA in dry seeds, a large scale increase in total translational capacity was observed during germination. The cellular content of translatable mRNA peaked on the 4th day of germination and subsequently declined. It is concluded that protein synthesis in castor bean endosperm cells during germination is directed by newly transcribed mRNA.  相似文献   

11.
The castor-bean endosperm-the best-studied material of reserve lipid hydrolysis in seed germination-was previously shown to have an acid lipase and an alkaline lipase having reciprocal patterns of development during germination. We studied oil seeds from 7 species, namely castor bean (Ricinus communis L.), peanut (Arachis hypogaea L.), sunflower (Helianthus annus L.), cucumber (Cucumis sativus L.), cotton (Gossypisum hirsutum L.), corn (Zea mays. L.) and tomato (Lycopersicon esculentum Mill.). The storage tissues of all these oil seeds except castor bean contained only alkaline lipase activity which increased drastically during germination. The pattern of acid and alkaline lipases in castor bean does not seem to be common in other oil seeds. The alkaline lipase of peanut cotyledons was chosen for further study. On sucrose gradient centrifugation of cotyledon homogenate from 3-d-old seedlings, about 60% of the activity of the enzyme was found to be associated with the glyoxysomes, 15% with the mitochondria, and 25% with a membrane fraction at a density of 1.12 g cm-3. The glyoxysomal lipase was associated with the organelle membrane, and hydrolyzed only monoglyceride whereas the mitochondrial and membrane-fraction enzymes degraded mono-, di- and triglycerides equally well. Thus, although the lipase in the glyoxysomes had the highest activity, it had to cooperate with lipases in other cellular compartments for the complete hydrolysis of reserve triglycerides.  相似文献   

12.
Changes in the dry weights of various parts of the castor bean seedling showed that the rates of transfer of material through the cotyledons to the embryonic axis exceeded 2 mg/hour after 5 to 6 days of germination. The sugar present in the endosperm was predominantly, and in the cotyledon almost exclusively, sucrose. Anatomical features were described which contribute to the efficiency of the cotyledons as organs of absorption and transmittal of sucrose to the embryonic axis, where hexoses are much more prevalent.The ability of the cotyledons to absorb sucrose survived removal of the endosperm from the seedling. A series of experiments is described in which the cotyledons of such excised seedlings were immersed in sucrose-(14)C and measurements made of uptake and of translocation to various parts of the seedling. Increasing rates of absorption were observed as the sucrose concentration was raised to 0.5 m and these rates were maintained for several hours. Removal of the embryonic axis (hypocotyl plus roots) drastically altered both the response to sucrose concentration and the time course of absorption by the cotyledons.More than 80% of the sugar normally entering the cotyledons from the endosperm is transmitted to the embryonic axis and this extensive turnover was seen also in pulse/chase experiments with excised seedlings. The cotyledons of excised seedlings absorbed sucrose against high apparent concentration gradients. The absorption was stimulated by phosphate and had a pH optimum at about pH 6.4. It was inhibited by arsenate, azide and 2,4-dinitrophenol.  相似文献   

13.
Kennode, A. R, and Bewley, J. D. 1988. The role of maturationdrying in the transition from seed development to germination.V. Responses of the immature castor bean embryo to isolationfrom the whole seed; a comparison with premature desiccation.—J.exp. Bot. 39: 487–497. Desiccation is an absolute requirement for germination and post-germinativegrowth of whole seeds of the castor bean, whether desiccationis imposed prematurely during development, at 35 d after pollination(DAP) or occurs naturally during late maturation (50–60DAP). Desiccation also plays a direct role in the inductionof post-germinative enzyme synthesis in the cotyledons of embryosin the intact seed; this event is not simply due to the presenceof a growing axis. Isolation of embryos from the developingcastor bean seed at 35 DAP results in both germination and growth,despite the absence of a desiccation event. We have comparedthe metabolic consequences of premature drying of whole seeds(35 DAP) and isolation of the developing 35 DAP embryos. Inboth cases, hydrolytic events involved in the mobilization ofstored protein reserves proceed in a similar manner and mirrorthose events occurring within germinated mature seeds. Thereare differences, however, for post-germinative enzyme (LeuNAaseand isocitrate lyase) production occurs to a lesser extent innon-dried isolated embryos than in those from prematurely dried(35 DAP) whole seeds, or from mature dry (whole) seeds. Desiccationof the 35 DAP whole seed does not alter the subsequent responseof the embryo upon isolation. Thus, while drying does not affectthe metabolism of isolated embryos, it has a profound effecton that of embryos within the intact seed. Tissues surroundingthe embryo in the developing intact seed (viz. the endosperm)maintain its metabolism in a developmental mode and inhibitgermination. This effect of the surrounding tissues can onlybe overcome by drying or by their removal. Key words: Metabolism, isolation, desiccation, embryo, endosperm, castor bean, development, germination  相似文献   

14.
Redox activities, NADH:ferricyanide reductase, NAD(P)H:cytochrome reductases, and NADH:ascorbate free-radical reductase, are present in endoplasmic reticulum (ER) and glyoxysomal membranes from the endosperm of germinating castor bean (Ricinus comminus L. var Hale). The development of these functions was followed in glyoxysomes and ER isolated on sucrose gradients from castor bean endosperm daily from 0 through 6 days of germination. On a per seed basis, glyoxysomal and ER protein, glyoxysomal and ER membrane redox enzyme activities, and glyoxylate cycle activities peaked at day 4 as did the ER membrane content of cytochrome P-450. NADH:ferricyanide reductase was present in glyoxysomes and ER isolated from dry seed. This activity increased only about twofold in glyoxysomes and threefold in ER during germination relative to the amount of protein in the respective fractions. The other reductases, NADH:cytochrome reductase and NADH:ascorbate free-radical reductase, increased about 10-fold in the ER relative to protein up to 4 to 5 days, then declined. NADPH:cytochrome reductase reached maximum activity relative to protein at day 2 in both organelles. The increases in redox activities during germination indicate that the membranes of the ER and glyoxysome are being enriched with redox proteins during their development. The development of redox functions in glyoxysomes was found to be coordinated with development of the glyoxylate cycle.  相似文献   

15.
Various stages of pegs, cotyledons and embryonic axes from maturing peanut fruits were examined for their ability to phosphorylate thymidine and uridine. Highest specific activities during peg elongation were found just prior to increases in endosperm nuclei and embryo cell numbers. In the developing cotyledons and axes, the net kinase activities of crude extracts reached a maximum 1–2 weeks before maximal RNA and DNA contents were attained. An exception was the apparent lack of any relationship between uridine kinase activities and RNA levels in developing embryonic axes. The present results support the observation that peanut axes are devoid of thymidine and uridine kinases during the first 24 hr of germination, as fully developed fruits had very low specific activities for both of these phosphate transferases.  相似文献   

16.
During germination of castor bean seeds (Ricinus communis var. Hale), the changes of activity of catalase, uricase, and α-hydroxyacid oxidase of the endosperm follow a rise and fall pattern with a peak between day 4 and 5 similar to that observed for the glyoxylate cycle enzymes. After 3 days of germination, most of the activities of these enzymes are recovered from the glyoxysomal fraction separated by isopycnic sucrose density gradient centrifugation.  相似文献   

17.
During mid-development (25–40 d after pollination: DAP)of the castor bean seed the amount of abscisic acid (ABA) increasesin both the endosperm and the embryo, declining substantiallythereafter until there is little present in the mature dry (60DAP) seed. Premature desiccation of the seed at 35 DAP alsoleads to a major decline in ABA within the embryo and endosperm.Partial water loss from the seed at 35 DAP which, like naturaland premature desiccation, leads to subsequent germination uponreturn of the seed to full hydration, causes a much smallerdecline in ABA levels. In contrast, ABA declines substantiallyin the non-dried (hydrated) control at 35 DAP, but the seedsdo not germinate. Hence, a clear negative correlation betweenABA content and germinability is not observed. Both drying,whether natural or imposed prematurely, and partial drying decreasethe sensitivity of the isolated embryo to exogenous ABA by about10-fold. The protein synthetic response of the castor bean embryo exposedto 0.1 mol m–3 ABA following premature desiccation exhibitssome similarity to the response of the non-dried developingembryo—in both cases the synthesis of some developmentalproteins is enhanced by ABA, and germination is suppressed.Germination of mature seeds is also suppressed by 0.1 mol m–3ABA, but the same developmental proteins are not synthesized.In the cotyledons of prematurely-desiccated seed, some proteinsare hydrolysed upon imbibition in 0.1 mol m–3 ABA, a phenomenonthat occurs also in the cotyledons of similarly treated matureembryos, but not in developing non-dried embryos. Hence theembryo exhibits an ‘intermediate’ response uponrehydration in 0.1 mol m–3 ABA following premature desiccation;viz. some of the responses are developmental and some germinative.Following natural or imposed drying, the isolated embryo becomesrelatively insensitive to 0.01 mol m–3 ABA: germinationis elicited and post-germinative reserve breakdown occurs inthe radicle and cotyledons. The reduced sensitivity of the embryoto ABA as a consequence of desiccation may be an important factorin eliciting the switch to germination and growth within thewhole seed. Key words: Abscisic acid, desiccation, astor bean endosperm, seed development, germination, protein synthesis, isolated embryos, hormone sensitivity  相似文献   

18.
Alpi A  Beevers H 《Plant physiology》1981,68(4):851-853
Leupeptin, a tripeptide inhibitor of some proteinases, was shown previously to maintain the stability of several enzymes (isocitrate lyase, fumarase, and catalase) in crude extracts of castor bean endosperm. This reagent is now shown to inhibit the breakdown of water-soluble and crystalloidstorage proteins of the protein bodies isolated from castor beans by the SH-proteinase and it also inhibits the endopeptidase from mung beans. When suitably introduced into the endosperm of dry castor beans it strongly inhibits germination and seedling development. Application of leupeptin to endosperm halves removed from the seed prevents the normal development of enzymes concerned with gluconeogenesis from fat and drastically curtails sugar production. The results suggest that the SH-proteinase is intimately involved in the mobilization of storage proteins.  相似文献   

19.
Homogenates of the endosperm of castor bean (Ricinus communis var. Hale) were prepared at intervals during germination and fractionated on sucrose gradients. Early in germination when glyoxysomes were being produced, a substantial proportion (50%) of the activities of malate synthetase and citrate synthetase was recovered in the membranes of the endoplasmic reticulum (mean density 1.12 grams per cubic centimeter). This proportion declined to less than 10% at 4 days when the glyoxysomes were fully developed.  相似文献   

20.
In crude extract of castor bean endosperm, isocitrate dehydrogenase (NADP+) (EC 1.1.1.42) was stable at 57°C at the beginning of seed germination as well as in maturing and dry seeds. The enzyme gradually became less thermostable as germination proceeded and became unstable after 4 days. Extract from 5-day-old endosperm reduced the thermostability of the thermostable enzyme. The destabilizing factor accumulated in the endosperm as germination progressed and was identified as ricinoleate. Ricinoleate destabilized the purified enzyme which was stabilized by isocitrate and Mg2+, but ricinoleate did not affect the activity of NADP+-isocitrate dehydrogenase itself. Stearate, oleate, palmitate and myristate were similar to ricinoleate in their effect on the thermostability of the enzyme. The thermolabile enzyme in the crude extract of 5-day-old endosperm was readily inactivated by trypsin and in low concentrations of buffer. The thermostable enzyme in the crude extract of 2-day-old endosperm was not affected by these treatments. The thermostable enzyme treated with ricinoleate showed the same instabilities as the thermolabile enzyme. The role of ricinoleate in ther germinating castor bean endosperm is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号