首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Microsomes isolated from Tetrahymena pyriformis synthesized phosphatidylcholine and phosphatidylethanolamine by CDPcholine: 1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2) and CDPethanolamine: 1,2-diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1), utilizing ethanol-dispersed dioleoglycerol. Cholinephosphotransferase and ethanolaminephosphotransferase activities have similar dependences on MgCl2 and MnCl2, but the latter was more effective than the former for both enzyme activities. The V values for 1,2-dioleoylglycerol obtained at optimal conditions were 1.8 nmol/min per mg microsomal protein for cholinephosphotransferase and 0.6 nmol/min per mg microsomal protein for ethanolaminephosphotransferase. Both enzymes could not utilize 1,3-dioleoylglycerol or 1-oleoylglycerol as substrates. Cholinephosphotransferase had an apparent Km for CDPcholine of 11.7 microM with 1,2-dioleoylglycerol and was inhibited by CDPethanolamine competitively. On the other hand, ethanolaminephosphotransferase has an apparent Km for CDPethanolamine of 8 microM and CDPcholine was a noncompetitive inhibitor of ethanolaminephosphotransferase activity. Furthermore, despite the marked alteration of phospholipid composition occurring during the temperature acclimation of Tetrahymena cells, both enzyme activities showed similar dependences on growth and incubation temperatures. This may imply that the final step of de novo synthesis of two major phospholipids does not participate in the thermally induced modification of the profile of phospholipid polar head group in membranes.  相似文献   

2.
F Darchen  D Scherman  J P Henry 《Biochemistry》1989,28(4):1692-1697
The binding of [3H]reserpine ([3H]RES) to purified bovine chromaffin granule membranes has been studied at low membrane concentration. Saturation isotherms indicated a dissociation equilibrium constant KD of 30 pM and a density of binding sites of 8 pmol/mg of protein at 30 degrees C. The association rate constant was 4.0 X 10(5) M-1 s-1, and the calculated dissociation rate constant was 1.2 X 10(-5) s-1, corresponding to a half-lifetime of about 16 h. Although this dissociation was too low to be measured directly, [3H]RES binding was indeed reversible since it was lost after addition of the detergent Triton X-100. Dihydrotetrabenazine (TBZOH) inhibited [3H]RES binding in a time-dependent manner, EC50 varying from 37 nM after a 1-h incubation to 600 nM after 16 h. On the contrary, [3H]RES binding inhibition by the substrate noradrenaline was time independent. It is proposed that the transporter exists in two different conformations which bind exclusively either tetrabenazine (TBZ) or RES and which are in equilibrium. The effects of detergents were consistent with this two-conformation model. The transporter solubilized by cholate bound [3H]TBZOH, but not [3H]RES. On the other hand, addition of cholate to membrane-bound [3H]RES solubilized the membrane without releasing the ligand from its binding site. It is proposed that the TBZ-binding conformation is obtained by solubilization with cholate and that RES stabilizes the RES-binding conformation, allowing its solubilization by this detergent.  相似文献   

3.
A rapid methof for preparation of membrane fractions highly enriched in nicotinic acetylcholine receptor from Torpedo californica electroplax is described. The major step in this purification involves sucrose-density-gradient centrifugation in a reorienting rotor. Further purification of these membranes can be achieved by selective extraction of proteins by use of alkaline pH or by treatment with solutions of lithium di-idosalicylate. The alkali-treated membranes retain functional characteristics of the untreated membranes and in addition contain essentially only the four polypeptides (mol.wts. 40000, 50000, 60000 and 65000) characteristic of the receptor purified by affinity chromatography. Dissolution of the purified membranes or of the alkali-treated purified membranes in sodium cholate solution followed by sucrose-density-gradient centrifugation in the same detergent solution yields solubilized receptor preparations comparable with the most highly purified protein obtained by affinity-chromatographic procedures.  相似文献   

4.
The identification of lysosomal ganglioside sialidase in human cells   总被引:1,自引:0,他引:1  
In this report we present evidence for the existence of a lysosomal ganglioside sialidase. The sialidase activity was solubilized by sonication and stimulated by cholate. The absence of ganglioside sialidase activity in sialidosis patients indicates that lysosomal sialidase is active towards gangliosides and glycoproteins. The plasma membranes were associated with two types of ganglioside sialidase activities, one was enhanced by cholate while the other was partially inhibited by this detergent.  相似文献   

5.
Rat liver mitochondrial inner and outer membranes were subjected to the solubilizing effect of the nonionic detergent Triton X-100 under various conditions. After centrifugation, the supernatants (containing the solubilized fraction) and pellets were characterized chemically and/or ultrastructurally. The detergent seems to act by inducing a phase transition from membrane lamellae to mixed protein-lipid-detergent micelles. Different electron-micro-scopy patterns are shown by the inner membranes after treatment with different amounts of surfactant, whereas the corresponding images from outer membranes vary but slightly. Selective solubilization of various components is observed, especially in the case of the inner membrane. Some membrane lipids (e.g., cardiolipin) are totally solubilized at detergent concentrations when others, such as sphyngomyelin, remain in the membrane. Other inner-membrane components (flavins, cytochromes, coenzymeQ) show different solubilization patterns. This allows the selection of conditions for optimal solubilization of a given membrane component with some degree of selectivity. The influence of Triton X-100 on various mitochondrial inner-membrane enzyme activities was studied. The detergent seems to act especially through disruption of the topology of the functional complexes, although the activity of the individual enzymes appears to be preserved. Relatively simple enzyme activities, such as ATPase, are more or less solubilized according to the detergent concentration, whereas the more complex succinate-cytochromec reductase activity practically disappears even at low Triton X-100 concentrations.  相似文献   

6.
Rat liver microsomes solubilized by incubating with lysolecithin or Triton X-100 showed very active UDP-N-acetylglucosamine pyrophosphatase activity leading to the hydrolysis of the substrate into N-acetylglucosamine-P and N-acetylglucosamine. ATP, GTP, CDPcholine, and CDPglucose exerted a considerable inhibitory effect on the solubilized membrane pyrophosphatase activity. CDPcholine and CDPglucose, in addition, appeared to stimulate the transfer of N-acetylglucosamine into endogenous and exogenous acceptor proteins. Evidence is also presented of an inhibitory effect of ATP (and to some extent GTP) on N-acetylglucosaminyltransferase activity. This inhibitory effect of ATP and GTP became clearly evident when the pyrophosphatase activity in the membranes was virtually eliminated in the presence of CDP-choline and CDPglucose. The effect of ATP and GTP on the solubilized membrane enzymes indicated that the inhibition of pyrophosphatase activity alone did not determine the rate of transfer of sugar to protein. The results also suggested that the UDP-N-acetylglucosamine pyrophosphatase and N-acetylglucosaminyltransferase activities were controlled independently and the effect of each nucleotide on these enzymes should, therefore, be carefully evaluated to understood its role in glycopolymer biosynthesis. Also, a possible role of choline and its derivatives in glycoprotein synthesis is discussed.  相似文献   

7.
System A-mediated amino acid transport activity from rat liver plasma membrane vesicles has been solubilized and reconstituted into proteoliposomes using a freeze-thaw-dilution technique. The presence of cholate, at a cholate to protein ratio of 1:1, during the freeze-thaw step resulted in an enhancement in recoverable transport activity. The carrier required both phosphatidylcholine and phosphatidylethanolamine for optimal activity, but the addition of cholesterol to the reconstitution procedure appeared to have no significant effect on the resulting activity. A lipid to protein ratio of 20:1 yielded maximal transport activity. Sonication of the proteoliposomes provided some improvement in the accuracy of replicate assays for a given proteoliposome preparation. Isolated liver plasma membrane vesicles prepared from rats treated in vivo with glucagon in combination with dexamethasone contained stimulated System A activity. This enhanced transport activity could be solubilized and recovered in proteoliposomes generated from these plasma membranes. The data support the proposal that hormone regulation of the hepatic System A gene results in the de novo synthesis and plasma membrane insertion of the carrier protein itself.  相似文献   

8.
The glucose transport protein of human erythrocyte membranes was solubilized with cholate to facilitate rapid reconstitution and direct glucose transport measurements. This may simplify the isolation of the native glucose transporter. In most experiments the membranes were prepared from fresh blood within 8 h, frozen in liquid nitrogen and stored at ?70°C to minimize proteolytic degradation. Solubilization with 25 mM cholate in the presence of 200 mM NaCl at pH 8.4 for 12 min at room temperature gave a high d-glucose transport activity. The solubilized mixture contained 20% of the total membrane protein, only 6% of the polypeptides of molecular weight around 90 000, 23% of the polypeptides of molecular weight around 55 000, 30% of the phospholipids and at least 6% of the stereospecific d-glucose transport activity. At cholate concentrations up to 22 mM the ratio of solubilized phospholipids to cholate increased steeply, concomitant with an increase in solubilized activity. Above 30 mM cholate the activity diminished. At 4°C the activity of the extrac decreased rapidly within the first day and slowly during the next few days. The initial changes seem to have produced a fairly stable, but not native form or fragment of the transporter. When 20 mM EDTA and 5 mM dithioerythritol were included in the solubilization mixture a high activity was preserved for about one day.  相似文献   

9.
The solubilization and delipidation of sarcoplasmic reticulum Ca2+-ATPase by different nonionic detergents were measured from changes in turbidity and recovery of intrinsic fluorescence of reconstituted ATPase in which tryptophan residues had been quenched by replacement of endogenous phospholipids with brominated phospholipids. It was found that incorporation of C12E8 or dodecyl maltoside (DM) at low concentrations in the membrane, resulting in membrane "perturbation" without solubilization, displaced a few of the phospholipids in contact with the protein; perturbation was evidenced by a parallel drop in ATPase activity. As a result of further detergent addition leading to solubilization, the tendency toward delipidation of the immediate environment of the protein was stopped, and recovery of enzyme activity was observed, suggesting reorganization of phospholipid and detergent molecules in the solubilized ternary complex, as compared to the perturbed membrane. After further additions of C12E8 or DM to the already solubilized membrane, the protein again experienced progressive delipidation which was only completed at a detergent concentration about 100-fold higher than that necessary for solubilization. Delipidation was correlated with a decrease in enzyme activity toward a level similar to that observed during perturbation. On the other hand, Tween 80, Tween 20, and Lubrol WX failed to solubilize SR membranes and to induce further ATPase delipidation when added after preliminary SR solubilization by C12E8 or dodecyl maltoside. For Tween 80, this can be related to an inability to solubilize pure lipid membrane; in contrast, Tween 20 and Lubrol WX were able to solubilize liposomes but not efficiently to solubilize SR membranes. In all three cases, insertion of the detergent in SR membranes is, however, demonstrated by perturbation of enzyme activity. Correlation between detergent structure and ability to solubilize and delipidate the ATPase suggests that one parameter impeding ATPase solubilization might be the presence of a bulky detergent polar headgroup, which could not fit close to the protein surface. We also conclude that in the active protein/detergent/lipid ternary complexes, solubilized by C12E8 or dodecyl maltoside, most phospholipids remain closely associated with the ATPase hydrophobic surface as in the membranous form. Binding of only a few detergent molecules on this hydrophobic surface may be sufficient for inhibition of ATPase activity observed at high ATP concentration, both during perturbation and in the completely delipidated, solubilized protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The properties of an antioestrogen binding site (AEBS), which has high affinity and specificity for nonsteroidal antioestrogens and structurally related compounds, have been studied in rat liver microsomes. When subcellular organelles were separated on Percoll density gradients the distribution of the AEBS paralleled that of NADPH-cytochrome c reductase, indicating that the AEBS is associated with the endoplasmic reticulum. Saturation analysis showed that [3H]tamoxifen was bound to a single class of saturable binding sites in liver microsomes with a KD of 0.9 +/- 0.1 nM at 0 degrees C. The equilibrium KD was not significantly different at 22 degrees C. The KD calculated from the association and dissociation rate constants for [3H]tamoxifen binding at 0 degrees C and 22 degrees C was compatible with the KD measured at equilibrium. Ligand specificity studies using tamoxifen analogues showed qualitatively similar structure-affinity relationships for the AEBS from both rat liver and the MCF 7 breast cancer cell line. In general structural modifications caused correspondingly greater changes in affinity for rat liver AEBS than for MCF 7 AEBS. The AEBS was solubilized from microsomal membranes with sodium cholate. This was the only detergent of nine tested that solubilized the site in high yield without loss of activity. Solubilization using cholate was more effective in the presence of 1 M-NaCl. In the solubilized state there was an apparent loss of [3H]tamoxifen binding activity which could be restored by dilution of the detergent. Gel filtration indicated an Mr of 440,000-490,000 for the AEBS-cholate complex. These studies demonstrate that rat liver contains high concentrations of a microsomal AEBS which has similar properties and specificity to the AEBS previously described in human breast cancer cells. This site can be solubilized by sodium cholate to supply material suitable for further purification.  相似文献   

11.
The ethanolamine base-exchange activity of rat brain microsomes has been studied after treating the membranes with the non-ionic detergent n-octyl-beta-D-glucopyranoside. The detergent could solubilize membrane lipid and protein. The concentrations of the detergent and of membrane protein were both important for this effect. The presence of disaggregating concentrations of octylglucopyranoside in the base-exchange incubation mixture strongly inhibited the incorporation of radioactive ethanolamine into lipid; however, the removal of the detergent through dialytic procedures before assaying the base-exchange reaction restored the enzymic activity almost completely. As shown by exposing the membranes to trinitrobenzenesulfonic acid (TNBS), the phosphatidylethanolamine (PE) which was newly synthesized by base-exchange was also compartmented in the microsomal membrane. The treatment with the detergent after the base-exchange reaction abolished the compartmentation of the newly synthesized lipid. However, if microsomes were solubilized and the detergent was removed by dialysis before the assay of base-exchange, the reassembly of membranes occurred with a recovery of the compartmentation of the newly synthesized PE. The presence of Ca2+ in the dialytic medium was important for the preservation of base-exchange activity, probably affecting the reassembly of membrane components.  相似文献   

12.
Functional interaction of the inhibitory GTP regulatory component (Ni) with the adenylate cyclase catalytic subunit has not previously been demonstrated after detergent solubilization. The present report describes a sodium cholate-solubilized preparation of rat cerebral cortical membrane adenylate cyclase that retains guanine nucleotide-mediated inhibition of activity. Methods of membrane preparation, cholate extraction, and assay conditions were manipulated such that guanosine-5'-(beta-gamma-imido)triphosphate [Gpp(NH)p] inhibited basal activity 40-60%. The rank order of potency among various GTP analogs was similar in cholate extracts and in membranes: guanosine-5'-0-(3-thiotriphosphate) greater than Gpp(NH)p greater than GTP. Inclusion of 0.1 mM EGTA reduced basal activity 70-90% and abolished Gpp(NH)p inhibition of basal activity in both membranes and cholate extracts. Forskolin-stimulated activity was also inhibited by Gpp(NH)p. Treatment of either membranes or cholate extracts with N-ethylmaleimide abolished Gpp(NH)p inhibition. Gel filtration of the cholate extract over a Sepharose 6B column in 0.1% Lubrol PX partially resolved the adenylate cyclase components. However, Gpp(NH)p inhibition of basal activity (60% of the control) was maintained in select column fractions. Sucrose gradient centrifugation totally resolved the catalytic subunit from both functional Ni and stimulatory GTP regulatory component (Ns) activities. The sedimentation of functional Ni activity was detected by assaying the ability of sucrose gradient fractions to confer Gpp(NH)p inhibition of the resolved catalytic activity. Labeling of gradient or column fractions with pertussis toxin and [32P]NAD revealed that both the 39,000- and 41,000-dalton substrates comigrated with the functional Ni activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The detergent effects of lysolecithin, Triton X-100, and cholate were compared in the calcium transport ATPase system of sarcoplasmic reticulum. Lysolecithin was found to act as a detergent in releasing the ATPase for subsequent purification, but did not strongly promote exchange of membrane lipid classes. Both Triton and cholate promoted exchange of membrane phospholipid. Higher concentrations of Triton and cholate inhibited the ATPase activity, but the enzyme could be reactivated by addition of phospholipid or fatty acid directly to the mixture. Under these conditions, reactivation depended on the presence of lipid acyl chains, rather than specific head groups. It was also found that Triton could be readily removed from the mixture by passing the enzyme through a hydrophobic bead column. Calcium transport was reactivated in the resulting membranes.  相似文献   

14.
Synaptic membranes from rat spinal cord were solubilized in the presence of 2% sodium cholate, phospholipids and 15% ammonium sulphate. The soluble extract was incorporated into liposomes consisting of asolectin and crude rat brain lipids. Reconstitution of the functional transporter protein was achieved by removal of detergent by gel filtration. Several parameters proved to be important for optimal reconstitution efficiency: (a) the lipid composition of the liposomes, (b) the type of detergent, and (c) the phospholipid/protein and detergent/protein ratio during reconstitution. In the reconstituted system, the transport of glycine showed a specific activity about twice that of native vesicles. The ionic dependence of the transport, the inhibitory effect of nigericin in the presence of external sodium and the stimulatory effect of valinomycin in the presence of internal potassium on glycine transport were preserved and more clearly observed in the reconstituted system. These results indicate that, in this preparation, the glycine transporter protein retains the same features displayed in the synaptic plasma membrane vesicles, namely dependence on sodium and chloride, electrogenicity and inhibitor sensitivity.  相似文献   

15.
Two procedures have been developed for the solubilization of vitamin K epoxide reductase from rat liver microsomal membranes using the detergent Deriphat 160 at pH 10.8. The methods are applicable to both normal and Warfarin-resistant-strain rat liver microsomes and yield material suitable for further purification. The preparations retain dithiothreitol-dependent vitamin K quinone reductase activity as well as vitamin K epoxide reductase and are free of vitamin K-dependent carboxylase and epoxidase activities. Optimal epoxide reductase activity is obtained at 0.1 M KCl and pH 9 in the presence of sodium cholate. Artifactual formation of vitamin K metabolites was eliminated through the use of mercuric chloride to remove excess dithiothreitol prior to extraction and metabolite assay. Using the solubilized enzyme, valid initial velocities were measured, and reproducible kinetic data was obtained. The substrate initial velocity patterns were determined and are consistent with a ping-pong kinetic mechanism. The kinetic parameters obtained are a function of the cholate concentration, but do not vary drastically from those obtained using intact microsomal membranes. At 0.8% cholate, the enzymes solubilized from normal Warfarin-sensitive- and Warfarin-resistant-strain rat livers exhibit respective values of Vmax = 3 and 0.75 nmol/min/g liver; Km for vitamin K epoxide = 9 and 4 microM; and Km for dithiothreitol of 0.6 and 0.16 mM.  相似文献   

16.
Membrane protein(s) responsible for the active transport of calcium in membrane vesicles from Mycobacterium phlei have been solubilized from membranes by sodium cholate treatment and partially purified using a hydrophobic resin. Reconstitution of calcium transport was demonstrated by reconstitution of detergent extracted membranes with the partially purified protein. The uptake of calcium in the reconstituted system was sensitive to proton-conducting uncouplers. Liposomes prepared with partially purified calcium translocating protein were capable of accumulating calcium. The uptake of calcium in this system occurred as a result of an artificial proton gradient generated by the reduction of entrapped ferricyanide with ascorbate-benzoquinone serving as a hydrogen carrier. The addition of the ionophore A23187 caused efflux of accumulated calcium in both native and proteoliposomal-reconstituted system.  相似文献   

17.
Thin sectioning and freeze-fracture electron microscopy have been used to show that it is possible to obtain topologically closed vesicles by means of reconstitution of rat liver microsomal membrane "ghosts." The reconstitution by 15 hr dialysis resulted in the formation of vesicles with intramembrane particles (IMP) while after 40 hr dialysis no IMP were observed in the membranes. The protein/lipid ratio and functional activity of NADPH- and NADH-linked enzyme systems were similar in both cases. Cytochrome P-450 (LM2) was incorporated into liposomes of different composition (protein: lipid ratio--1:200). IMP were observed only when the incorporation of cytochrome P-450 was performed in the presence of detergent Emulgen 913 as specific additive to the initial protein-lipid-sodium cholate mixture or in the course of incubation of proteoliposomal suspensions at 37 degrees C. After the incorporation of cytochrome b5 into azolectin liposomes vesicular membranes contain IMP if the incorporated membrane protein: lipid ratio is at least 1:50. Pronase-induced splitting off of a 11 kDa heme-containing fragment of cytochrome b5 did not affect IMP content. The conditions of IMP formation in reconstituted membranes and in microsomal ghosts are discussed.  相似文献   

18.
Rat pheochromocytoma PC 12 cell membranes were shown to possess A2-like adenosine binding sites as assessed by using 5'-N-ethylcarboxamide[3H]adenosine [( 3H]NECA). Specific [3H]NECA binding to PC 12 cell membrane at 0 degrees C was saturable and showed a monophasic saturation profile. In contrast, [3H]NECA binding to PC 12 cell membrane at 30 degrees C exhibited a biphasic profile suggesting the presence of two specific binding site. The rank order of potency for inhibition of [3H]NECA binding at 0 degrees C was NECA greater than 2-chloroadenosine greater than 2',5'-dideoxyadenosine greater than isobutylmethylxanthine much greater than phenylisopropyladenosine. These adenosine binding sites were solubilized with sodium cholate and the solubilized portion retained the same ligand binding characteristics as those of the membrane-bound form. Gel filtration experiments indicated an apparent Stokes radius of 6.7 nm for these adenosine binding sites/detergent complexes.  相似文献   

19.
The basolateral membrane of the thick ascending loop of Henle (TALH) of the mammalian kidney is characterized by its high content of Na+/K(+)-ATPase and a Cl- conductance, which function in parallel in salt reabsorption. In order to reconstitute the Cl- channels, TALH membrane vesicles were solubilized in 1% sodium cholate in buffer containing 200 mM KCl, followed by dilution with soybean lipids (final ratio of protein/detergent/lipid of 1:3:15 in mg) and removal of the detergent by gel filtration on Sephadex G-50. Cl- channel activity in the liposomes was determined by a 36Cl- uptake assay where the accumulation of the radioactive tracer against its chemical gradient is driven by the membrane potential (positive inside) generated by an outward Cl- gradient. The 36Cl- uptake by the KCl-loaded liposomes was dependent on the inclusion of membrane protein and was abolished by valinomycin, indicating the involvement of a conductive pathway. It was also inhibited by 36% by 100 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). Solubilization of the Cl- channels in cholate was optimal in the presence of 200 mm KCl, but was found to decrease markedly at low ionic strength. SDS-PAGE analysis of the proteins extracted by cholate at high and low salt concentrations showed that the Cl- channel-containing high KCl extract was enriched in the 96 and 55 kDa alpha- and beta-subunits of the Na+/K(+)-ATPase (the major proteins in the membrane preparation) and several minor protein bands. Treatment of the membrane vesicles with the radioactive analogue of DIDS, [3H]2DIDS, labeled primarily a 65 and a 31 kDa protein. The solubilization of the 31 kDa protein by cholate depended markedly on the ionic strength and thus paralleled the solubilization pattern of Cl- channel activity. Furthermore, the labeling of the 31 kDa protein was prevented by nonradioactive DIDS and by NPPB but not by other compounds, indicating that it may be a Cl- channel component.  相似文献   

20.
Using highly enriched membrane preparations from lactate-grown Saccharomyces cerevisiae cells, the subcellular and submitochondrial location of eight enzymes involved in the biosynthesis of phospholipids was determined. Phosphatidylserine decarboxylase and phosphatidylglycerolphosphate synthase were localized exclusively in the inner mitochondrial membrane, while phosphatidylethanolamine methyltransferase activity was confined to microsomal fractions. The other five enzymes tested in this study were common both to the outer mitochondrial membrane and to microsomes. The transmembrane orientation of the mitochondrial enzymes was investigated by protease digestion of intact mitochondria and of outside-out sealed vesicles of the outer mitochondrial membrane. Glycerolphosphate acyltransferase, phosphatidylinositol synthase, and phosphatidylserine synthase were exposed at the cytosolic surface of the outer mitochondrial membrane. Cholinephosphotransferase was apparently located at the inner aspect or within the outer mitochondrial membrane. Phosphatidate cytidylyltransferase was localized in the endoplasmic reticulum, on the cytoplasmic side of the outer mitochondrial membrane, and in the inner mitochondrial membrane. Inner membrane activity of this enzyme constituted 80% of total mitochondrial activity; inactivation by trypsin digestion was observed only after preincubation of membranes with detergent (0.1% Triton X-100). Total activity of those enzymes that are common to mitochondria and the endoplasmic reticulum was about equally distributed between the two organelles. Data concerning susceptibility to various inhibitors, heat sensitivity, and the pH optima indicate that there is a close similarity of the mitochondrial and microsomal enzymes that catalyze the same reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号