首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Battery energy storage systems (BESS) are expected to fulfill a crucial role in the renewable energy systems of the future. Within current regulatory frameworks, assessing the sustainability as well as the social risks for BESS should be considered. In this research we conducted a social life cycle assessment (S-LCA) of two BESS: the vanadium redox flow battery (VRFB) and the lithium-ion battery (LIB). The S-LCA was conducted based on the guidelines set by UNEP/SETAC and using the PSILCA v.3 database. It was found that most social risks related to the life cycle of the batteries are associated with the raw material extraction stage, while sectors related to chemicals also entail considerable risks. Workers are the stakeholder group affected most. These results apply to supply chains located in both China and Germany, but risks were lower for similar supply chains in Germany. An LIB with a nickel manganese cobalt oxide cathode is associated with considerably larger risks compared to a LIB with lithium manganese oxide cathode. For a VRFB life cycle with an increased vanadium price, the social risks were higher than those of the VRFB supply chain with a regular vanadium price. Our paper shows that S-LCA through the PSILCA database can provide interesting insights into the potential social risks associated with a certain product's life cycle. Generalizations of the results are not recommended, and one should be careful with assessments for technologies that have not yet matured due to the cost sensitivity of the methodology.  相似文献   

2.
In recent years, traceability systems have been developed as effective tools for improving the transparency of supply chains, thereby guaranteeing the quality and safety of food products. In this study, we proposed a cattle/beef supply chain traceability model and a traceability system based on radio frequency identification (RFID) technology and the EPCglobal network. First of all, the transformations of traceability units were defined and analyzed throughout the cattle/beef chain. Secondly, we described the internal and external traceability information acquisition, transformation, and transmission processes throughout the beef supply chain in detail, and explained a methodology for modeling traceability information using the electronic product code information service (EPCIS) framework. Then, the traceability system was implemented based on Fosstrak and FreePastry software packages, and animal ear tag code and electronic product code (EPC) were employed to identify traceability units. Finally, a cattle/beef supply chain included breeding business, slaughter and processing business, distribution business and sales outlet was used as a case study to evaluate the beef supply chain traceability system. The results demonstrated that the major advantages of the traceability system are the effective sharing of information among business and the gapless traceability of the cattle/beef supply chain.  相似文献   

3.
The benefits of genetic engineering of crop plants to improve the reliability and quality of the world food supply have been contrasted with public concerns raised about the food safety of the resulting products. Debates have concentrated on the possible unforeseen risks associated with the accumulation of new metabolites in crop plants that may contribute to toxins, allergens and genetic hazards in the human diet. This review examines the various molecular and biochemical mechanisms by which new hazards may appear in foods as a direct consequence of genetic engineering in crop plants. Such hazards may arise from the expression products of the inserted genes, secondary or pleiotropic effects of transgene expression, and random insertional mutagenic effects resulting from transgene integration into plant genomes. However, when traditional plant breeding is evaluated in the same context, these mechanisms are no different from those that have been widely accepted from the past use of new cultivars in agriculture. The risks associated with the introduction of new genes via genetic engineering must be considered alongside the common breeding practice of introgressing large fragments of chromatin from related wild species into crop cultivars. The large proportion of such introgressed DNA involves genes of unknown function linked to the trait of interest such as pest or disease resistance. In this context, the potential risks of introducing new food hazards from the applications of genetic engineering are no different from the risks that might be anticipated from genetic manipulation of crops via traditional breeding. In many respects, the precise manner in which genetic engineering can control the nature and expression of the transferred DNA offers greater confidence for producing the desired outcome compared with traditional breeding.  相似文献   

4.
Sustainability assessment of food supply chains is relevant for global sustainable development. A framework is proposed for analysing fishfood (fish products for direct human consumption) supply chains with local or international scopes. It combines a material flow model (including an ecosystem dimension) of the supply chains, calculation of sustainability indicators (environmental, socio-economic, nutritional), and finally multi-criteria comparison of alternative supply chains (e.g. fates of landed fish) and future exploitation scenarios. The Peruvian anchoveta fishery is the starting point for various local and global supply chains, especially via reduction of anchoveta into fishmeal and oil, used worldwide as a key input in livestock and fish feeds. The Peruvian anchoveta supply chains are described, and the proposed methodology is used to model them. Three scenarios were explored: status quo of fish exploitation (Scenario 1), increase in anchoveta landings for food (Scenario 2), and radical decrease in total anchoveta landings to allow other fish stocks to prosper (Scenario 3). It was found that Scenario 2 provided the best balance of sustainability improvements among the three scenarios, but further refinement of the assessment is recommended. In the long term, the best opportunities for improving the environmental and socio-economic performance of Peruvian fisheries are related to sustainability-improving management and policy changes affecting the reduction industry. Our approach provides the tools and quantitative results to identify these best improvement opportunities.  相似文献   

5.
Reviews in Fish Biology and Fisheries - Demand for seafood products is increasing worldwide, contributing to ever more complex supply chains and posing challenges to trace their origin and...  相似文献   

6.

Purpose  

Carbon footprints (CF) provide companies, customers, and other agents with information related to greenhouse gas (GHG) emissions from the life cycle of products, identifying key points in the supply chain, potential risks, and opportunities of improvement. This paper briefly examines how the method composed of financial statements (MC3) (MC3, as coined from the name of the method in Spanish, i.e., método compuesto de las cuentas contables.) approaches to specific requirements related to the assessment of product GHG emissions, pointing out the contribution of this method to assessing and communicating the carbon footprint of products.  相似文献   

7.
Life cycle assessment (LCA) and urban metabolism (UM) are popular approaches for urban system environmental assessment. However, both approaches have challenges when used across spatial scales. LCA tends to decompose systemic information into micro‐level functional units that mask complexity and purpose, whereas UM typically equates aggregated material and energy flows with impacts and is not ideal for revealing the mechanisms or alternatives available to reduce systemic environmental risks. This study explores the value of integrating UM with LCA, using vehicle transportation in the Phoenix metropolitan area as an illustrative case study. Where other studies have focused on the use of LCA providing upstream supply‐chain impacts for UM, we assert that the broader value of the integrated approach is in (1) the ability to cross scales (from micro to macro) in environmental assessment and (2) establishing an analysis that captures function and complexity in urban systems. The results for Phoenix show the complexity in resource supply chains and critical infrastructure services, how impacts accrue well beyond geopolitical boundaries where activities occur, and potential system vulnerabilities.  相似文献   

8.
Purpose

Access, affordability and sustainability of raw material supply chains are crucial to the sustainable development of the European Union (EU) for both society and economy. The study investigates whether and how the social life cycle assessment (S-LCA) methodology can support responsible sourcing of raw materials in Europe. The potential of social indicators already available in an S-LCA database is tested for the development of new metrics to monitor social risks in raw material industries at EU policy level.

Methods

The Product Social Impact Life Cycle Assessment (PSILCA) database was identified as a data and indicators source to assess social risks in raw material industries in EU-28 and extra-EU countries. Six raw material country sectors in the scope of the European policy on raw materials were identified and aggregated among those available in PSILCA. The selection of indicators for the assessment was based on the RACER (Relevance, Acceptance, Credibility, Ease, Robustness) analysis, leading to the proposal of 9 social impact categories. An S-LCA of the selected raw material industries was, thus, performed for the EU-28 region, followed by a contribution analysis to detect direct and indirect impacts and investigate related supply chains. Finally, the social performance of raw material sectors in EU-28 was compared with that of six extra-EU countries.

Results and discussion

Considering the overall social risks in raw material industries, “Corruption”, “Fair salary”, “Health and safety” and “Freedom of association and collective bargaining” emerged as the most significant categories both in EU and extra-EU. EU-28 shows an above-average performance where the only exception is represented by the mining and quarrying sector. An investigation of the most contributing processes to social impact categories for EU-28 led to the identification of important risks originating in the supply chain and in extra-EU areas. Therefore, the S-LCA methodology confirmed the potential of a life cycle perspective to detect burdens shifting and trade-offs. However, only a limited view on the sectoral social performance could be obtained from the research due to a lack of social data.

Conclusions

The S-LCA methodology and indicators appear appropriate to perform an initial social sustainability screening, thus enabling the identification of hotspots in raw material supply chains and the prioritization of areas of action in EU policies. Further methodological developments in the S-LCA field are necessary to make the approach proposed in the paper fully adequate to support EU policies on raw materials.

  相似文献   

9.

Purpose

In life cycle assessment (LCA), resource availability is currently evaluated by means of models based on depletion time, surplus energy, etc. Economic aspects influencing the security of supply and affecting availability of resources for human use are neglected. The aim of this work is the development of a new model for the assessment of resource provision capability from an economic angle, complementing existing LCA models. The inclusion of criteria affecting the economic system enables an identification of potential supply risks associated with resource use. In step with actual practice, such an assessment provides added value compared to conventional (environmental) resource assessment within LCA. Analysis of resource availability including economic information is of major importance to sustain industrial production.

Methods

New impact categories and characterization models are developed for the assessment of economic resource availability based on existing LCA methodology and terminology. A single score result can be calculated providing information about the economic resource scarcity potential (ESP) of different resources. Based on a life cycle perspective, the supply risk associated with resource use can be assessed, and bottlenecks within the supply chain can be identified. The analysis can be conducted in connection with existing LCA procedures and in line with current resource assessment practice and facilitates easy implementation on an organizational level.

Results and discussion

A portfolio of 17 metals is assessed based on different impact categories. Different impact factors are calculated, enabling identification of high-risk metals. Furthermore, a comparison of ESP and abiotic depletion potential (ADP) is conducted. Availability of resources differs significantly when economic aspects are taken into account in addition to geologic availability. Resources assumed uncritical based on ADP results, such as rare earths, turn out to be associated with high supply risks.

Conclusions

The model developed in this work allows for a more realistic assessment of resource availability beyond geologic finiteness. The new impact categories provide organizations with a practical measure to identify supply risks associated with resources. The assessment delivers a basis for developing appropriate mitigation measures and for increasing resilience towards supply disruptions. By including an economic dimension into resource availability assessment, a contribution towards life cycle sustainability assessment (LCSA) is achieved.  相似文献   

10.
This article reports on research toward a pragmatic and credible means for analyzing, mapping, and managing environmental impacts along supply chains. The results of this research include a management tool called "ecological supply chain analysis" (EcoSCAn) that is presented here for the first time. Its structure bears a passing resemblance to that used in some streamlined life-cycle assessments, but its operation and purpose are quite different. The EcoSCAn tool frames a comparative environmental analysis of products capable of performing broadly equivalent functions. The analysis occurs over complete extended supply chains and within defined supply chain stages at a product level and, to some extent, at a site level. The results are mapped with data confidence indicators. A range of tactical and, where data quality is sufficient, strategic supply chain actions are prompted. Actions to mitigate environmental stress are possible in the absence of good quality data across entire product life cycles, although the extent to which management actions are limited is made plain.  相似文献   

11.
Although fields such as industrial ecology have advanced our understanding of how cleaner technologies, recycling, and lifestyle changes can reduce the impacts of production and consumption on people and planet, environmental deterioration and social injustices stubbornly persist. New strategies are needed to achieve change in an era of increasing urgency. This paper proposes that academics study the supply chains of individual corporations and link them to environmental and social impacts in geographically specific areas. Nongovernmental organizations (NGOs) have used this approach successfully, issuing reports about corporate activity related to deforestation, sweatshops, and other issues of social concern. But academics, by and large, have studied generic products, industries, and sectors. To verify this, after reviewing approximately 11,000 studies on supply chains, we identified just 27 academic papers that focused on individual corporations. These were primarily by NGOs and social scientists, with no studies by industrial ecologists meeting our review criteria. To uncover corporate supply chains, researchers used two distinct methodological approaches: in situ (interviews, surveys, and surveillance) and ex situ (trade data, document analysis, and maps). In this paper, we explain why and how academics should study the supply chains of individual corporations. This is done by combining approaches from industrial ecology, with those from geography, sociology, and other social sciences to develop a political‐industrial ecology of supply chains. This both physically links actual product flows with their environmental impacts, and explores how they affect justice, equity, and welfare. The work we propose offers clear collaborative linkages with NGOs, industry, and the media.  相似文献   

12.
Diminishing fossil carbon resources, global warming, and increasing material and energy needs urge for the rapid development of a bioeconomy. Biomass feedstock from agro‐industrial value chains provides opportunities for energy and material production, potentially leading to competition with traditional food and feed production. Simulation and optimization models can support the evaluation of biomass value chains and identify bioeconomy development paths, potentials, opportunities, and risks. This study presents the linkage of a farm model (EFEM) and a techno‐economic location optimization model (BIOLOCATE) for evaluating the straw‐to‐energy and the innovative straw‐to‐chemical value chains in the German federal state of Baden‐Wuerttemberg taking into account the spatially distributed and price‐sensitive nature of straw supply. The general results reveal the basic trade‐off between economies of scale of the energy production plants and the biorefineries on the one hand and the feedstock supply costs on the other hand. The results of the farm model highlight the competition for land between traditional agricultural biomass utilization such as food and feed and innovative biomass‐to‐energy and biomass‐to‐chemical value chains. Additionally, farm‐modeling scenarios illustrate the effect of farm specialization and regional differences on straw supply for biomass value chains as well as the effect of high straw prices on crop choices. The technological modeling results show that straw combustion could cover approximately 2% of Baden‐Wuerttemberg's gross electricity consumption and approximately 35% of the district heating consumption. The lignocellulose biorefinery location and size are affected by the price sensitivity of the straw supply and are only profitable for high output prices of organosolv lignin. The location optimization results illustrate that economic and political framework conditions affect the regional distribution of biomass straw conversion plants, thus favoring decentralized value chain structures in contrast to technological economies of scale.  相似文献   

13.
Flexibility of supply and demand is essential for successful implementation of a mass customization strategy that delivers sustained competitive advantage. Supply flexibility, i.e., a choice of alternative products designed to perform the same basic function, is made possible by the range of capabilities available in flexible and agile manufacturing systems and in supply chains. Demand flexibility is derived from the degree to which a customer is willing to compromise on product features or performance levels in order to meet budgetary (reflected in price) or schedule (reflected in delivery) constraints. Flexibility of both supply and demand can have significant strategic and financial value if they are properly aligned. However, customers are mostly unaware of mapping of demand flexibility on to supply flexibility and its impact on production cost and time. Recent advances in information technology have made it possible to co-design a product that involves customer on one end and the manufacturer on the other. This creates an aura and an opportunity where a middle ground between the supply and demand flexibility can be explored and a “deal” can be struck where both parties settle for a product that is beneficial to both through a negotiated settlement. In this paper, we develop a framework for such negotiations. The customer requirements are treated as a range of negotiable options instead of a set of fixed inputs. Demand and supply for customization is then matched by aligning the flexibility of manufacturing systems with customers’ requirement options. Based on this framework, a negotiation scheme is developed to assist customers and manufacturers in exploring and utilizing demand and supply flexibility information in co-design. The negotiation scheme is formulated using goal programming. Finally, an interactive problem-solving procedure is developed and implemented with an illustrative example.  相似文献   

14.
In this study, we present an analysis of the average wages paid for producing direct and indirect imports of nations using employment and income footprints. An employment footprint includes a country's domestic employment and that occurring along the supply chains of, and hence embodied in, its imported goods and services. Our results allow us to group the world's nations into “masters” that enjoy a lifestyle supported by workers in other countries and “servants” that support the lifestyle of master countries. We show that, in 2010, employment footprints of countries differed substantially from their own workforce footprints. Hong Kong, Singapore, the United Arab Emirates, and Switzerland occupy the top‐ranking positions of master countries, whereas many African and Asian countries are servants. Our findings show that the commodities that are “servant intensive,” such as electronics, agricultural products, and chemicals, tend to have complex supply chains often originating in third‐world countries. The quantification of these master‐servant relationships and the exposing of implicated supply chains could be of benefit to those concerned with their corporate social responsibility and committed to fairer trading or those developing policy around fair globalization.  相似文献   

15.
To date the most common measures of environmental performance used to compare industries, and by extension firms or facilities, have been quantity of pollution emitted or hazardous waste generated. Discharge information, however, does not necessarily capture potential health effects. We propose an alternative environmental performance measure that includes the public health risks of toxic air emissions extended to industry supply chains using economic input-output life-cycle assessment. Cancer risk to the U.S. population was determined by applying a damage function to the Toxic Release Inventory (TRI) as modeled by CalTOX, a multimedia multipathway fate and exposure model. Risks were then translated into social costs using cancer willingness to pay. For a baseline emissions year of 1998, 260 excess cancer cases were calculated for 116 TRI chemicals, dominated by ingestion risk from polycyclic aromatic compounds and dioxins emitted by the primary aluminum and cement industries, respectively. The direct emissions of a small number of industry sectors account for most of the U.S. population cancer risk. For the majority of industry sectors, however, cancer risk per $1 million output is associated with supply chain upstream emissions. Ranking industries by total (direct + upstream) supply chain risk per economic output leads to different conclusions about the relative hazards associated with these industries than a conventional ranking based on emissions per economic output.  相似文献   

16.
Flexible Services and Manufacturing Journal - We explore the value of information sharing for smoothing the dynamics of supply chains when some echelons do not collaborate. To this end, we study...  相似文献   

17.
In global industry supply chains, environmental sustainability optimization addresses the overall consumption of resources and energy, the reduction of carbon emissions and generated waste to name a few. In the second part of this paper, we apply the sustainability optimization framework developed in part 1 to the European automotive industry supply chain. Numerical experiments based on empirical industry data show the impact of optimization strategies on overall costs and emissions in the industry and the possible long-term development of the industry supply chain including the relocation of production capacities, the choice of transportation modes and the potential change towards lower emission products such as electric vehicles. In addition we demonstrate how the novel optimization strategy of minimizing the time-to-sustainability is applied and how it creates transparency of the feasibility of different sustainability targets, e.g. reduction targets for greenhouse gas emissions. Specifically, the minimum time is determined the industry would need to achieve the pre-defined targets. Related optimization results create new insights and provide decision support for policymakers and industry in developing sustainability strategies and specific targets.  相似文献   

18.
This article presents the ecological supply chain (ESC) model and demonstrates its benefits. The causes that make an ESC vulnerable to disruption risks are analyzed; the objective is to balance the cost and the disruption risk. Also, it provides supply management strategies, demand management strategies, product management strategies, and information management strategies. Practice in China is reviewed. Based on exergoeconomics theory, the ESC is regarded as a huge energy system providing new perspective. The sustainability of the ESC system is discussed under the circumstances of exergoeconomics. The metric of “system negative environment effect” is introduced to measure ESC system performance. Finally, a real case example is used to illustrate the models and get some conclusions.  相似文献   

19.
The products of the self-incompatibility locus of flowering plants are glycoproteins. The specificity of different alleles at this locus might be expressed through differences in either amino acid sequences or by the glycan substituents. We have investigated the numbers of N-linked glycan chains on the S-glycoproteins and obtained information on their structure by enzymic cleavage with N-glycanase and endo-[beta]-N-acetylglucosaminidase H. In addition to there being variation in the numbers of chains on the S-glycoproteins, each glycoprotein appears to consist of a spectrum of "glycoforms" bearing chains of differing type and fine structure. This microheterogeneity in N-linked glycan chains may be functionally significant.  相似文献   

20.
Given the fast-growing demand for electric mobility, the European Union (EU) has invested in responsible sourcing of battery raw materials, but the sustainability of their value chains is not fully addressed. Life cycle sustainability assessment is a tool to identify social, economic, and environmental aspects of raw materials, but it is mostly used for negative impacts, whereas the supply and use of raw materials may also lead to benefits. The Sustainable Development Goals (SDGs) can help to determine how raw materials boost or hinder the achievement of a sustainable society. In this study, the SDGs were used as a reference to assess contributions and risks of cobalt supply for electric mobility in the EU and whether this technology supports the achievement of the SDGs. The risks were determined using eight indicators focused on social risks, but environmental aspects like water quality and usage, and greenhouse gas emissions were also considered. The literature and databases were consulted to identify which SDGs receive contributions or burdens. Global and European cobalt supply scenarios were defined, considering the most representative countries. Results indicate that, although some SDGs receive positive contributions, like SDG 8 (Decent work and economic growth) and SDG 13 (Climate action), most of the identified correlations are negative, especially for SDG 3 (Good health and well-being) and SDG 16 (Peace, justice, and strong institutions). The European scenario has a low risk toward socio-environmental issues in 53% of the assessed aspects, whereas the global scenario presents a high risk in 47% of them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号