首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Body size is often associated with a dietary divergence within taxonomically related groups so that large animals are often folivorous, while smaller species shift progressively towards omnivory or carnivory. This trend may be influenced by allometric constrains which result in relatively high energetic requirements, but low gut capacities in small animals, compared to their large counterparts. The common brushtail possum (Trichosurus vulpecula, Phalangeridae) has six subspecies ranging widely in weight (1–4 kg). They are not strictly folivorous, but supplement their diet with more nutritious, non‐foliar foods. We predicted that T. vulpecula subspecies diverged in diet in association with body size, with smaller subspecies consuming higher proportions of non‐foliar foods. We assessed this with a review and a meta‐analysis of previous Australian studies. We also investigated the previously unquantified diet of T. v. hypoleucus at three sites in the northern jarrah forest of Western Australia. Results from the meta‐analysis and the review supported our prediction. However, the large variability in the data highlighted their limitations and those of the techniques commonly used to quantify the diet of T. vulpecula. Nonetheless, small subspecies of T. vulpecula appear to consume higher proportions of non‐foliar foods. These results should encourage further research into the body size/diet relationship within T. vulpecula and other possum species. Results from the dietary study of T. v. hypoleucus emphasized their omnivorous diet, which was dominated by foliage and flowers and smaller proportions of invertebrates, seeds and fruits. The common brushtail possum is seldom an exclusive arboreal folivore, but rather ranges from folivory to omnivory.  相似文献   

3.
Three proteins have been identified in the milk of the common brush tail possum, Trichosurus vulpecula that from sequence analysis are members of the lipocalin family. They include β-lactoglobulin, which appears to have two forms; a homologue to the late-lactation protein found in tammar, Macropus eugenii; milk; and a novel protein termed trichosurin. Whereas β-lactoglobulin and trichosurin are both expressed throughout lactation, the late-lactation protein is not detected in samples taken before days 100–110 of lactation. The cDNAs encoding each of these proteins have been isolated from cDNA libraries prepared using possum mammary mRNA and sequenced. Phylogenetic analysis showed that the T. vulpeculaβ-lactoglobulin, along with two other macropod β-lactoglobulins, forms a subclass of β-lactoglobulins distinct from those for eutherian mammals; both marsupial late-lactation proteins appear to have similarities to a family of odorant-binding proteins, whereas trichosurin has similarities to the major urinary proteins of rodents. Received: 28 October 1996 / Accepted: 19 May 1997  相似文献   

4.
The 3.5-day-old blastocyst-stage mouse embryo consists of two tissues and contains approximately 60 cells. This tiny structure has now been observed to express nearly 600 genes in a sex-specific fashion, including at least one gene (Rhox/Pem) expressed only in females from their paternal X chromosome.  相似文献   

5.
Cytogenetic studies have shown that bandicoots (family Peramelidae) eliminate one X chromosome in females and the Y chromosome in males from some somatic tissues at different stages during development. The discovery of a polymorphism for X-linked phosphoglycerate kinase (PGK-1) in a population of Isoodon obesulus from Mount Gambier, South Australia, has allowed us to answer a number of long standing questions relating to the parental source of the eliminated X chromosome, X chromosome inactivation and reactivation in somatic and germ cells of female bandicoots. We have found no evidence of paternal PGK-1 allele expression in a wide range of somatic tissues and cell types from known female heterozygotes. We conclude that paternal X chromosome inactivation occurs in bandicoots as in other marsupial groups and that it is the paternally derived X chromosome that is eliminated from some cell types of females. The absence of PGK-1 paternal activity in somatic cells allowed us to examine the state of X chromosome activity in germ cells. Electrophoresis of germ cells from different aged pouch young heterozygotes showed only maternal allele expression in oogonia whereas an additional paternally derived band was observed in pre-dictyate oocytes. We conclude that reactivation of the inactive X chromosome occurs around the onset of meiosis in female bandicoots. As in other mammals, late replication is a common feature of the Y chromosome in male and the inactive X chromosome in female bandicoots. The basis of sex chromosome loss is still not known; however later timing of DNA synthesis is involved. Our finding that the paternally derived X chromosome is eliminated in females suggests that late DNA replication may provide the imprint for paternal X inactivation and the elimination of sex chromosomes in bandicoots.  相似文献   

6.
7.
Summary Cell lines have been developed from several species of Australian marsupials and studied during long-term growth. Cell lines developed from macropodid skin or heart tissues all had reproducible finite life-spans. However, cell lines developed from dasyurids showed variable behavior in culture: lines developed fromAntechinus stuartii andDasyurus viverrinus had finite life-spans, while lines developed fromSminthopsis crassicaudata had indefinite life-spans.S. crassicaudata lines usually became heteroploid, but one was still diploid after 150 population doublings, while another contained a proportion (10%) of haploid cells. Other lines were developed from the peramelid,Perameles nasuta, and the phalangerid,Trichosurus vulpecula.  相似文献   

8.
P. J. Sharp  D. L. Hayman 《Genetica》1985,66(2):145-150
Chiasma frequency in spermatocytes was found to show extensive variation between individual males from a natural population of the marsupial Trichosurus vulpecula. Two factors which might contribute to the observed variation were investigated; season and age. However, neither of these had any significant effect on chiasma frequency or chiasma frequency variation.  相似文献   

9.
Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 22 X-linked genes, including XIST, using 27 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this analysis indicated heterogeneous maintenance of gene silencing along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals.  相似文献   

10.
11.
Plant resistance to herbivores can be influenced not only by the independent effects of plant genotype and environmental variation, but by interactions between the two. The main aim of this study was to assess the effects of environmental variability (nutrient treatment) on the known genetic-based expression of resistance and defensive chemistry of Eucalyptus globulus to browsing by the generalist mammalian herbivore Trichosurus vulpecula. In a captive feeding trial, we measured intake of seedlings from one relatively resistant (Blue Gum Hill) and one relatively susceptible (St Helens) population of E. globulus grown under two nutrient treatments (no fertiliser, plus fertiliser). There was a significant genotype×fertiliser interaction effect on intake of E. globulus foliage by T. vulpecula, and the predicted genetic-based resistance of the two populations was expressed only for the non-fertilised treatment. Expression of resistance largely reflected the combined and inverse effects of nitrogen and condensed tannin concentrations. The expression of plant secondary metabolite concentration differed between compounds, but in all cases the effects of plant genotype and fertiliser treatment were independent. The formylated phloroglucinol compounds differed significantly between genotypes but not between fertiliser treatments. In contrast, the effect of plant genotype on the expression of condensed tannins was weak but they were significantly reduced by fertiliser. Essential oils were influenced by both plant genotype and fertiliser treatment and were significantly higher in the fertilised seedlings than in the non-fertilised seedlings. This study highlights interactive effects of plant genotype and environment in influencing the phenotypic expression of resistance in a eucalypt species to a mammalian browser. It also demonstrates that this interactive effect is the net result of independent effects of genotype and environment on plant chemistry and finally, that different groups of compounds within a plant can respond very differently to variation in environmental conditions.  相似文献   

12.
In mammalian pregnancy, the uterus is remodeled to become receptive to embryonic implantation. Since non‐invasive placentation in marsupials is likely derived from invasive placentation, and is underpinned by intra‐uterine conflict between mother and embryo, species with non‐invasive placentation may employ a variety of molecular mechanisms to maintain an intact uterine epithelium and to prevent embryonic invasion. Identifying such modifications to the uterine epithelium of marsupial species with non‐invasive placentation is key to understanding how conflict is mediated during pregnancy in different mammalian groups. Desmoglein‐2, involved in maintaining lateral cell–cell adhesion of the uterine epithelium, is redistributed before implantation to facilitate embryo invasion in mammals with invasive placentation. We identified localization patterns of this cell adhesion molecule throughout pregnancy in two marsupial species with non‐invasive placentation, the tammar wallaby (Macropus eugenii; Macropodidae), and the brushtail possum (Trichosurus vulpecula; Phalangeridae). Interestingly, Desmoglein‐2 redistribution also occurs in both M. eugenii and T. vulpecula, suggesting that cell adhesion, and thus integrity of the uterine epithelium, is reduced during implantation regardless of placental type, and may be an important component of uterine remodeling. Desmoglein‐2 also localizes to the mesenchymal stromal cells of M. eugenii and to epithelial cell nuclei in T. vulpecula, suggesting its involvement in cellular processes that are independent of adhesion and may compensate for reduced lateral adhesion in the uterine epithelium. We conclude that non‐invasive placentation in marsupials involves diverse and complementary strategies to maintain an intact epithelial barrier.  相似文献   

13.
Fibroblasts cultured from ear pinna biopsies of Virginia opossums (Didelphis virginiana) and red-necked wallabies (Macropus rufogriseus) were examined electrophoretically to determine the relative expression levels of the maternally and paternally derived alleles at X-linked, enzyme-coding loci. Only the maternally derived allele was expressed at thePgk-A locus in fibroblasts of heterozygousD. virginiana (M. rufogriseus not examined), but fibroblasts of both species exhibited evidence of paternal allele expression a t theGpd locus. Furthermore, the heterozygous G6PD phenotypes in both species were skewed in favor of the maternal gene product, as expected if the paternal allele is only partially (incompletely) expressed. ForM. rufogriseus this result is contrary to a previous finding which suggested equal expression of bothGpd alleles in cultured fibroblasts of this species. The present results suggest that X-linked genes in metatherian fibroblasts are subject to the same kind of determinate, paternal allele inactivation, incomplete at some loci, described previously for X-linked genes in adult tissues and that the pattern of paternal X-linked gene expression in these cells is independent of the patterns in the tissues from which the fibroblasts are derived.The work was supported in part by grants from the National Institutes of Health (Biomedical Research Support Grant RR-05519) and the National Science Foundation (DCB 8516949).  相似文献   

14.
A GFP transgene has been integrated on the proximal part of the mouse X chromosome just distal of Timp and Syn1. During development, this X-linked GFP transgene exhibits widespread green fluorescence throughout the embryonic and adult life of male mice but displays mosaic expression in tissues as a result of X-inactivation in females. In living female embryos, inactivation of the transgene is imprinted in extraembryonic regions and random in the embryo proper, demonstrating that this reporter is behaving in a similar fashion to the majority of X-linked loci, and so provides a vital readout of X chromosome activity. This is observation is further supported in T16H/X female mice harboring the GFP transgene on the normal X chromosome where reporter inactivation is observed in somatic cells. The differential expression of GFP activity facilitates fluorescence activated cell sorting for the purification of GFP+ vs. GFP- cells from female embryonic tissues, thereby allowing access to populations of cells that have kept active a particular X chromosome. By tracking the activity of this X-linked GFP transgene, we discovered that the primary and secondary giant cells of the X/X placenta maintain an active paternal copy of this transgene on the presumed silenced paternal X-chromosome. This finding implies that the imprint on the paternal X chromosome may be relaxed in these trophectodermal derivatives.  相似文献   

15.
Summary The stability of allelic gene expression of X-linked phosphoglycerate kinase was studied in seven carriers of a rare genetic variant named PGK München. The enzymatic activities in erythrocytes of five heterozygous females and three hemizygous males were determined repeatedly over a period of 10 years (1975–1984) and shown to remain constant. As the phosphoglycerate kinase activity is lower in cells expressing the PGK München allele, the ratio of the two cell types in all heterozygous females of the PGK München kindred could be calculated from the PGK activity and from the known allozyme activities in erythrocytes of homozygous wild type or hemizygous PGK München carriers. Since the maternal or paternal origin of both alleles is known from the pedigree, the quantitative expression of the maternally derived allozyme in heterozygous women could be determined. In heterozygous carriers the cell pool expressing the maternally inherited allele was significantly increased, independently, of the PGK allele linked to the maternal X chromosome (P<0.001). Our data show that inactivation of one of the two X chromosomes in human female erythropoietic stem cell precursors may be non-random, at least in the kindred and cell populations described here. The results are discussed in the context of random X chromosome inactivation (Lyon hypothesis).Dedicated to J.S., the senior of the family studied, on the occasion of her 80th birthday  相似文献   

16.
An investigation of genetic variation in the electrophoretic mobility of the enzyme alpha-galactosidase A (EC 3.2.1.22) has been carried out for 33 species of Australian metatherian (marsupial) mammals. The results are compatible with the enzyme being sex-linked in macropodids (kangaroos and wallabies) and probably in dasyurids (marsupial 'mice', etc.), as it is in eutherian (placental) mammals. The results also suggest that the mode of dosage compensation for this locus is the same as for other sex-linked loci in kangaroos, i.e. paternal X inactivation, rather than the random X inactivation system of eutherian mammals. The bearing of the enzyme mobility data on phylogenetic relationships among macropodid species is discussed.  相似文献   

17.
Genetic variants that affect the heat stability and ionic charge of the adult isozyme of glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) map to a gene, Gdc-1, located on chromosome 15. A second isozyme of glycerol-3-phosphate dehydrogenase, structurally homologous to the product of the Gdc-1 locus and expressed predominantly in undifferentiated tissues, has previously been identified. We have now discovered an electrophoretic variant of this embryonic isozyme. This expression is determined by a codominant allele of the gene, Gdc-2, that maps to the distal end of chromosome 9 as inferred from the observed gene order Mpi-1–d-Mod-1–Gdc-2.  相似文献   

18.
Xist regulation and function eXplored   总被引:2,自引:0,他引:2  
Pontier DB  Gribnau J 《Human genetics》2011,130(2):223-236
  相似文献   

19.
Tsix silences Xist through modification of chromatin structure   总被引:5,自引:0,他引:5  
  相似文献   

20.
Summary Electrophoretic profiles of crude protein extracts from seed of F1 hybrids and reciprocal crosses among diploid, tetraploid and hexaploid wheats were compared with those of their respective parental species. The electrophoretic patterns within each of three pairs of reciprocal crosses, T.boeoticum X T.urartu, T.monococcun X T. urartu and T.dicoccum X T. araraticum, were different from one another but were identical with those of their respective maternal parents. Protein bands characteristic of the paternal parents were missing in F1 hybrid seed suggesting that the major seed proteins in wheat were presumably regulated by genotype of the maternal parent rather than by the seed genotype. However, in another three pairs of reciprocal crosses, T.boeoticum X T. durum, T.dicoccum X T.aestivum and T. zhukovskyi x T. aestivum, protein bands attributable to the paternal parents were present in the F1 hybrid seeds indicating that the seed proteins were not always exclusively regulated by the maternal genotype. The expression of paternal genomes is presumably determined by dosage and genetic affinity of the maternal and paternal genomes in the hybrid endosperm. The maternal regulation of seed protein content is probably accomplished through the maternal control over seed size. The seed protein quality may, however, depend upon the extent of expression of the paternal genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号