首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We studied the maternal effect for two enzymes of the pentose cycle, 6-phosphogluconate dehydrogenase (6PGD) and glucose-6-phosphate dehydrogenase (G6PD), using a genetic system based on the interaction of Pgd? and Zw? alleles, which inactivate 6PGD and G6PD, respectively. The presence and formation of the enzymes was investigated in those individuals that had not received the corresponding genes from the mother. We revealed maternal forms of the enzymes, detectable up to the pupal stage. The activities of “maternal” 6PGD and G6PD per individual increased 20-fold to 30-fold from the egg stage to the 3rd larval instar even in the absence of normal Pgd and Zw genes. Immunologic studies have shown that the increase in 6PGD activity is due to an accumulation of the maternal form of the enzyme molecules. We revealed a hybrid isozyme resulting from an aggregation of the subunits of isozymes controlled by the genes of the mother and embryo itself. These results indicate that the maternal effect in the case of 6PGD is due to a long-lived stable mRNA transmitted with the egg cytoplasm and translated during the development of Drosophila melanogaster.  相似文献   

2.
Developmental profiles of the second- and third-chromosome modifiers of the activities of glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) in Drosophila melanogaster were investigated. Third-chromosome modifiers showed very strong effects on both enzyme activities at larval, pupal, and adult stages, whereas second-chromosome effects were detected mainly at larval and adult stages. For both enzyme activities and both chromosomes, the correlation over line means between larval and pupal stages was significantly positive, but the correlation between larval or pupal stage and adult stage was not significant. This result suggests that the actions of modifiers on G6PD and 6PGD activities are influenced by the change of developmental stages. Correlation between G6PD and 6PGD activities was positive and highly significant throughout the developmental stages for both sets of chromosomes, although third-chromosome correlations were slightly higher than second-chromosome correlations. The magnitude of the correlation between G6PD and 6PGD activities does not seem to be influenced by the change of development. Diallel crosses for both sets of chromosomes indicate that the action of activity modifiers is mainly additive for both sets of chromosomes, but dominance effects were detected in some cases in adult males. Significant maternal effects were detected for the third chromosome for both enzyme activities until the pupal stage. The change of the activity modifier action after emergence of the imago and the significant correlation between G6PD and 6PGD activities were also detected for diallel progeny.This work was supported by Public Health Service Grant NIH-GM11546.Paper No. 10211 of the journal series of the North Carolina Agricultural Research Service, Raleigh, North Carolina 27695.  相似文献   

3.
Two X-linked mutations that give rise to overproduction of glucose-6-phosphate dehydrogenase (G6PD) were found among the progenies of isogenic strains which had been subjected to selection for high G6PD activity. Mapping of the high-activity factor in these mutants was carried out using car Zw B sw males of low G6PD activity. As a result, the factor mapped 0.02–0.04 unit to the left of the Zw locus. The amount of the G6PD gene was also quantitated utilizing a cloned G6PD gene as a probe, but no significant difference was found between the mutants and low-G6PD activity flies which shared the same X, second, and third chromosomes with the mutants. These findings are consistent with our notion that the mutations might be regulatory mutations, possibly resulting from the insertion of a novel class of transposable genetic elements.This research was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.  相似文献   

4.
Biochemical properties of esterase 6 in Drosophila melanogaster   总被引:2,自引:0,他引:2  
Biochemical properties of esterase 6 in Drosophila melanogaster were investigated using partially purified preparations from three genotypes, 1/1, 1/2, and 2/2. The molecular weight of the enzyme is estimated to be about 90,000, and treatment with sodium dodecylsulfate cleaves the enzyme into four units with a molecular weight of about 22,000. The activity toward 28 naturally occurring esters was assayed and shown to vary considerably with substrate, the 1/1 preparation having in general higher activity than 1/2 and 2/2, which were very similar. Heat sensitivity, the effect of metal ions, and the effects of the presence or absence of an end product were also studied. The differences demonstrated between allozymes would allow considerable scope, under appropriate conditions, for differential selection to operate between genotypes.Supported in part by an SRC Research Studentship (N.D.D.).  相似文献   

5.
Starch gel electrophoresis of erythrocytes from 1812 Macaca mulatta has unequivocally demonstrated that the 6-phosphogluconate dehydrogenase (6PGD) isozymes are controlled by two autosomal codominant alleles. Limited data on erythrocytes from 89 Macaca speciosa were also consistent with autosomal codominance.This work was supported in part by NIH Grants HD 07835 (WHS) and RR-00167 (Wisconsin Regional Primate Research Center) and by the Research Committee of the UW Graduate School (Project No. 170207).Paper No. 2146 of the Laboratory of Genetics, and Publication No. 16-045 of The Wisconsin Regional Primate Research Center.  相似文献   

6.
The nature and the interconversion of the three multiple forms Adh-5, Adh-4, and Adh-3 of the purified alleloenzymes AdhS, AdhF, and AdhUF from the fruitflyDrosophila melanogaster have been examined. The experiments show that these multiple forms differ from those in crude extracts of flies homozygous at the Adh locus. On electrophoresis in a starch gel containing NAD or NADH, of purified AdhS which consists of the three Adh forms S-5, S-4, and S-3, five enzymatically active zones appear. This contrasts with the single active zone that arises with crude extracts. Of the five zones that appear with purified enzyme, S-5 gives rise to one, while the other four zones come from the two minor forms S-4 and S-3. The occurrence of the three multiple forms Adh-5, Adh-4, and Adh-3 for each of the purified alleloenzymes is considered due to Adh-5 and, in the case of Adh-4 and Adh-3, deamidation of Adh-5, with the Adh-3 fraction also containing some reversible modified Adh-5. Of the labile amides, at least one must be located in the coenzyme binding region with deamidation preventing coenzyme binding. Pure NAD does not convert Adh-5 to Adh-3 and Adh-1. To produce conversion, the presence of either acetone or butanone along with NAD is necessary. Increased amounts of either acetone or butanone result in increased conversion. In contrast to this, none of the carbonyl compounds cyclohexanone, (+)- and (−)-verbenone, acetaldehyde, acrolein, or crotonaldehyde produces conversion. The ketone group binds to the alcohol binding site in the enzyme-NAD complex. Conversion is considered due to the ketone group binding to a nucleophilic amino acid residue and forming a bridge to the C-4 of the nicotinamide moiety of NAD.  相似文献   

7.
We have characterized biochemical effects of Idh GB1 in Drosophila melanogaster. This is a null-activity allele for NADP+-dependent isocitrate dehydrogenase (NADP-IDH) isolated from a natural population. The homozygous mutant strain has 5% of the NADP-IDH specific activity found in controls and less than 24% of the immunologically cross-reacting material (CRM). This mutation maps to 27.2 on the third chromosome, to the right of h. The biochemical phenotype of this mutant strain includes a coordinate reduction in malic enzyme (ME) specific activity and CRM and an increase in specific activity for the pentose-phosphate shunt enzymes, 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase. The K m values for purified NADP-IDH are not different from those found for the purified control enzyme for NADP+ or isocitrate. It is suggested that this allele may represent a cis-acting control mutation for one of at least two loci involved in the production of NADP-IDH in D. melanogaster.Research supported by an Alberta Heritage Foundation for Medical Research Establishment Grant to MMB and a Natural Sciences and Engineering Research Council Operating Grant to JHW.  相似文献   

8.
Adult Drosophila melanogaster flies collected from populations broadly dispersed over ecological and geographic strata of North Carolina, and over a period of 4 years, were analyzed for alcohol dehydrogenase phenotypes by gel electrophoresis. Gene frequencies in spring-summer-fall field collections were remarkably stable over all strata. Two winter collections exhibited contrasting gene frequency changes. In one case the results are interpreted in terms of long-distance migration from Florida, while the other is explicable by assignment of a causal role to environmental factors which accompany the winter season.This investigation was supported in part by NIH Research Grant No. GM11546 from the National Institute of General Medical Sciences and by Contract No. AT-(40-1)-3980 from the United States Atomic Energy Commission.Paper No. 4719 of the Journal Series of the North Carolina Agricultural Experiment Station, Raleigh, North Carolina 27609.  相似文献   

9.
Keeping Drosophila cultures at 28 C results in elimination of all minor multiple ADH bands, thought to be due to conformational change. Thus in diploid and triploid adults heterozygous for the Adh F and Adh Salleles, relative staining intensities are found for the three bands which were in conformity with the assumption that both alleles are equally expressed. Among all polymorphic strains derived from natural Central European and Mediterranean populations, the strain +Tüb is unique in that its Adh Fallele is closely linked to a new recessive lethal factor, named 1(2)Stm. All Adh F 1/AdhF 1 pupae are unable to emerge, and die. The lethal effect is obvious 50 hr earlier by retarded eye, bristle, and body wall pigmentation. Although all pupae of the phenotype F die, Adh F allele frequency scarcely seems to be lowered in this natural population.  相似文献   

10.
The first enzyme (named GTP cyclohydrolase) in the pathway for the biosynthesis of pteridines has been partially purified from extracts of late pupae and young adults of Drosophila melanogaster. This enzyme catalyzes the hydrolytic removal from GTP of carbon 8 as formate and the synthesis of 2-amino-4-hydroxy-6-(d-erythro-1,2,3-trihydroxypropyl)-7,8-dihydropteridine triphosphate (dihydroneopterin triphosphate). Some of the properties of the enzyme are as follows: it functions optimally at pH 7.8 and at 42 C; activity is unaffected by KCl and NaCl, but divalent cations (Mg2+, Mn2+, Zn2+, and Ca2+) are inhibitory; the K m for GTP is 22 m; and the molecular weight is estimated at 345,000 from gel filtration experiments. Of a number of nucleotides tested, only GDP and dGTP were used to any extent as substrate in place of GTP, and these respective compounds were used only 1.8% and 1.5% as well as GTP.This work was supported by research grants from the National Institutes of Health (AM03442) and the National Science Foundation (GB33929).  相似文献   

11.
Abstract The genus Kalimeris with a diagnostic character of short or inconspicuous pappus consists of two sections, Asteromoea and Cordifolium. As a result of 6PGD isozyme analysis, sect, Asteromoea, including 2 × and poly-ploid taxa from 5 × to 8 ×, show similar cytosolic isozyme multiplicity and share a monomorphic locus. The data suggest that gene duplication of polyploid members was derived from a common ancestor. K. miqueliana, belonging to sect. Cordifolium. also possessed a gene duplication in 6PGD, though significant differences were detected in electrophoretic mobility between the sections. The occurrence of gene duplication in East Asian diploid Astereae leaves intact the validity of the allopolyploid-origin hypothesis of n= 9, which was rejected by Gottlieb (1981a) in American Astereae.  相似文献   

12.
13.
Chambers  G. K. 《Biochemical genetics》1984,22(5-6):529-549
Alcohol dehydrogenase has been purified from Drosophila melanogaster lines bearing the Adh F, AdhS, and Adh FCh.D. alleles. Biochemical investigations show that the properties of the purified enzymes are very similar to those of crude enzyme extracts except that the pure enzymes are more heat stable. ADH-FCh.D. resembles ADH-S very closely in specific activity, substrate specificity, and a number of kinetic parameters including limiting values for K m(app.) for ethanol. However, it is considerably more heat stable than either of the two common variants. ADH-F differs from ADH-S and ADH-FCh.D. particularly with regard to the rate of oxidation of secondary alcohols. Atomic absorbtion spectroscopy shows that all three allozymes lack zine or other divalent cations as active-site components. Peptide mapping experiments identify one very active cysteinyl residue; and amide residues in the NAD+ binding domain.  相似文献   

14.
Summary Previous studies examining regulation of synthesis of Glucose-6-Phosphate and 6-Phosphogluconate dehydrogenase in rat liver have focussed on the induction of these enzymes by different diets and some hormones. However, the precise mechanism regulating increases in the activities of these enzymes is unknown and the factors involved remain unidentified. Considering that many of these metabolic conditions occur simultaneously with the increase of some NADPH consuming pathway, in particular fatty acid synthesis, we suggest that the activities of Glucose-6-Phosphate and 6-Phosphogluconate dehydrogenase could be regulated through a mechanism involving changes in the NADPH requirement. Here, we have studied the effect of changes in the flux through different NADPH consuming pathways on the NADPH/NADP ratio and on Glucose-6-Phosphate and 6-Phosphogluconate levels. The results show that: i) an increase in consumption of NADPH, caused by activation of fatty acid synthesis or the detoxification system which consumes NADPH, is paralleled by an increase in levels of these enzymes; ii) when increase in consumption of NADPH is prevented, Glucose-6-Phosphate and 6-Phosphogluconate dehydrogenase levels do not change.Abbreviations G6PDH Glucose-6-Phosphate Dehydrogenase - 6PGDH 6-Phosphogluconate Dehydrogenase - ME Malic Enzyme - NF Nitrofurantoin - CumOOH Cumene Hydroperoxide - t-BHP t-Butyl hydroperoxide - BCNU 1,3,-Bis (2-chloroethyl)-1-nitrosourea - GR Glutathione Dehydrogenase - 2-ME 2-Mercaptoethanol - DTT Dithiothreitol - NADP B-Nicotinamide-Adenine Dinucleotide Phosphate - NADPH B-Nicotinamide-Adenine Dinucleotide Phosphate Reduced - EDTA Ethylenediaminetetraacetic Acid - GSH Glutathione Reduced Form - GSSG Glutathione Oxidized Form  相似文献   

15.
Summary Mother-offspring data for alcohol dehydrogenase genotypes of a vineyard cellar population of D. melanogaster are best explained by a model that allows 21% of females in the population to mate twice with an 83% level of sperm displacement. A population model with multiple mating and sperm displacement is examined theoretically. A formula for the effective population size is derived under this model. Multiple mating increases the effective population size relative to single mating.  相似文献   

16.
An enzyme which has been named biopterin synthase has been discovered in Drosophila melanogaster. This enzyme, which has been purified 200-fold from extracts of Drosophila, catalyzes the conversion of sepiapterin to dihydrobiopterin, or oxidized sepiapterin to biopterin. The K m values for the two substrates are 63 µm for sepiapterin and 10 µm for oxidized sepiapterin. NADPH is required in this enzymatic reaction. An analysis of enzyme activity during development in Drosophila indicates a correlation between enzyme activity and biopterin content at various development stages. Another enzyme, called dihydropterin oxidase, was also discovered and partially purified. This enzyme catalyzes the oxidation of dihydropterin compounds to the corresponding pterin compounds. For example, sepiapterin (a dihydropterin) is oxidized to oxidized sepiapterin in the presence of this enzyme. The only dihydropterin that has been tested that is not a substrate for this enzyme is dihydroneopterin triphosphate, the compound thought to be a precursor for all naturally occurring pterins and dihydropterins. Since the action of dihydropterin oxidase is reduced significantly when the concentration of oxygen is very low, it is likely that this enzyme uses molecular oxygen as the oxidizing agent during the oxidation of dihydropterins. Neither NAD+ or NADP+ is required. In the presence of the two enzymes dihydropterin oxidase and biopterin synthase, sepiapterin is converted to biopterin. However, in the presence of biopterin synthase alone, sepiapterin is converted to dihydrobiopterin.This work was supported by research grants from the National Institutes of Health (AMO3442) and the National Science Foundation (PCM75-19513 AO2).  相似文献   

17.
Glutamate dehydrogenase has been purified to near-homogeneity from mature larvae of Drosophila melanogaster. The enzyme has a molecular weight of 347,000 measured by sucrose gradient sedimentation and 343,000 measured by variable-porosity acrylamide gel electrophoresis. Electrophoresis under denaturing conditions showed that the enzyme consists of six subunits of molecular weight 57,000. The structural gene for GDH has been mapped at 81.7±0.8 on the third chromosome by means of an electrophoretic variant.This work was supported by CNR Contract 76-01961-04.  相似文献   

18.
The Esterase-6 gene locus of Drosophila melanogaster although well-characterized, has not been definitly mapped by in situ hybridization. In this paper, a high resolution in situ hybridization protocol using an avidin/biotinylated-horseradish peroxidase/diaminobenzidine system was adopted to refine the physical map position of the Esterase-6 locus. Clarity of signal, detail of banding pattern and absence of background allowed the assignment of a 1.8 kb cDNA encoding Esterase-6 to three bands within subsections 69 A1–A3 on the left arm of polytene chromosome 3. These data refine earlier deletion mapping and low resolution in situ hybridization results, which assigned Esterase-6 to 69 A1–A5. The potential use of this high resolution in situ hybridization technique in the analysis of the physical organization of the Esterase-6 gene duplication and surrounding region is discussed.  相似文献   

19.
Different homozygous lines of similar genotype with respect to G6pd and 6Pgd were shown to have different enzyme activities for G6PD and 6PGD. Crosses between high and low lines suggested that there were modifying genes present on the autosomes, while others were probably located on the X chromosome. Allelic variation within each electrophoretic class of G6pd and 6Pgd might, however, also have contributed to this variation. An experiment on adaptation to sodium octanoate demonstrated that in adapted flies selection for lower enzyme activity had occurred, which provided further evidence for the existence of genetic differences in activity. Furthermore, a strong positive correlation between the activities of G6PD and 6PGD was found for each genotype. Since no correlation was found between MDH and the two enzymes G6PD and 6PGD, it could be concluded that this correlation was probably rather specific for G6PD and 6PGD. Interaction between genotypes with respect to activity was also found. It was shown that the variation at 6Pgd influenced the activity of G6PD within a genotype. The data are discussed in relation to fitness differences presented in foregoing articles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号