首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Hahn MJ  Yoon SS  Sohn HW  Song HG  Park SH  Kim TJ 《FEBS letters》2000,470(3):350-354
The molecular basis for the modulatory properties of CD99 is not well understood. Treatment of human Jurkat T lymphocytes with anti-CD99 antibody led to activation of three mitogen-activated protein kinase (MAPK) members, ERK, JNK, and p38 MAPK, along with homotypic aggregation. While phosphorylation of ERK and JNK was inhibited by the pretreatment of a PKC inhibitor, bisindolylmaleimide I, activation of p38 MAPK was upregulated by the same pretreatment. The signaling pathways to MAPKs by CD99 engagement were independent of PI-3 kinase, distinguishing from those by CD3 engagement. Among MAPKs, ERK pathway was essential for homotypic aggregation together with intracytoplasmic Ca(2+).  相似文献   

3.
Summary Among the three major mitogen-activated protein kinase (MAPK) cascades—the extracellular signal regulated kinase (ERK) pathway, the c-JUN N-terminal/stress-activated protein kinase (JNK/SAPK) pathway, and the reactivating kinase (p38) pathway—retinoic acid selectively utilizes ERK but not JNK/SAPK or p38 when inducing myeloid differentiation of HL-60 human myeloblastic leukemia cells. Retinoic acid is known to active ERK2. The present data show that the activation is selective for this MAPK pathway. JNK/SAPK or p38 are not activated by retinoic acid. Presumably because it activates relevant signaling pathways including MAPK, the polyoma middle T antigen, as well as certain transformation defective mutants thereof, is known to promote retinoic acid-induced differentiation, although the mechanism of action is not well understood. The present results show that consistent with the selective involvement of ERK2, ectopic expression of either the polyoma middle T antigen or its dl23 mutant, which is defective for PLCγ and PI-3 kinase activation, or the Δ205 mutant, which in addition is also weakened for activation of src-like kinases, caused no enhanced JNK/SAPK or p38 kinase activity that promoted the effects of retinoic acid. However, all three of these polyoma antigens are known to enhance ERK2 activation and promote differentiation induced by retinoic acid. Polyoma-activated MAPK signaling relevant to retinoic acid-induced differentiation is thus restricted to ERK2 and does not involve JNK/SAPK or p38. Taken together, the data indicate that among the three parallel MAPK pathways, retinoic acid-induced HL-60 myeloid differentiation selectively depends on activating ERK but not the other two MAPK pathways, JNK/SAPK or p38, with no apparent cross talk between pathways. Furthermore, the striking ability of polyoma middle T antigens to promote retinoic acid-induced differentiation appears to utilize ERK, but not JNK/SPK or p38 signaling.  相似文献   

4.
One important mechanism cytotoxic T lymphocytes use to kill target cells is exocytosis of lytic granules that contain cytotoxic agents such as perforin and granzyme. Ca(2+) influx and activation of protein kinase C have been known for many years to be key signals for granule exocytosis. Recent work has suggested that activation of extracellular signal-regulated kinases (ERK), members of the mitogen-activated protein kinase (MAP kinase) family, may be a third required signal. We surmised that the involvement of ERK in lytic granule exocytosis could be mediated through cross-talk with Ca(2+) influx, rather than constituting an independent signal. We tested this idea using TALL-104 human leukemic CTLs as a model system and discovered the following. 1) ERK inhibition caused a modest decrease in the amplitude of increases in intracellular Ca(2+) concentration, but this effect cannot account for the profound inhibition of granule exocytosis. 2) Ca(2+) influx can activate ERK in TALL-104 cells, but this effect does not contribute to ERK activation stimulated by solid phase anti-CD3 monoclonal antibodies. We conclude that cross-talk between ERK signaling and Ca(2+) does not mediate the role of ERK in CTL lytic granule exocytosis.  相似文献   

5.
Fibroblasts isolated from jaw cysts expressed calcium-sensing receptor (CasR). In the fibroblasts elevated extracellular Ca(2+) ([Ca(2+)](o)) increased fluo-3 fluorescence intensity, and the production of inositol(1,4,5)trisphosphate and active protein kinase C. Phospholipase C inhibitor U-73122 attenuated the Ca(2+)-induced increase in fluo-3 fluorescence intensity. Elevated [Ca(2+)](o) enhanced the expression of cyclooxygenase-2 (COX-2) mRNA and protein, and the secretion of prostaglandin E(2) in the fibroblasts. CasR activator neomycin also increased the expression of COX-2 mRNA, and U-73122 attenuated the Ca(2+)-induced expression of COX-2 mRNA. Elevated [Ca(2+)](o)-induced phosphorylation of extracellular signal-regulated protein kinase-1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK), and U-73122 inhibited the Ca(2+)-induced phosphorylation. The inhibitors for each kinase, PD98059, SB203580, and SP600125, attenuated the Ca(2+)-induced expression of COX-2 mRNA. These results suggest that in jaw cyst fibroblasts elevated extracellular Ca(2+) may enhance COX-2 expression via the activation of ERK1/2, p38 MAPK, and JNK through CasR.  相似文献   

6.
Regulation of the mitogen-activated protein kinase (MAPK) family by prolactin-releasing peptide (PrRP) in both GH3 rat pituitary tumor cells and primary cultures of rat anterior pituitary cells was investigated. PrRP rapidly and transiently activated extracellular signal-regulated protein kinase (ERK) in both types of cells. Both pertussis toxin, which inactivates G(i)/G(o) proteins, and exogenous expression of a peptide derived from the carboxyl terminus of the beta-adrenergic receptor kinase I, which specifically blocks signaling mediated by the betagamma subunits of G proteins, completely blocked the PrRP-induced ERK activation, suggesting the involvement of G(i)/G(o) proteins in the PrRP-induced ERK activation. Down-regulation of cellular protein kinase C did not significantly inhibit the PrRP-induced ERK activation, suggesting that a protein kinase C-independent pathway is mainly involved. PrRP-induced ERK activation was not dependent on either extracellular Ca(2+) or intracellular Ca(2+). However, the ERK cascade was not the only route by which PrRP communicated with the nucleus. JNK was also shown to be significantly activated in response to PrRP. JNK activation in response to PrRP was slower than ERK activation. Moreover, to determine whether a MAPK family cascade regulates rat prolactin (rPRL) promoter activity, we transfected the intact rPRL promoter ligated to the firefly luciferase reporter gene into GH3 cells. PrRP activated the rPRL promoter activity in a time-dependent manner. Co-transfection with a catalytically inactive form of a MAPK construct or a dominant negative JNK, partially but significantly inhibited the induction of the rPRL promoter by PrRP. Furthermore, co-transfection with a dominant negative Ets completely abolished the response of the rPRL promoter to PrRP. These results suggest that PrRP differentially activates ERK and JNK, and both cascades are necessary to elicit rPRL promoter activity in an Ets-dependent mechanism.  相似文献   

7.
8.
We have studied the roles of c-Jun N-terminal protein kinase (JNK) and extracellular signal-regulated protein kinase (ERK) cascade in both the cisplatin-resistant Caov-3 and the cisplatin-sensitive A2780 human ovarian cancer cell lines. Treatment of both cells with cisplatin but not transplatin isomer activates JNK and ERK. Activation of JNK by cisplatin occurred at 30 min, reached a plateau at 3 h, and declined thereafter, whereas activation of ERK by cisplatin showed a biphasic pattern, indicating the different time frame. Activation of JNK by cisplatin was maximal at 1000 microM, whereas activation of ERK was maximal at 100 microM and was less at higher concentrations, indicating the different dose dependence. Cisplatin-induced JNK activation was neither extracellular and intracellular Ca(2+)- nor protein kinase C-dependent, whereas cisplatin-induced ERK activation was extracellular and intracellular Ca(2+)- dependent and protein kinase C-dependent. A mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor, PD98059, had no effect on the cisplatin-induced JNK activity, suggesting an absence of cross-talk between the ERK and JNK cascades. We further examined the effect of each cascade on the viability following cisplatin treatment. Either exogenous expression of dominant negative c-Jun or the treatment by PD98059 induced sensitivity to cisplatin in both cells. Our findings suggest that cisplatin-induced DNA damage differentially activates JNK and ERK cascades and that inhibition of either of these cascades sensitizes ovarian cancer cells to cisplatin.  相似文献   

9.
10.
11.
The majority of bones comprising the adult vertebrate skeleton are generated from hyaline cartilage templates that form during embryonic development. A process known as endochondral ossification is responsible for the conversion of these transient cartilage anlagen into mature, calcified bone. Endochondral ossification is a highly regulated, multistep cell specification program involving the initial differentiation of prechondrogenic mesenchymal cells into hyaline chondrocytes, terminal differentiation of hyaline chondrocytes into hypertrophic chondrocytes, and finally, apoptosis of hypertrophic chondrocytes followed by bone matrix deposition. Recently, extensive research has been carried out describing roles for the three major mitogen-activated protein kinase (MAPK) signaling pathways, the extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and c-jun N-terminal kinase (JNK) pathways, in the successive stages of chondrogenic differentiation. In this review, we survey this research examining the involvement of ERK1/2, p38, and JNK pathway signaling in all aspects of the chondrogenic differentiation program from embryonic through postnatal stages of development. In addition, we summarize evidence from in vitro studies examining MAPK function in immortalized chondrogenic cell lines and adult mesenchymal stem cells. We also provide suggestions for future studies that may help ameliorate existing confusion concerning the specific roles of MAPK signaling at different stages of chondrogenesis.  相似文献   

12.
Transforming growth factor-beta (TGF-beta) is a bimodal regulator of cellular growth. The cellular effects of TGF-beta depend on the intensity of signals emanating from TGF-beta receptors. Low levels of receptor activity are sufficient to stimulate cell proliferation, while higher degrees of receptor activation are associated with growth inhibition. To study the mechanisms of these effects, a tetracycline-inducible expression system was used to overexpress type II TGF-beta receptors in NIH 3T3 fibroblasts. Overexpressed type II TGF-beta receptors suppressed fibroblast proliferation elicited by TGF-beta1, fibroblast growth factor (FGF) or platelet-derived growth factor (PDGF). Accompanying these anti-proliferative effects, increases in extracellular-signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activity were detected. Furthermore, PDGF alpha-, but not PDGF beta-receptor protein levels were reduced by type II TGF-beta receptor overexpression. In conclusion, our system is an excellent tool to study the molecular mechanisms of growth inhibition by TGF-beta in fibroblasts. Activation of JNK and ERK, or modulation of PDGF receptor expression may be involved in this process.  相似文献   

13.
为了证实JNK激酶在骨形态发生蛋白9(bone morphogenetic proteins 9,BMP9) 诱导间充质干细胞C3H10T1/2成骨分化中的作用,利用重组腺病毒将BMP9导入间充质干细胞C3H10T1/2. 通过碱性磷酸酶(ALP)活性测定、钙盐沉积实验、荧光素酶报告基因检测、Western印迹和组织化学染色等方法,检测BMP9是否可经JNK激酶途径调控间充质干细胞C3H10T1/2向成骨分化.动物实验验证在RNA沉默JNK蛋白激酶后,对BMP9诱导间充质干细胞C3H10T1/2向成骨分化的影响.结果发现,BMP9可以增强JNK 激酶的磷酸化;利用JNK抑制剂SP600125抑制JNK激酶活性后,BMP9诱导的间充质干细胞C3H10T1/2的早期成骨指标ALP活性和晚期指标钙盐沉积均受到抑制,而且经典SMAD信号的活化也相应受到抑制;RNA干扰沉默JNK基因表达后,同样也可抑制BMP9 诱导的C3H10T1/2细胞的ALP活性和裸鼠皮下异位成骨.因此表明,BMP9可活化JNK激酶途径从而诱导间充质干细胞C3H10T1/2向成骨分化.  相似文献   

14.
Immune complexes composed of IgG-opsonized pathogens, particles, or proteins are phagocytosed by macrophages through Fcγ receptors (FcγRs). Macrophages primed with IFNγ or other pro-inflammatory mediators respond to FcγR engagement by secreting high levels of cytokines and nitric oxide (NO). We found that unprimed macrophages produced lower levels of NO, which required efficient calcium (Ca(2+)) flux as demonstrated by using macrophages lacking selenoprotein K, which is required for FcγR-induced Ca(2+) flux. Thus, we further investigated the signaling pathways involved in low output NO and its functional significance. Evaluation of inducible, endothelial, and neuronal nitric-oxide synthases (iNOS, eNOS, and nNOS) revealed that FcγR stimulation in unprimed macrophages caused a marked Ca(2+)-dependent increase in both total and phosphorylated nNOS and slightly elevated levels of phosphorylated eNOS. Also activated were three MAP kinases, ERK, JNK, and p38, of which ERK activation was highly dependent on Ca(2+) flux. Inhibition of ERK reduced both nNOS activation and NO secretion. Finally, Transwell experiments showed that FcγR-induced NO functioned to increase the phagocytic capacity of other macrophages and required both NOS and ERK activity. The production of NO by macrophages is conventionally attributed to iNOS, but we have revealed an iNOS-independent receptor/enzyme system in unprimed macrophages that produces low output NO. Under these conditions, FcγR engagement relies on Ca(2+)-dependent ERK phosphorylation, which in turn increases nNOS and, to a lesser extent, eNOS, both of which produce low levels of NO that function to promote phagocytosis.  相似文献   

15.
16.
(?)-Epigallocatechin-3-gallate (EGCG)-induced apoptosis was along both the extracellular signal-regulated protein kinase (ERK) and c-jun N-terminal kinase (JNK) pathways in Jurkat cells. Co-treatment with EGCG potentiated the cytotoxicity induced by benzyl isothiocyanate (BITC) and H2O2, both being inhibited by ERK and JNK inhibitors. These results suggest the significant role of mitogen-activated protein kinase (MAPK) signaling in the apoptosis induction regulated by EGCG alone and in combination.  相似文献   

17.
18.
19.
20.
Lysophospholipid receptor-dependent and -independent calcium signaling   总被引:4,自引:0,他引:4  
Changes in cellular Ca(2+) concentrations form a ubiquitous signal regulating numerous processes such as fertilization, differentiation, proliferation, contraction, and secretion. The Ca(2+) signal, highly organized in space and time, is generated by the cellular Ca(2+) signaling toolkit. Lysophospholipids, such as sphingosine-1-phosphate (S1P), sphingosylphosphorylcholine (SPC), or lysophosphatidic acid (LPA) use this toolkit in a specific manner to initiate their cellular responses. Acting as agonists at G protein-coupled receptors, S1P, SPC, and LPA increase the intracellular free Ca(2+) concentration ([Ca(2+)](i)) by using the classical, phospholipase C (PLC)-dependent pathway as well as PLC-independent pathways such as sphingosine kinase (SphK)/S1P. The S1P(1) receptor, via protein kinase C, inhibits the [Ca(2+)](i) transients caused by other receptors. Both S1P and SPC also act intracellularly to regulate [Ca(2+)](i). Intracellular S1P mobilizes Ca(2+) in intact cells independently of G protein-coupled S1P receptors, and Ca(2+) signaling by many agonists requires SphK-mediated S1P production. As shown for the FcepsilonRI receptor, PLC and SphK may contribute specific components to the overall [Ca(2+)](i) transient. Of the many open questions, identification of the intracellular S1P target site(s) appears to be of particular importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号