首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungal immigration dynamics and community development were followed over time on sets of surface-disinfested apple leaves in the field. Immigration was defined as the arrival of viable propagules on the leaf surface. In three separate experiments (May, June, July), total numbers of fungal immigrants, numbers of filamentous fungal immigrants, and numbers of yeast immigrants per leaf were estimated for successive 12-hour immigration periods. Communities developing over 2–14 immigration periods (1–7 days) were compared with the corresponding estimates of cumulative immigration. There were significant differences among both experiments and immigration periods within each experiment in mean numbers of immigrants per leaf. Leaf area was often significantly correlated with numbers of immigrants. Developing communities supported progressively fewer individuals than the corresponding sums of immigrants, suggesting that losses due to emigration and/or death play a critical role in shaping these communities.  相似文献   

2.
The role of microbial immigration in the veinal colonization pattern of Aureobasidium pullulans on the adaxial surface of apple leaves was investigated in two experiments at two periods (early and late seasons) in 2004 by applying green fluorescent protein (GFP)-tagged blastospores to the foliage of orchard trees. Individual leaves were resampled by a semidestructive method immediately after inoculation (t(0)) and about 1 (t(1)), 2 (t(2)), and 3 (t(3)) weeks later. At t(0), there were no significant (P < or = 0.05) differences in densities (cells/mm(2)) on veinal (excluding midvein) sites and those on interveinal sites, but at all points thereafter, densities were significantly higher on veins. GFP-tagged A. pullulans cells remained primarily as singletons on interveinal regions (> or =90% at all points), while > or =20% of cells over veins at t(3) were in colonies of > or =4 cells. The colonies that developed from single cells placed on midveins and other veins were significantly larger than those that developed on interveinal regions of detached field and seedling leaves incubated under controlled conditions. Colonies primarily developed linearly along veins, reaching average colony sizes (72 h) of 24.4 +/- 12.7 (mean +/- standard deviation) cells. In contrast, colonies on interveinal regions tended to average only 2.9 +/- 1.3 cells, with less linearity. To examine the potential role of A. pullulans growth-inhibiting factors associated with interveinal features, single GFP-tagged A. pullulans cells in droplets previously incubated on interveinal sites were placed on midveins and compared to midvein colonies derived from cells in a water-only suspension. No differences in colony size resulted. Our results indicate that immigration limitation and growth-inhibiting factors are not the primary factors responsible for A. pullulans veinal colonization patterns in the field. Rather, indirect evidence suggests that growth-promoting substances occur locally in the veinal areas.  相似文献   

3.
Retreating ice fronts (as a result of a warming climate) expose large expanses of deglaciated forefield, which become colonized by microbes and plants. There has been increasing interest in characterizing the biogeochemical development of these ecosystems using a chronosequence approach. Prior to the establishment of plants, microbes use autochthonously produced and allochthonously delivered nutrients for growth. The microbial community composition is largely made up of heterotrophic microbes (both bacteria and fungi), autotrophic microbes and nitrogen-fixing diazotrophs. Microbial activity is thought to be responsible for the initial build-up of labile nutrient pools, facilitating the growth of higher order plant life in developed soils. However, it is unclear to what extent these ecosystems rely on external sources of nutrients such as ancient carbon pools and periodic nitrogen deposition. Furthermore, the seasonal variation of chronosequence dynamics and the effect of winter are largely unexplored. Modelling this ecosystem will provide a quantitative evaluation of the key processes and could guide the focus of future research. Year-round datasets combined with novel metagenomic techniques will help answer some of the pressing questions in this relatively new but rapidly expanding field, which is of growing interest in the context of future large-scale ice retreat.  相似文献   

4.
The abundance of phylloplane microorganisms typically varies over several orders of magnitude among leaves sampled concurrently. Because the methods traditionally used to sample leaves are destructive, it has remained unclear whether this high variability is due to fixed differences in habitat quality among leaves or to asynchronous temporal variation in the microbial population density on individual leaves. We developed a novel semidestructive assay to repeatedly sample the same apple leaves from orchard trees over time by removing progressively more proximal approximately 1-cm-wide transverse segments. Aureobasidium pullulans densities were determined by standard leaf homogenization and plating procedures and were expressed as CFU per square centimeter of segment. The A. pullulans population densities among leaves were lognormally distributed. The variability in A. pullulans population densities among subsections of a given leaf was one-third to one-ninth the variability among whole leaves harvested concurrently. Sequential harvesting of leaf segments did not result in detectable changes in A. pullulans density on residual leaf surfaces. These findings implied that we could infer whole-leaf A. pullulans densities over time by using partial leaves. When this successive sampling regimen was applied over the course of multiple 7- to 8-day experiments, the among-leaf effects were virtually always the predominant source of variance in A. pullulans density estimates. Changes in A. pullulans density tended to be synchronous among leaves, such that the rank order of leaves arrayed with respect to A. pullulans density was largely maintained through time. Occasional periods of asynchrony were observed, but idiosyncratic changes in A. pullulans density did not contribute appreciably to variation in the distribution of populations among leaves. This suggests that persistent differences in habitat (leaf) quality are primarily responsible for the variation in A. pullulans density among leaves in nature.  相似文献   

5.
Long distance atmospheric transport of bacterial cells is often implied as a driver of the apparent cosmopolitan distribution of bacterial taxa. Surprisingly, efforts to measure immigration in bacterial communities are rare. An 8-week time series of within-lake bacterial community composition and atmospheric deposition rates and composition were used to estimate the influence of immigration on bacterial community dynamics in two north temperate lakes. Characterization of bacterial community dynamics using automated ribosomal intergenic spacer analysis suggested moderate overlap in composition between the lakes and atmospherically deposited cells. However, taxa that appeared to be delivered by atmospheric deposition had a relatively minor influence on lake bacterial community dynamics. The weak influence of immigrating bacterial taxa suggests that a species-sorting concept best describes aquatic bacterial metacommunity dynamics.  相似文献   

6.
水稻秸秆还田时间对土壤真菌群落结构的影响   总被引:7,自引:0,他引:7  
为揭示水稻秸秆还田对土壤真菌群落结构的长期影响,采用荧光定量PCR和PCR-DGGE技术分析了秸秆还田90,180,270 d和360 d的土壤真菌基因丰度和群落结构组成演变趋势,并利用冗余分析(RDA)研究土壤真菌群落结构变化与环境因子的关系。结果表明:随着秸秆还田时间的增加,土壤真菌群体数量和多样性指数(H、R和E)显著增加,在360 d时达到最高。对DGGE图谱的特征条带进行胶回收、测序,系统进化分析表明,土壤真菌主要种群包括:接合菌(Zygomycete sp.)、盐腐霉菌(Pythium salinum)、肉盘菌(Uncultured Sarcosomataceae)、牛粪盘菌(Ascobolus stercorarius)、大链壶菌(Lagenidium giganteum)、青霉菌(Penicillium sp.)、曲霉属真菌(Aspergillus sp.)和疏绵状丝孢菌(Thermomyces lanuginosus)、灰绿曲霉菌(Aspergillus glaucus)、禾谷多粘菌(Polymyxa graminis)和枝顶孢霉菌(Acremonium sp.),其中青霉菌(Penicillium sp.)、曲霉属真菌(Aspergillus sp.)和枝顶孢霉菌(Acremonium sp.)具有纤维素降解能力,而枝顶孢霉菌(Acremonium sp.)在90 d时成为新的优势菌群。RDA分析表明,90 d和180 d秸秆还田与对照土壤的真菌群落结构较为类似,270 d和360 d的秸秆还田与对照土壤的真菌群落结构发生了明显变化。土壤有机碳、pH和速效磷是引起土壤真菌群落结构及多样性变异的主要因素。  相似文献   

7.
沈鑫  张芝元  郑欢  邹晓  韩燕峰  梁宗琦 《菌物学报》2018,37(8):999-1005
将富含角蛋白的无菌鸡毛粉引入一医院绿地土后,基于高通量测序技术分析真菌群落的组成及相对丰度,发现在富含角蛋白基质鸡毛粉降解过程中共有真菌6门15纲39目71科128属。加入鸡毛粉不同时期(初期3d、中期30d、后期90d)的医院土真菌群落有较大变化。添加鸡毛粉3d的医院土(YY1)中真菌群落多样性丰富,优势种是芽殖久浩酵母Guehomyces pullulans(57.42%);加入鸡毛粉30d后(YY2),群落组成中不少种的相对丰度明显下降,优势种为一分类地位未定属,其相对丰度是77.57%;加入鸡毛粉90d后(YY3),一些潜在的人类病原菌的相对丰度有所上升,优势种是石膏样小孢子菌Microsporum gyseum(55.17%),而初期的优势种芽殖久浩酵母Guehomyces pullulans的相对丰度则明显降低。研究可知富含角蛋白的鸡毛粉对医院绿地土壤中的真菌群落,尤其是一些人体潜在病原真菌的群落组成和相对丰度有明显调节作用。  相似文献   

8.
The Italian Toscano cigar production includes a fermentation step that starts when dark fire-cured tobacco leaves are moistened and mixed with ca. 20% prefermented tobacco to form a 500-kg bulk. The dynamics of the process, lasting ca. 18 days, has never been investigated in detail, and limited information is available on microbiota involved. Here we show that Toscano fermentation is invariably associated with the following: (i) an increase in temperature, pH, and total microbial population; (ii) a decrease in reducing sugars, citric and malic acids, and nitrate content; and (iii) an increase in oxalic acid, nitrite, and tobacco-specific nitrosamine content. The microbial community structure and dynamics were investigated by culture-based and culture-independent approaches, including denaturing gradient gel electrophoresis and single-strand conformational polymorphism. Results demonstrate that fermentation is assisted by a complex microbial community, changing in structure and composition during the process. During the early phase, the moderately acidic and mesophilic environment supports the rapid growth of a yeast population predominated by Debaryomyces hansenii. At this stage, Staphylococcaceae (Jeotgalicoccus and Staphylococcus) and Lactobacillales (Aerococcus, Lactobacillus, and Weissella) are the most commonly detected bacteria. When temperature and pH increase, endospore-forming low-G+C content gram-positive bacilli (Bacillus spp.) become evident. This leads to a further pH increase and promotes growth of moderately halotolerant and alkaliphilic Actinomycetales (Corynebacterium and Yania) during the late phase. To postulate a functional role for individual microbial species assisting the fermentation process, a preliminary physiological and biochemical characterization of representative isolates was performed.  相似文献   

9.
Natural plankton communities from Masnou, a locality 20 km northof Barcelona (NW Mediterranean coast), were enclosed in 30 lmicrocosms to test the effect of different availability of nitrogen(N) and phosphorus (P) on the biomass of the main microplanktongroups, and the biochemical composition (DNA, protein and chlorophyllconcentration) of microbial communities. Immediately after enclosurein microcosms, three different nutrient enrichments were performed:N-deficient, P-deficient and nutrient-balanced. N and P deficienciesaffected the structure and the biochemical composition of themicrobial communities. Phytoplankton assemblages showed similartemporal patterns under the three nutrient treatments, althoughthe relative contribution of the different groups was notablyaffected. The lowest DNA concentration was measured in the P-deficienttreatment, suggesting that P availability imposes the limitson the DNA levels in the ecosystem. The availability of N inthe P-deficient microcosms allowed relatively high synthesisof chlorophyll and protein until the end of the experiment.Significantly high chlorophyll: DNA and protein: DNA ratioscharacterized the P-deficient treatment (where N was available)compared to the N-deficient microcosms. From the results obtained,we suggest that the protein: DNA ratios may constitute a biochemicalindicator of the P versus N availability in natural ecosystems.  相似文献   

10.
This paper identifies key components of the microbial community involved in the mesophilic anaerobic co-digestion (AD) of mixed waste at Rayong Biogas Plant, Thailand. The AD process is separated into three stages: front end treatment (FET); feed holding tank and the main anaerobic digester. The study examines how the microbial community structure was affected by the different stages and found that seeding the waste at the beginning of the process (FET) resulted in community stability. Also, co-digestion of mixed waste supported different bacterial and methanogenic pathways. Typically, acetoclastic methanogenesis was the major pathway catalysed by Methanosaeta but hydrogenotrophs were also supported. Finally, the three-stage AD process means that hydrolysis and acidogenesis is initiated prior to entering the main digester which helps improve the bioconversion efficiency. This paper demonstrates that both resource availability (different waste streams) and environmental factors are key drivers of microbial community dynamics in mesophilic, anaerobic co-digestion.  相似文献   

11.
Tropical and subtropical plants are rich in endophytic community diversity. Endophytes, mainly fungi and bacteria, inhabit the healthy plant tissues without causing any damage to the hosts. These fungi can be useful for biological control of pathogens and plant growth promotion. Some plants of the genus Piper are hosts of endophytic microorganisms; however, there is little information about endophytes on Piper hispidum, a medicinal shrub used as an insecticide, astringent, diuretic, stimulant, liver treatment, and for stopping hemorrhages. We isolated the fungal endophyte community associated with P. hispidum leaves from plants in a Brazilian forest remnant. The endophytic diversity was examined based on sequencing of the ITS1-5.8S-ITS2 region of rDNA. A high colonization frequency was obtained, as expected for tropical angiosperms. Isolated endophytes were divided into 66 morphogroups, demonstrating considerable diversity. We identified 21 isolates, belonging to 11 genera (Alternaria, Bipolaris, Colletotrichum, Glomerella, Guignardia, Lasiodiplodia, Marasmius, Phlebia, Phoma, Phomopsis, and Schizophyllum); one isolate was identified only to the order level (Diaporthales). Bipolaris was the most frequent genus among the identified endophytes. Phylogenetic analysis confirmed the molecular identification of some isolates to genus level while for others it was confirmed at the species level.  相似文献   

12.
This study utilized individual senesced sugar maple and beech leaves as natural sampling units within which to quantify saprotrophic fungal diversity. Quantifying communities in individual leaves allowed us to determine if fungi display a classic taxa–area relationship (species richness increasing with area). We found a significant taxa–area relationship for sugar maple leaves, but not beech leaves, consistent with Wright's species‐energy theory. This suggests that energy availability as affected plant biochemistry is a key factor regulating the scaling relationships of fungal diversity. We also compared taxa rank abundance distributions to models associated with niche or neutral theories of community assembly, and tested the influence of leaf type as an environmental niche factor controlling fungal community composition. Among rank abundance distribution models, the zero‐sum model derived from neutral theory showed the best fit to our data. Leaf type explained only 5% of the variability in community composition. Habitat (vernal pool, upland or riparian forest floor) and site of collection explained > 40%, but could be attributed to either niche or neutral processes. Hence, although niche dynamics may regulate fungal communities at the habitat scale, our evidence points towards neutral assembly of saprotrophic fungi on individual leaves, with energy availability constraining the taxa–area relationship.  相似文献   

13.
Composting relies on a complex network of bacteria and fungi to process crude organic material. Although it is known that these organisms drive dynamic changes in temperature and pH, little is known about the temporal dynamics of fungal populations during the rise to thermophilic conditions. This study employed F-ARISA (fungal-automated rRNA intergenic spacer analysis) and 18S rRNA gene cloning and sequencing to examine changes in community structure during this period. Sequencing of the 18S rRNA portion of cloned F-ARISA products revealed the presence of four distinct fungal genera including Backusella sp., Mucoraceae, Geotrichum sp. and the yeast Pichia sp. Based on the presence and absence of these ARISA operational taxonomic units (A-OTUs), we observed a shift in fungal community structure between 48 and 60 h. This change in community structure preceded a rise in pH and coincided with an increase in temperature. Clone libraries constructed using fungi-specific 18S rRNA primers contained sequences similar to several other fungal genera including Penicillium sp., Aspergillus sp., Hamigera sp., Neurospora sp. and the yeast Candida sp. While the fungal species richness was relatively low at any time point, the community structure was dynamic and paralleled changes in bacterial community structure.  相似文献   

14.
In an effort to better understand the factors contributing to patterns in freshwater bacterioplankton community composition and diversity, we coupled automated ribosomal intergenic spacer analysis (ARISA) to analysis of 16S ribosomal RNA (rRNA) gene sequences to follow the persistence patterns of 46 individual phylotypes over 3 years in Crystal Bog Lake. Additionally, we sought to identify linkages between the observed phylotype variations and known chemical and biological drivers. Sequencing of 16S rRNA genes obtained from the water column indicated the presence of phylotypes associated with the Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, TM7 and Verrucomicrobia phyla, as well as phylotypes with unknown affiliation. Employment of the 16S rRNA gene/ARISA method revealed that specific phylotypes varied independently of the entire bacterial community dynamics. Actinobacteria, which were present on greater than 95% of sampling dates, did not share the large temporal variability of the other identified phyla. Examination of phylotype relative abundance patterns (inferred using ARISA fragment relative fluorescence) revealed a strong correlation between the dominant phytoplankton succession and the relative abundance patterns of the majority of individual phylotypes. Further analysis revealed covariation among unique phylotypes, which formed several distinct bacterial assemblages correlated with particular phytoplankton communities. These data indicate the existence of unique persistence patterns for different common freshwater phylotypes, which may be linked to the presence of dominant phytoplankton species.  相似文献   

15.
Introduced, non-native organisms are of global concern, because biological invasions can negatively affect local communities. Arbuscular mycorrhizal (AM) fungal communities have not been well studied in this context. AM fungi are abundant in most soils, forming symbiotic root-associations with many plant species. Commercial AM fungal inocula are increasingly spread worldwide, because of potentially beneficial effects on plant growth. In contrast, some invasive plant species, such as the non-mycorrhizal Alliaria petiolata, can negatively influence AM fungi. In a greenhouse study we examined changes in the structure of a local Canadian AM fungal community in response to inoculation by foreign AM fungi and the manipulated presence/absence of A. petiolata. We expected A. petiolata to have a stronger effect on the local AM fungal community than the addition of foreign AM fungal isolates. Molecular analyses indicated that inoculated foreign AM fungi successfully established and decreased molecular diversity of the local AM fungal community in host roots. A. petiolata did not affect molecular diversity, but reduced AM fungal growth in the greenhouse study and in a in vitro assay. Our findings suggest that both introduced plants and exotic AM fungi can have negative impacts on local AM fungi.  相似文献   

16.
Endophytic fungi are known to play important ecological roles in protecting plants from various abiotic and biotic stresses. Therefore, it is valuable to investigate the endophytic fungal community associated with plants distributed in harsh environments, such as deserts. Fungal communities in the stems and leaves of ten plant samples belonging to eight species were collected from a desert area in China and tested after plant surface sterilization. The fungal compositions were different among plants. Salsola collina, Suaeda salsa, and Coriospermum declinatum possessed the highest fungal richness. The colonization rates of these samples were high, exceeding 50% in eight of the samples. However, the fungal diversity of the samples was low when measured using Shannon??s index, Fisher??s ??, and Simpson??s index. Alternaria alternata, A. franseriae, Fusarium solani, and a second Fusarium species were most frequently isolated from all samples. The diversity of isolated species was low in desert areas, although the colonization rate was relatively high. It was concluded that fungal communities associated with plants in deserts had low diversity, but a small number of species colonized various plants with a high colonization rate. The Jaccard, Sorensen, and Bray?CCurtis similarity indices for the fungal communities were low between stems and leaves. This indicated that different fungal communities colonized these two tissues. Phoma pomorum and Phoma sp. showed tissue preferences.  相似文献   

17.
Dissolved oxygen concentration plays a major role in shaping biotic interactions and nutrient flows within marine ecosystems. Throughout the global ocean, regions of low dissolved oxygen concentration (hypoxia) are a common and expanding feature of the water column, with major feedback on productivity and greenhouse gas cycling. To better understand microbial diversity underlying biogeochemical transformations within oxygen-deficient oceanic waters, we monitored and quantified bacterial and archaeal community dynamics in relation to dissolved gases and nutrients during a seasonal stratification and deep water renewal cycle in Saanich Inlet, British Columbia, a seasonally anoxic fjord. A number of microbial groups partitioned within oxygen-deficient waters including Nitrospina and SAR324 affiliated with the δ- proteobacteria , SAR406 and γ- proteobacteria related to thiotrophic gill symbionts of deep-sea clams and mussels. Microbial diversity was highest within the hypoxic transition zone decreasing dramatically within anoxic basin waters and temporal patterns of niche partitioning were observed along defined gradients of oxygen and phosphate. These results provide a robust comparative phylogenetic framework for inferring systems metabolism of nitrogen, carbon and sulfur cycling within oxygen-deficient oceanic waters and establish Saanich Inlet as a tractable model for studying the response of microbial communities to changing levels of water column hypoxia.  相似文献   

18.
AIMS: Microcosm experiments simulating an oil spill event were performed to evaluate the response of the natural microbial community structure of Messina harbour seawater following the accidental load of petroleum. METHODS AND RESULTS: An experimental harbour seawater microcosm, supplemented with nutrients and crude oil, was monitored above 15 days in comparison with unpolluted ones (control microcosms). Bacterial cells were counted with a Live/Dead BacLight viability kit; leucine aminopeptidase, beta-glucosidase, alkaline phosphatase, lipase and esterase enzymes were measured using fluorogenic substrates. The microbial community dynamic was monitored by isolation of total RNA, RT-PCR amplification of 16S rRNA, cloning and sequencing. Oil addition stimulated an increase of the total bacterial abundance, leucine aminopeptidase and phosphatase activity rates, as well as a change in the community structure. This suggested a prompt response of micro-organisms to the load of petroleum hydrocarbons. CONCLUSIONS: The present study on the viability, specific composition and metabolic characteristics of the microbial community allows a more precise assessment of oil pollution. Both structural and functional parameters offer interesting perspectives as indicators to monitor changes caused by petroleum hydrocarbons. SIGNIFICANCE AND IMPACT OF THE STUDY: A better knowledge of microbial structural successions at oil-polluted sites is essential for environmental bioremediation. Data obtained in microcosm studies improve our understanding of natural processes occurring during oil spills.  相似文献   

19.
The dynamics of the microbial community responsible for the traditional fermentation of maize in the production of Mexican pozol was investigated by using a polyphasic approach combining (i) microbial enumerations with culture media, (ii) denaturing gradient gel electrophoresis (DGGE) fingerprinting of total community DNA with bacterial and eukaryotic primers and sequencing of partial 16S ribosomal DNA (rDNA) genes, (iii) quantification of rRNAs from dominant microbial taxa by using phylogenetic oligonucleotide probes, and (iv) analysis of sugars and fermentation products. A Streptococcus species dominated the fermentation and accounted for between 25 and 75% of the total flora throughout the process. Results also showed that the initial epiphytic aerobic microflora was replaced in the first 2 days by heterofermentative lactic acid bacteria (LAB), including a close relative of Lactobacillus fermentum, producing lactic acid and ethanol; this heterolactic flora was then progressively replaced by homofermentative LAB (mainly close relatives of L. plantarum, L. casei, and L. delbrueckii) which continued acidification of the maize dough. At the same time, a very diverse community of yeasts and fungi developed, mainly at the periphery of the dough. The analysis of the DGGE patterns obtained with bacterial and eukaryotic primers targeting the 16S and 18S rDNA genes clearly demonstrated that there was a major shift in the community structure after 24 h and that high biodiversity-according to the Shannon-Weaver index-was maintained throughout the process. These results proved that a relatively high number of species, at least six to eight, are needed to perform this traditional lactic acid fermentation. The presence of Bifidobacterium, Enterococcus, and enterobacteria suggests a fecal origin of some important pozol microorganisms. Overall, the results obtained with different culture-dependent or -independent techniques clearly confirmed the importance of developing a polyphasic approach to study the ecology of fermented foods.  相似文献   

20.
A 5‐year time series of annual censuses was collected from a large floodplain lake to determine how dynamics of the local fish community were affected by changes in hydrological connectivity with the surrounding metacommunity. The lake was disconnected from the metacommunity for 1 year prior to our study and remained disconnected until 3 months before our third annual census, when a flood reconnected the lake to the metacommunity. We determined how changes in connectivity affected temporal dynamics of (1) local community composition and (2) the population composition, condition, and growth of catfish, to shed light on how immigration of other species might affect local population dynamics. Before reconnection, the community was likely shaped by interactions between the local environment and species traits. The reconnection caused significant immigration and change in community composition and correlated with a significant and abrupt decline in catfish condition, growth, and abundance; effects likely due to the immigration of a competitor with a similar trophic niche: carp. The community was slow to return to its preconnection state, which may be due to dispersal traits of the fishes, and a time‐lag in the recovery of the local catfish population following transient intensification of species interactions. The dynamics observed were concordant with the species sorting and mass‐effects perspectives of metacommunity theory. Floods cause episodic dispersal in floodplain fish metacommunities, and so, flood frequency determines the relative importance of regional and local processes. Local processes may be particularly important to certain species, but these species may need sufficient time between floods for population increase, before the next flood‐induced dispersal episode brings competitors and predators that might cause population decline. Accordingly, species coexistence in these metacommunities may be facilitated by spatiotemporal storage effects, which may in turn be regulated by flood frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号