首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat-shock proteins in membrane vesicles of Bacillus subtilis   总被引:1,自引:0,他引:1  
Fractionation of B. subtilis cells after heat shock, from 37 degrees C to 54 degrees C, shows an increase in synthesis of proteins localized in cell membranes and a decrease in synthesis of proteins localized in cytosol. There is no such effect of heat shock at temperature of 45 degrees C. Autoradiograms of electrophoretically separated proteins, labelled during heat shock at 54 degrees C, reveal 26 heat-shock proteins (hsps) in membrane vesicles and 11 hsps in cytosol, five of which are common to both fractions. Heat shock at 45 degrees C induces 18 hsps localized in membrane vesicles and 13 hsps localized in cytosol, six of which are common to both fractions. Results are interpreted as showing a relevant role of membrane proteins in cell response to shock at high temperature, pointing to two steps of defense against heat stress.  相似文献   

2.
Two-dimensional gel electrophoretic analysis of the heat shock response in the psychrotrophic yeastTrichosporon pullulans revealed the induction of 11 heat shock proteins (hsps) after a 5° to 21°C heat shock, 12 hsps after a 5° to 26°C heat shock, and 12 hsps after a 5° to 29°C heat shock. Heat shock from 5° to 26° or 29°C resulted in a statistically significant increase in thermotolerance to a lethal heat challenge at 45°C for 5 min. When the protein synthesis inhibitor, cycloheximide, was added prior to the heat shock, no statistically significant thermotolerance was acquired. To confirm the correlation between the synthesis of hsps and the acquisition of thermotolerance, protein extracts of cells that had been heat shocked in the presence or absence of cycloheximide were electrophoretically analyzed. Addition of the same concentration of cycloheximide that prevented the acquisition of thermotolerance also inhibited the synthesis of any hsps.  相似文献   

3.
4.
Growing pollen tubes of Tradescantia paludosa are protected from inhibition of growth at 41°C by a prior exposure to gradually increasing temperatures. Heat shock proteins (hsps) are not synthesized by pollen tubes as determined by labeling with [35S]methionine and two-dimensional gel electrophoresis, during either a heat shock at 41°C or a gradual temperature increase to 41°C. A comparison after two-dimensional electrophoresis of silver-stained spots and radioactive spots after autoradiography of an extract of ungerminated pollen mixed with a trace amount of [35S]methionine-labeled vegetative tissue heat shocked at 41°C to act as a hsps marker, indicates that the majority, if not all, of the major hsps are not present in the pollen grain at anthesis. The type of thermotolerance seen with pollen tubes can thus be achieved without the presence or the new synthesis of the hsps.  相似文献   

5.
Heat shock in barley ( Hordeum vulgare L. cv. Himalaya) aleurone layers induces the synthesis of heat shock proteins (hsps) and suppresses the synthesis and secretion of α-amylase, the principal secretory protein. This is accompanied by the destabilization of α-amylase mRNA and a concomitant dissociation of ER lamellae. In the absence of heat shock α-amylase mRNA is extremely stable (Belanger et al. 1986. Proc. Natl. Acad. Sci. USA 83: 1354–1358). In most organisms there is a direct correlation between the synthesis of hsps and thermotolerance. The ability of hsps to provide thermoprotection to secretory protein synthesis, α-amylase mRNA and ER lamellae was analyzed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of pulse-chased, [35S]-methionine-labeled proteins revealed that the half-life of hsps in barley aleurone cells recovering from heat shock was approximately 12 h. Within approximately 6 h, there was a recovery of α-amylase mRNA and a reformation of ER lamellae. Heat shock protein synthesis was induced by either heat shock (40°C) or arsenite, the cells were allowed to recover for 8 h, then were re-exposed to heat shock. Results from SDS-PAGE showed that, despite the presence of hsps, α-amylase synthesis was suppressed. Northern blot hybridizations showed that α-amylase mRNA levels were reduced in heat-shocked tissues. Transmission electron microscopy demonstrated that ER lamellar structures were dissociated. The synthesis of hsps did not enable barley aleurone cells to sustain the synthesis of any proteins at lethal temperature. In contrast, similar conditions established thermotolerance and provided thermoprotection to protein synthesis in germinating barley embryos. Our findings suggest that the aleurone layer does not become thermotolerant following the induction of hsp synthesis.  相似文献   

6.
Yeast thermotolerance does not require protein synthesis.   总被引:16,自引:5,他引:11       下载免费PDF全文
Heat shock at 37 degrees C induces synthesis of stress (heat shock) proteins in Saccharomyces cerevisiae and also induces thermotolerance. Amino acid analogs that are powerful inducers of stress protein synthesis failed to induce thermotolerance, suggesting that the stress proteins do not play a causal role in acquired thermotolerance at 37 degrees C. This suggestion was confirmed by the observation that protein synthesis was not required for the induction of thermotolerance at 37 degrees C.  相似文献   

7.
Postimplantation stage rat embryos (6-10 somites) undergo abnormal development after exposure to a temperature of 43 degrees C for 30 min. A heat shock of 43 degrees C for 30 min also induces the synthesis of a set of eight heat shock proteins (hsps) with molecular masses ranging from 28,000 to 82,000 Da. The synthesis of these hsps is rapidly induced after the heat shock is applied and rapidly decays after embryos are returned to 37 degrees C. A heat shock of 42 degrees C for 30 min has no effect on rat embryo growth and development, but does induce the synthesis of three hsps. The most prominent of these three is believed to be the typical mammalian 70 kDa hsp. Furthermore, a 42 degrees C, 30-min heat shock followed by a 43 degrees C 30-min heat shock leads to partial protection from the embryotoxic effects of a single exposure at 43 degrees C, i.e., thermotolerance.  相似文献   

8.
Cultures of the rainbow trout fibroblast cell line RTG-2 withstood temperatures from 0 degrees C to 28 degrees C. At 0 degrees C and 28 degrees C, no proliferation occurred, but cells persisted for at least 7 days. If the cultures were placed back at 22 degrees C, proliferation returned to normal in those that had been kept at 0 degrees C but was reduced in cultures that had been kept at 28 degrees C. Above 28 degrees C, cultures survived for only short periods. If RTG-2 cells that were grown routinely at 22 degrees C were shifted to 26, 28, and 30 degrees C, heat shock proteins (hsps) of 100, 87, 70, 68, 60, 39, 27, and 19 kilodaltons were synthesized. Synthesis was most pronounced at 28 degrees C, and at this temperature hsp synthesis was maximal by 2 hr and had returned to control levels by 36 hr. Individual hsps were synthesized maximally at slightly different times and temperatures, but under all conditions hsps 87 and 70 were most abundant. If cultures were shifted to 24 degrees C or 32 degrees C, hsp synthesis was not observed. Neither the placement of cultures at 5 degrees C nor the shift of cultures that had been maintained at 0 degrees C or 5 degrees C back to 22 degrees C induced the synthesis of hsps. However, cultures incubated at 5 degrees C for 24 hr did synthesize hsps at 26 degrees C, 28 degrees C, and 30 degrees C.  相似文献   

9.
Biochemical and electron microscopic analyses of heat-shocked suspension cultures of Peruvian tomato (Lycopersicon peruvianum) revealed that a considerable part of the dominant small heat shock proteins (hsps) with an Mr of approximately 17,000 are structural proteins of newly forming granular aggregates in the cytoplasm (heat shock granules), whose formation strictly depends on heat shock conditions (37 to 40 degrees C) and the presence or simultaneous synthesis of hsps. However, under certain conditions, e.g., in preinduced cultures maintained at 25 degrees C, hsps also accumulate as soluble proteins without concomitant assembly of heat shock granules. Similar heat shock-induced cytoplasmic aggregates were also observed in other cell cultures and heat-shocked tomato leaves and corn coleoptiles.  相似文献   

10.
When Saccharomyces cerevisiae cells grown at 23 degrees C were transferred to 36 degrees C, they initiated synthesis of heat shock proteins, acquired thermotolerance to a lethal heat treatment given after the temperature shift, and arrested their growth transiently at the G1 phase of the cell division cycle. The bcy1 mutant which resulted in production of cyclic AMP (cAMP)-independent protein kinase did not synthesize the three heat shock proteins hsp72A, hsp72B, and hsp41 after the temperature shift. The bcy1 cells failed to acquire thermotolerance to the lethal heat treatment and were not arrested at the G1 phase after the temperature shift. In contrast, the cyr1-2 mutant, which produced a low level of cAMP, constitutively produced three heat shock proteins and four other proteins without the temperature shift and was resistant to the lethal heat treatment. The results suggest that a decrease in the level of cAMP-dependent protein phosphorylation results in the heat shock response, including elevated synthesis of three heat shock proteins, acquisition of thermotolerance, and transient arrest of the cell cycle.  相似文献   

11.
Protein expression of Spodoptera frugiperda (Sf9) insect cells was characterized upon exposure to environmental stresses typically present in bioreactors including heat shock, oxygen deprivation, shear stress, change of pH, and salinity or ethanol shock. This study fills the void in knowledge as to how bioreactor hydrodynamics, anoxia, small changes in pH as well as salinity alterations due to pH control or exposure to ethanol used in asepsis treatments affect protein expression in Sf9 cells. Heat shock at 43 degrees C induced proteins at 83 kDa, 68-78 kDa and six small heat shock proteins (hsps) at 23-15.5 kDa. Anaerobic conditions in CO2 atmosphere reduced significantly the normal protein synthesis and induced a small subset of heat shock proteins at 70 kDa. Oxygen deprivation in nitrogen atmosphere transiently induces the 70 kDa proteins and had minor effects on the normal protein synthesis. Exposure to increased salinity or ethanol concentration failed to trigger the stress response, but may extensively inhibit the induction of normal proteins even though there was a negligible change in cell viability. Shear stress that had a major reducing effect on cell viability did not change the protein synthesis profile of Sf9 cells. Both long and short term exposures to small pH changes had negligible effects on protein synthesis.  相似文献   

12.
Chinese hamster ovary (CHO) cells were exposed to a 43 degrees C, 15-min heat shock to study the relationship between protein synthesis and the development of thermotolerance. The 43 degrees C heat shock triggered the synthesis of three protein families having molecular weights of 110,000, 90,000, and 65,000 (HSP). These proteins were synthesized at 37 and 46 degrees C. This heat shock also induced the development of thermotolerance, which was measured by incubating the cells at 46 degrees C 4 h after the 43 degrees C heat treatment. CHO cells were also exposed to 20 micrograms/ml of cycloheximide for 30 min at 37 degrees C, 15 min at 43 degrees C, and 4 h at 37 degrees C. This treatment inhibited the enhanced synthesis of the Mr 110,000, 90,000, and 65,000 proteins. The cycloheximide was then washed out and the cells were incubated at 46 degrees C. HSP synthesis did not recover during the 46 degrees C incubation. This cycloheximide treatment also partially inhibited the development of thermotolerance. These results suggest that for CHO cells to express thermotolerance when exposed to the supralethal temperature of 46 degrees C protein synthesis is necessary.  相似文献   

13.
The responses to stress in living cells are well known. Thermal stress causes decreased protein synthesis as well as rapid induction of heat shock proteins (hsps), or alternately termed stress proteins (sps). The exposure of cultured promyelocytic leukemia cells (HL-60) to a 45 degrees C lethal heat shock for 1 h elicited synthesis and phosphorylation of a polypeptide M(r) 48,000 and pI 7.5 (p 48) as visualized by two-dimensional polyacrylamide gel ultra-microelectrophoresis. p 48, which was not observed at sublethal temperatures (39 and 41 degrees C), was synthesized during all phases of the cell cycle but was phosphorylated only in G0 + G1 and S-phases. The appearance of p 48 was marked by a concomitant and reciprocal reduction in hsps or sps 70 and 90. Distinct protease V8 fragment maps of p 48, hsps 70 and 90 in conjunction with immunochemical determination indicated vast differences in their primary structures. These facts suggest that p 48 was not formed from coalesced breakdown products of hsps 70 or 90. Western blotting showed that p 48 possessed the same immunochemical determinants as two other proteins with the same molecular mass but different isoelectric points. In an association assay, p 48 was shown to bind with actins and hsp 90 from HL-60 nuclei.  相似文献   

14.
Saccharomyces cerevisiae cells exposed to 43 degrees C (normal being 30 degrees C) exhibit the synthesis of heat shock proteins (hsps). Time course studies indicated that the major hsps (97 kDa, 85 kDa and 70 kDa family) are induced within 10 min. of heat shock and attain maximum amount with two hours of treatment. The viability of cells decreased by 99% when directly frozen into liquid nitrogen. However, a prior heat shock (2 hours) increased the cell survival by 20-30 fold. Such an effect of prior heat shock treatment could be supported by light and electron microscopical studies. Differential scanning calorimetric analysis of whole cells revealed that heat shock treatment decreases the denaturation (delta H) of total cellular proteins. A direct correlation between the degree of hsp inducibility and protection against freezing and thawing injury was observed. Cycloheximide treatment curtailed the synthesis of hsps as well as protection against subsequent freezing. This suggests that prior heat shock treatment protects the cells from freezing injury and, furthermore, that hsps can act as biological cryoprotectants.  相似文献   

15.
At elevated temperatures, germinating conidiospores of Neurospora crassa discontinue synthesis of most proteins and initiate synthesis of three dominant heat shock proteins of 98,000, 83,000, and 67,000 Mr and one minor heat shock protein of 30,000 Mr. Postemergent spores produce, in addition to these, a fourth major heat shock protein of 38,000 Mr and a minor heat shock protein of 34,000 Mr. The three heat shock proteins of lower molecular weight are associated with mitochondria. This exclusive synthesis of heat shock proteins is transient, and after 60 min of exposure to high temperatures, restoration of the normal pattern of protein synthesis is initiated. Despite the transiency of the heat shock response, spores incubated continuously at 45 degrees C germinate very slowly and do not grow beyond the formation of a germ tube. The temperature optimum for heat shock protein synthesis is 45 degrees C, but spores incubated at other temperatures from 40 through 47 degrees C synthesize heat shock proteins at lower rates. Survival was high for germinating spores exposed to temperatures up to 47 degrees C, but viability declined markedly at higher temperatures. Germinating spores survived exposure to the lethal temperature of 50 degrees C when they had been preexposed to 45 degrees C; this thermal protection depends on the synthesis of heat shock proteins, since protection was abolished by cycloheximide. During the heat shock response mitochondria also discontinue normal protein synthesis; synthesis of the mitochondria-encoded subunits of cytochrome c oxidase was as depressed as that of the nucleus-encoded subunits.  相似文献   

16.
We have compared the effects of a mild heat shock and febrile temperatures on heat-shock protein (hsp) synthesis and development of stress tolerance in T lymphocytes. Our previous studies demonstrated that febrile temperatures (less than or equal to 41 degrees C) induced the synthesis of hsp110, hsp90, and the constitutive or cognate form of hsp70 (hscp70; a weak induction of the strongly stress-induced hsp70 was also observed. In the studies reported herein, we demonstrate that a mild heat shock (42.5 degrees C) reverses this ratio; that is, hsp70 and not hscp70 is the predominate member of this family synthesized at this temperature. Modest heat shock also enhanced the synthesis of hsp110 and hsp90. In order to assess the relationship between hsp synthesis and the acquisition of thermotolerance, purified T cells were first incubated at 42.5 degrees C (induction temperature) and then subsequently subjected to a severe heat-shock challenge (45 degrees C, 30 min). T cells first incubated at a mild heat-shock temperature were capable of total protein synthesis at a more rapid rate following a severe heat shock than control cells (induction temperature 37 degrees C). This phenomenon, which has been previously termed translational tolerance, did not develop in cells incubated at the febrile temperature (induction temperature 41 degrees C). Protection of translation also extended to immunologically relevant proteins such as interleukin-2 and the interleukin-2 receptor. Because clonal expansion is a critical event during an immune response, the effects of hyperthermic stress on DNA replication (mitogen-induced T cell proliferation) was also evaluated in thermotolerant T cells. DNA synthesis in control cells (induction temperature 37 degrees C) was severely inhibited following heat-shock challenge at 44 degrees C or 45 degrees C; in contrast, T cells preincubated at 42.5 degrees C rapidly recovered their DNA synthetic capacity. T cells preincubated at a febrile temperature were moderately protected against hyperthermic stress. The acquisition of thermotolerance was also associated with enhanced resistance to chemical (ethanol)-induced stress but not to heavy metal toxicity (cadmium) or dexamethasone-induced immunosuppression. These studies suggest that prior hsp synthesis may protect immune function against some forms of stress (e.g., febrile episode) but would be ineffective against others such as elevated glucocorticoid levels which normally occur during an immune response.  相似文献   

17.
Eukaryotic and prokaryotic cells have been shown to respond to physical and chemical stress by the induction of proteins called heat shock proteins. Heat shock protein 70 (Hsp70), is the most ubiquitous of these proteins. Although heat shock proteins are generally thought to protect cells from physiologically stressful stimuli, it cannot be assumed that this is so, because several cases exist in which thermotolerance is acquired without the production of heat shock proteins, and in several other cases the hyperproduction of these heat shock proteins does not produce thermotolerance. In this study we show that unfertilized mouse oocytes are sensitive to elevated temperatures, and that the synthesis of Hsp70 cannot be induced in these oocytes. Furthermore, our data demonstrate that the expression of Hsp70 in mouse oocytes is sufficient for the acquisition of thermotolerance. Mouse oocytes were injected with mRNA for Hsp70, and the viability of these oocytes was determined after heating. The number of viable oocytes was significantly higher in the group injected with Hsp70 mRNA and then heated compared with oocytes injected with Hsp70 antisense mRNA and sham-injected controls treated in an identical manner. No significant differences in the number of viable oocytes were found between the group that had been injected with Hsp70 mRNA, heated, and then allowed to recover for 3 hr and the group maintained at 37 degrees C throughout.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Factors influencing the heat shock response of Xenopus laevis embryos   总被引:1,自引:0,他引:1  
We have further characterized the heat shock response of Xenopus laevis embryos. Xenopus embryos respond to heat shock by consistently synthesizing four major heat shock proteins (hsps) of 62, 70, 76, and 87 kilodaltons. In addition to these hsps, heat-shocked embryos also exhibit the synthesis of several minor hsps. The synthesis of these hsps is often variable. We have monitored the effects of different temperatures and lengths of heat shock on the pattern and intensity of hsp synthesis. In general, the four major hsps are induced more strongly at higher temperatures and during increasing intervals of heat shock. The temperature and duration of heat shock can affect the synthesis of the minor hsps, however. Some hsps are synthesized at lower temperatures only (i.e., below 37 degrees C), whereas others are synthesized only at higher temperatures (i.e., above 37 degrees C). We have extensively examined the characteristics of hsp 35 synthesis, one of the most variably synthesized hsps. This hsp is characteristically synthesized at temperatures above 35 degrees C and usually during the first 40 min of heat shock, after which it becomes undetectable. In some experiments, its synthesis is restimulated during later intervals of heat shock. Hsp 35 is also under developmental regulation. It is not synthesized by heat-shocked embryos until the late blastula to early gastrula stage. After this brief period of inducibility, its synthesis is dramatically reduced in mid- to late gastrulae, but reappears in heat-shocked neurulae. We have previously demonstrated that hsp 35 is related to the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The induction of hsp 35 synthesis is inversely correlated with the constitutive levels of GAPDH specific activity. In this paper we document further correlations between the synthesis of hsp 35 and GAPDH specific activity during early Xenopus development.  相似文献   

19.
In this study we have investigated the acquisition of thermotolerance in a Xenopus laevis kidney A6 epithelial cell line at both the level of cell survival and translation. In cell survival studies, A6 cells were incubated at temperatures ranging from 22 to 35 degrees degrees C for 2 h followed by a thermal challenge at 39 degrees degrees C for 2 h and a recovery period at 22 degrees C for 24 h. Optimal acquisition of thermotolerance occurred at 33 degrees degrees C. For example, exposure of A6 cells to 39 degrees degrees C for 2 h resulted in only 3.4% survival of the cells whereas prior exposure to 33 degrees C for 2 h enhanced the survival rate to 69%. This state of thermotolerance in A6 cells was detectable after 1 h at 33 degrees C and was maintained even after 18 h of incubation. Cycloheximide inhibited the acquisition of thermotolerance at 33 degrees C suggesting the requirement for ongoing protein synthesis. The optimal temperature for the acquisition of translational thermotolerance also occurred at 33 degrees C. Treatment of A6 cells at 39 degrees C for 2 h resulted in an inhibition of labeled amino acid incorporation into protein which recovered to approximately 14% of control after 19 h at 22 degrees C whereas cells treated at 33 degrees C for 2 h prior to the thermal challenge recovered to 58% of control levels. These translationally thermotolerant cells displayed relatively high levels of the heat shock proteins hsp30, hsp70, and hsp90 compared to pretreatment at 22, 28, 30, or 35 degrees C. These studies demonstrate that Xenopus A6 cells can acquire a state of thermotolerance and that it is correlated with the synthesis of heat shock proteins.  相似文献   

20.
We have shown that sodium salicylate activates the heat shock promoter and induces the expression of heat shock proteins (hsps), with a concomitant increase in the thermotolerance of cells. To determine whether these effects are generally displayed by nonsteroidal anti-inflammatory drugs (NSAIDs), we examined the effects of a cyclooxygenase inhibitor, indomethacin, and a lipoxygenase inhibitor, nordihydroguaiaretic acid. Both inhibitors up-regulated the hsp promoter at 37 degrees C through the activation of heat shock factors, and increased cellular levels of hsps in mammalian cells, although the degree of the expression of hsps and thermotolerance of cells differed depending on the drugs. Furthermore, NSAIDs such as sodium salicylate and indomethacin suppressed the protein aggregation and apoptosis caused by an expanded polyglutamine tract in a cellular model of polyglutamine disease. These findings suggest that NSAIDs generally induce the expression of hsps in mammalian cells and may be used for the protection of cells against deleterious stressors and neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号