首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine the efficacy of PGF2 alpha treatment on pregnancy and calving rates in autumn-calving suckler beef cows synchronized with progesterone and eCG. The population studied consisted of 124 Charolais and 130 Limousin cows in 13 and 12 beef herds, respectively. In each herd, pairs of cows were formed according to parity, body condition score and calving difficulty. Group 1 received a progesterone releasing intravaginal device (PRID) for 12 d with a capsule containing 10 mg estradiol benzoate at implant insertion and 500 IU eCG at PRID removal (Day 0). Group 2 received the same treatment plus 25 mg i.m. dinoprost at Day -2. Each cow was artificially inseminated 56 h after PRID removal (Day 3). Plasma progesterone concentrations were measured to determine cyclicity prior to treatment in samples take on Days -22 and -12, to confirm the occurrence of ovulation (Day 13) and to determine the early pregnancy rate (Day 26). Serum pregnancy-specific protein B (PSPB) concentrations were determined to assess pregnancy rate at Day 39. The effects of variation factors on pregnancy and calving rates after treatment were studied using logistic mixed models and a Cox model, respectively. There were no significant differences between groups or breeds for the rate of cyclicity before treatment nor for ovulation rate (means, 74.1 and 95.7%, respectively). Cyclicity was, however, influenced by individual factors such as body condition score (OR = 3.36, P = 0.001), parity (OR = 5.4, P = 0.001) and herd factors such as stocking rate (OR = 5.62, P = 0.001). The use of a prostaglandin injection increased pregnancy rate at Day 26 (71.7 vs 56.7%, P = 0.01) and at 39 d (67.7 vs 54.3%, P = 0.02) and the calving rate at induced estrus (64.5 vs 48.5%, P = 0.01). We observed 9 twin calvings (5.6%) which occurred in cyclic cows only before treatment. Cows in Group 2 had a 1.5 greater chance of calving before 300 d following the first AI than cows in Group 1 (P = 0.03). In conclusion, the addition of PGF2 alpha injection, 48 h before PRID removal, increased reproductive efficiency in autumn-calving Charolais and Limousin suckler beef cows compared to a classical estrus synchronization treatment using a PRID + eCG.  相似文献   

2.
The objective of this study was to evaluate protocols for synchronizing ovulation in beef cattle. In Experiment 1, Nelore cows (Bos indicus) at random stages of the estrous cycle were assigned to 1 of the following treatments: Group GP controls (nonlactating, n=7) received GnRH agonist (Day 0) and PGF2alpha (Day 7); while Groups GPG (nonlactating, n=8) and GPG-L (lactating, n=9) cows were given GnRH (Day 0), PGF2alpha (Day 7) and GnRH again (Day 8, 30 h after PGF2alpha). A new follicular wave was observed 1.79+/-0.34 d after GnRH in 19/24 cows. After PGF2alpha, ovulation occurred in 19/24 cows (6/7 GP, 6/8 GPG, 7/9 GPG-L). Most cows (83.3%) exhibited a dominant follicle just before PGF2alpha, and 17/19 ovulatory follicles were from a new follicular wave. There was a more precise synchrony of ovulation (within 12 h) in cows that received a second dose of GnRH (GPG and GPG-L) than controls (GP, ovulation within 48 h; P<0.01). In Experiment 2, lactating Nelore cows with a visible corpus luteum (CL) by ultrasonography were allocated to 2 treatments: Group GPE (n=10) received GnRH agonist (Day 0), PGF2alpha (Day 7) and estradiol benzoate (EB; Day 8, 24 h after PGF2alpha); while Group EPE (n=11), received EB (Day 0), PGF2alpha (Day 9) and EB (Day 10, 24 h after PGF2alpha). Emergence of a new follicular wave was observed 1.6+/-0.31 d after GnRH (Group GPE). After EB injection (Day 8) ovulation was observed at 45.38+/-2.03 h in 7/10 cows within 12 h. In Group EPE the emergence of a new follicular wave was observed later (4.36+/-0.31 d) than in Group GEP (1.6+/-0.31 d; P<0.001). After the second EB injection (Day 10) ovulation was observed at 44.16+/-2.21 h within 12 (7/11 cows) or 18 h (8/11 cows). All 3 treatments were effective in synchronizing ovulation in beef cows. However, GPE and, particularly, EPE treatments offer a promising alternative to the GPG protocol in timed artificial insemination of beef cattle, due to the low cost of EB compared with GnRH agonists.  相似文献   

3.
Anestrus is common during the postpartum period in high-producing dairy cows. In a previous investigation, we were able to diagnose persistent follicles of 8 to 12 mm in anestrous cows. This report describes 2 consecutive studies. The objectives of the first were to 1) assess the association of persistent follicles with anestrus; and 2) evaluate 2 therapeutic treatments. In the second study, we compared the effectiveness of the best treatment established in Study 1 with the Ovsynch protocol. For Study 1, anestrous cows were considered to have a persistent follicle if it was possible to observe a single follicular structure > 8 mm in the absence of a corpus luteum or a cyst in 2 ultrasonographic examinations performed at an interval of 7 d. At diagnosis (Day 0), cows were assigned to 1 of 3 treatment groups. Cows in Group GnRH/PGF (n=17) were treated with 100 microg GnRH i.m., and 25 mg PGF2alpha i.m. on Day 14. Cows in Group PRID (n=18) were fitted with a progesterone releasing intravaginal device (PRID, containing 1.55 g of progesterone) for 9 d and were given 100 microg GnRH i.m. at the time of PRID insertion, and 25 mg PGF2alpha i.m. on Day 7. Cows in Group Control (n=18) received no treatment. The animals were inseminated at observed estrus and were monitored weekly by ultrasonography until AI or 5 weeks from diagnosis. Blood samples were also collected on a weekly basis for progesterone determination. The mean size of persistent follicles on Day 0 was 9.4 +/- 0.04 mm. Progesterone levels were < 0.2 ng/mL during the first 35 d in 16 of 18 Control cows. Cows in the PRID group showed a lower persistent follicle rate (16.7% < 70.6% < 88.9%; P < 0.0001; PRID vs GnRH/PGF vs Control, respectively); a higher estrus detection rate (83.3% > 29.4% > 11.1%; P < 0.0001) and a higher pregnancy rate (27.8% > 5.9% > 0%; P = 0.02). For the second study, 145 cows with persistent follicles were randomly assigned to 1 of 2 treatment groups: cows in Group Ovsynch (n=73) were treated with 100 microg GnRH i.m. on Day 0, 25 mg PGF2alpha i.m. on Day 7, and 100 microm GnRH i.m. 32 h later. Cows in this group were inseminated 16 to 20 h after the second GnRH dose (Ovsynch protocol). Cows in Group PRID (n=72) were treated as those in the PRID group of Study 1, and were inseminated 56 h after PRID removal. Cows in the PRID group showed a higher ovulation rate (84.8% > 8.2%: P < 0.0001); a higher pregnancy rate (34.2% > 4.1%; P < 0.0001) and lower follicular persistence rate (22.2% < 63%; P < 0.0001) than those in Ovsynch. Our results indicate that persistent follicles affect cyclic ovarian function in lactating dairy cows. Cows with persistent follicles can be successfully synchronized and time inseminated using progesterone, GnRH and PGF2alpha but show a limited response to treatment with GnRH plus PGF2alpha.  相似文献   

4.
The objective of this study was to determine the reproductive performance of lactating dairy cows treated with GnRH and/or PGF2a for synchronization of estrus and ovulation. Between Days 43 and 57 post partum, a total of 374 dairy cows was divided into 4 groups. Cows in Group 1 (n = 62) were treated with 25 mg, i.m. PGF2a on Days 43 and 57; cows in Group 2 (n = 65) were not treated at this time; cows in Group 3 (n = 118) were treated with 100 ug, i.m. GnRH on Day 50, 25 mg, i.m. PGF2a on Day 57, 100 ug, i.m. GnRH on Day 59, and time-inseminated 16 h later; cows in Group 4 (n = 129) were treated with 25 mg, i.m. PGF2a once on Day 57. Cows in Groups 1 and 4 were inseminated at an induced estrus within 7 d after the last PGF2a treatment, and cows in Group 2 were inseminated at a noninduced estrus within a corresponding period of time. Conception rate, estrus detection rate and pregnancy rate were analyzed using logistic regression, and controlled for lactation number, body condition score and time of year. Days from calving to conception were analyzed using the GLM procedures of SAS, and the model included group, body condition score, lactation number, time of year, and their interactions. Cows in Group 3 had a significantly higher pregnancy rate than cows in Groups 1, 2 and 4. Orthogonal contrasts of mean days from calving to conception showed that cows in Group 3 had significantly (P < 0.01) less days from calving to conception than cows in Group 1 and Group 4. There was a significant effect of time of year on pregnancy rate and days from calving to conception, but there was no interaction between time of year and these reproductive characteristics. There was no effect of body condition score and lactation number on the reproductive characteristics evaluated. From the results of this study, it was concluded that better reproductive performance was observed in cows inseminated at a synchronized ovulation than in those inseminated at a synchronized estrous period.  相似文献   

5.
The present work evaluated low-cost protocols for timed artificial insemination (TAI) in beef cattle. In Experiment 1, cycling nonlactating Nelore cows (Bos indicus, n=98) were assigned to the following groups: GnRH-PGF (GP) and GnRH-PGF-GnRH (GPG), whereas cycling (n=328, Experiment 2) or anestrus (n = 225, Experiment 3) lactating (L) cows were divided into 3 groups: GP-L, GPG-L and GnRH-PGF-Estradiol benzoate (GPE-L). In Experiment 4, lactating cows (n=201) were separated into 3 groups: GP-L, GPE-L and G/2PE-L. Animals from Experiment 1, 3 and 4 were treated (Day 0), at random stages of the estrous cycle, with 8 microg of buserelin acetate (GnRH agonist) intramuscularly (i.m.), whereas in Experiment 2 half of the cows received 8 and the other half 12 microg of GnRH (i.m.). Seven days later (D 7) all animals were treated with 25 mg of dinoprost trometamine (PGF2alpha, i.m.) except those cows from the G/2PE-L group which received only 1/2 dose of PGF2alpha (12.5 mg) via intravulvo-submucosa (i.v.s.m.). After PGF2alpha injection the animals from the control groups (GP and GP-L) were observed twice daily to detect estrus and AI was performed 12 h afterwards. The cows from the other groups received a second GnRH injection (D 8 in GPG-L and d9 in GPG groups) or one injection of estradiol benzoate (EB, 1.0 mg, D 8 in GPE-L group). All cows from GPG and GPG-L or GPE-L groups were AI 20 to 24 or 30 to 34 h, respectively, after the last hormonal injection. Pregnancy was determined by ultrasonography or rectal palpation 30 to 50 days after AI. In the control groups (GP and GP-L) percentage of animals detected in heat (44.5 to 70.3%) and pregnancy rate (20 to 42%) varied according to the number of animals with corpus luteum (CL) at the beginning of treatment. The administration of a second dose of GnRH either 24 (Experiment 2) or 48 h (Experiment 1) after PGF2alpha resulted in 47.7 and 44.9% pregnancy rates, respectively, after TAI in cycling animals. However, in anestrus cows the GPG treatment induced a much lower pregnancy rate (14.9%) after TAI. The replacement of the second dose of GnRH by EB (GPE-L) resulted in a pregnancy rate (43.3%) comparable to that obtained after GnRH treatment (GPG-L, 47.7%, Experiment 2). Furthermore, the use of 1/2 dose of PGF2alpha (12.5 mg i.v.m.s., Experiment 4) resulted in pregnancy rate (43.5%) similar to that observed with the full dose (i.m.). Both protocols GPG and GPE were effective in synchronizing ovulation in cycling Nelore cows and allowed approximately a 45% pregnancy rate after TAI. Additionally, the GPE treatment is a promising alternative to the use of GPG in timed AI of beef cattle, due to the low cost of EB when compared to GnRH agonists.  相似文献   

6.
Estrus synchronization contributes to optimizing the use of time, labor, and financial resources by shortening the calving season, in addition to increasing the uniformity of the calf crop. We determined whether acceptable pregnancy rates could be achieved after synchronization of ovulation and fixed-time artificial insemination (AI) in peripuberal replacement beef heifers using gonadotropin-releasing hormone (GnRH) and PGF2alpha. Crossbred heifers from two herds (MH, n=239; SS, n=330) were wintered at a single location. After a prebreeding examination revealed that 55 heifers had a reproductive tract score (RTS) of 1 (infantile reproductive tracts), they were culled and the remaining heifers were assigned randomly to one of three treatment groups: administration of 25mg PGF2alpha i.m. on Days -12 and 0 followed by estrus detection and insemination between 10 and 14 h after an observed estrus (Control; n=173); administration of 100 microg GnRH i.m. on Day -6, followed by 25 mg PGF2alpha i.m. on Day 0, then fixed-time AI and administration of 100 microg GnRH i.m. on Day +2 (GPG; n=172); and, treatment as for group GPG in addition to administration of 100 microg GnRH i.m. on Day -12 (GGPG; n=169). Bulls were introduced 10 days after AI for 60 days to breed heifers which did not conceive after AI (clean-up bulls). On Days -12, -6, and 0 transrectal ultrasonography was used to monitor ovarian structures in a subset of heifers (30 per treatment). At 30-35 days after AI, ultrasound was used to determine the presence of a viable fetus. Presence of a fetus and stage of pregnancy were determined via palpation per rectum 61-63 days after the conclusion of the breeding season. Heifers in the MH herd (309+/-1.9 kg) were heavier (P<0.001) than those in the SS herd (283+/-1.7 kg) at initiation of the breeding season. Synchronized pregnancy rates were greater (P<0.05) in GGPG (25.4%) and GPG (22.1%) than Control (12.7%) heifers. Pregnancy rates were 9, 21, 32, or 31% for heifers with RTS of 2, 3, 4, or 5, respectively. The average diameter of 22 follicles induced to ovulate in heifers treated with GnRH (GPG and GGPG treatments) was 14.2+/-0.8 mm (range=10.0-23.6 mm). In conclusion, a fixed-time ovulation synchronization program using GnRH and PGF2alpha improved pregnancy rates in peripuberal, lightweight replacement beef heifers.  相似文献   

7.
Postpartum beef cows and heifers in Group 1 received 8 mug of buserelin on Day 0 (the beginning of the experiment) and 500 mug of cloprostenol (PGF) on Day 6 (GnRH I, n = 54). In Group 2 (GnRH II, n = 54), the females were injected with buserelin on Day 0 (8 mug) and Day 3 (4 mug), and PGF on Day 6 and Day 9 for females not detected in estrus previously. Animals were bred by AI 12 hours after the onset of estrus. Blood samples were collected on Day -11 and Day 0 to assess cyclicity and on Day 3 and Days 6 to 12 to examine luteal activity. Progesterone levels did not differ between the 2 groups between Days 0 to 9. In both groups, the proportion of spontaneous estruses from Days 0 to 6 was reduced. Precision of estrus was higher (P < 0.005) in the GnRH II group than in the GnRH I group of cows that were detected in estrus between Days 6 and 9. The synchronization rate, interval to estrus, pregnancy and conception rates were similar in GnRH I and GnRH II groups. The conception rate and interval to estrus were similar in cyclic and acyclic cows. Increasing the number of buserelin injections enhanced the precision of estrus, but not the conception rate, without any detrimental effect on luteal activity and induced more estruses in postpartum acyclic beef cattle.  相似文献   

8.
This study was designed to compare two timed insemination protocols, in which progesterone, GnRH and PGF2alpha were combined, with the Ovsynch protocol in presynchronized, early postpartum dairy cows. Reproductive performance was also evaluated according to whether cows showed high or low plasma progesterone concentration, at the onset of treatment. One hundred and six early postpartum dairy cows were presynchronized with two cloprostenol treatments given 14 days apart, and then assigned to one of the three treatment groups. Treatments for the synchronization of estrus in all three groups started 7 days after the second cloprostenol injection, which was considered Day 0 of the actual treatment regime. Cows in the control group (Ovsynch, n=30) were treated with GnRH on Day 0, PGF2alpha on Day 7, and were given a second dose of GnRH 32 h later. Cows in group PRID (n=45) were fitted with a progesterone releasing intravaginal device (PRID) for 9 days, and were given GnRH at the time of PRID insertion and PGF2alpha on Day 7. In group PRID/GnRH (n=31), cows received the same treatment as in the PRID group, but were given an additional GnRH injection 36 h after PRID removal. Cows were inseminated 16-20 h after the administration of the second GnRH dose in the Ovsynch group, and 56 h after PRID removal in the PRID and PRID/GnRH groups. Ovulation rate was determined on Day 11 postinsemination by detecting the presence of a corpus luteum in the ovaries. Lactation number, milk production, body condition at the onset of treatment and treatment regime were included as potential factors influencing ovulation and pregnancy after synchronization. Logistic regression analysis for cows with high and low progesterone concentration on treatment Day 0 revealed that none of the factors included in the models, except the interaction between progesterone and treatment regime, influenced the risk of ovulation and pregnancy significantly. In cows with high progesterone concentration at treatment onset, Ovsynch treatment resulted in a significantly improved pregnancy rate over values obtained following PRID or PRID/GnRH treatment. In cows with low progesterone concentration, PRID or PRID/GnRH treatment led to markedly increased ovulation and pregnancy rates with respect to Ovsynch treatment. These findings suggest the importance of establishing ovarian status in early postpartum dairy cows before starting a timed AI protocol, in terms of luteal activity assessed by blood progesterone.  相似文献   

9.
The objective of this study was to determine the effect of GnRH (100 microg i.m.) treatment 5 and 15 days after timed insemination (TAI) on pregnancy rate and pregnancy loss in lactating dairy cows subjected to synchronization of ovulation. The study included 831 lactating dairy cows subjected to a Presynch-Ovsynch protocol for first service. On the day of TAI (Day 0), cows were randomly assigned to one of four experimental groups. Cows in Group 1 (n = 214) were treated with GnRH on Day 5; cows in Group 2 (n = 209) were treated with GnRH on Day 15; cows in Group 3 (n = 212) were treated with GnRH on both Day 5 and Day 15; cows in Group 4 (n = 196) were not treated. Pregnancy rate was evaluated at Day 27 and Day 45 after TAI. The interestrus interval and the proportion of cows diagnosed not pregnant based on expression of estrus and insemination before pregnancy diagnosis on Day 27 were determined. The results of this study are: (1) GnRH treatment on Day 5 or Day 15 did not increase pregnancy rate, or reduce pregnancy loss between Day 27 and Day 55 after TAI; (2) cows treated with GnRH on both Day 5 and Day 15 had a lower (P < 0.01) proportion of cows diagnosed not pregnant based on expression of estrus before ultrasonography on Day 27 (26.5%) compared to control cows (52.9%), and these cows had an extended (P = 0.05) interestrus interval (23.4 days vs. 21.5 days); and (3) GnRH treatment on both Day 5 and Day 15 after TAI reduced pregnancy rate on Day 27 (36.8% vs. 44.4% for control cows; P < 0.03) and Day 55 (28.3% vs. 36.2% for control cows; P < 0.01). Therefore, strategies to stimulate CL function using multiple doses of GnRH during the luteal phase need to consider potential negative effects.  相似文献   

10.
Cystic ovarian disease is an important cause of reproductive failure and economic loss for the dairy industry. This report describes two consecutive studies. The objective of the first was to evaluate the response of cows with ovarian cysts to two therapeutic treatments. In the second study, we compared the effectiveness of the best treatment established in Study 1 with that of the Ovsynch protocol. For Study 1, cows were considered to have an ovarian cyst if it was possible to observe a single follicular structure with a follicular antrum diameter > 25 min in the absence of a corpus luteum in three ultrasonographic examinations performed at 7 days intervals. At diagnosis (Day 0), cows were assigned to one of two treatment groups. Cows in Group GnRH/CLP (n = 31) were treated with 100 microg GnRH i.m. and 500 microg cloprostenol (CLP) i.m. on Day 14. Cows in Group GnRH-CLP/CLP(n = 32) were treated with 100 microg GnRH i.m. plus 500 microg CLP i.m. on Day 0, and 500 microg CLP i.m. on Day 14. The animals were inseminated at observed estrus and monitored weekly by ultrasonography for 4 weeks or until Al. Cows in the GnRH-CLP/CLP group showed a lower cystic persistence rate (15.6% < 45.2%; P = 0.01); a higher estrus detection rate (84.4% > 41.9%; P < 0.0001); a higher ovulation rate (75% versus 32.3%; P < 0.0001) and a higher early response rate (31% > 3%; P = 0.02) than those in the GnRH/CLP group. For the second study, 128 cows with ovarian cysts were randomly assigned to one of two treatment groups: cows in Group Ovsynch (n = 64) were treated with 100 microg GnRH i.m. on Day 0, 500 microg CLP on Day 7, and 100 microm GnRH i.m. 36 h later. Cows in this group were inseminated 24 h after the second GnRH dose (Ovsynch protocol). Cows in Group GnRH-CLP/CLP/GnRH (n = 64)were treated as those in the GnRH-CLP/CLP group of Study 1 but received GnRH 32 h after the second CLP treatment and were inseminated 24 h after this. A further group of cows without ovarian cysts inseminated at natural estrus served as the Group Control (n = 64). Cows in the GnRH-CLP/CLP/ GnRH group showed a lower cystic persistence rate (10.9% < 46.9%; P < 0.0001); higher ovulation rate (79.7% > 17.2%; P < 0.0001); higher return to estrus rate (34.3% > 12.5%; P < 0.01) and higher pregnancy rate (28.1% > 3.1%; P < 0.01) than those in Ovsynch; and a similar pregnancy rate (28.1% versus 35.9%) to Control cows. These findings indicate that lactating cows with ovarian cysts can be successfully synchronized and time inseminated using a protocol that combines GnRH and CLP, starting treatment by simultaneously administering both products. This protocol also allows the insemination of cows showing estrus within the first week of treatment. Ovarian cysts were less responsive when treatment was started with GnRH alone.  相似文献   

11.
The efficacy of GnRH and PGF2alpha (7-day injection interval) for estrus synchronization is diminished by estrous expression before PGF2alpha (premature estrus; PE). Effects of modifications to GnRH-PGF2alpha protocols on the incidence of PE and other indicators of reproductive performance were evaluated. In Experiment 1, Angus-based crossbred cows (n=51) received 25 mg of PGF2alpha i.m. on Day 0. Animals were randomly assigned by parity and interval postpartum to receive GnRH 100 microg i.m. on either Day -7 or Day -6. Estrous detection and AI were conducted from Day -3 to Day 5. Treatment had no effect on the incidence of PE, estrous response, conception rate per AI or synchronized pregnancy rate (6- vs. 7-day interval; 8 vs. 15%; 92 vs. 93%; 77 vs. 76%; 71 vs. 70%, respectively). In Experiment 2, Angus cows (n=150) received GnRH 100 microg i.m. on Day -7 and 25 mg PGF2alpha i.m. on Day 0. Animals were randomly assigned by parity, interval postpartum, and body condition score to receive either no further treatment (Control) or 0.5 mg melengestrol acetate/hd/d from Day -7 to Day -1 (MGA). Estrous detection and AI were conducted from Day -2 to Day 7. Fewer (P < 0.05) MGA-treated cows were detected in PE (0%) compared to controls (7%). Treatment had no effect on estrous response or synchronized pregnancy rates (Control vs. MGA; 78 vs. 84%; 52 vs. 60%, respectively). Conception rate per AI of cows > or = 60 days postpartum were not affected by treatment (Control vs. MGA; 79 vs. 73%) however, control cows < 60 days postpartum tended (P < 0.10) to have lower conception rates per AI (39%) than did their MGA-treated counterparts (69%). In summary, 6- and 7-day GnRH-PGF2alpha injection intervals resulted in similar synchronized reproductive performance. Inclusion of MGA feeding between GnRH and PGF2alpha injections eliminated the occurrence of premature estrus and improved conception rate per AI of late-calving cows.  相似文献   

12.
Two experiments (Experiment 1, 185 cows in 1996/97; Experiment 2, 168 cows in 1997/98) were conducted with Prim Holstein dairy cattle in the Mayenne region of France to investigate subestrus. Cows which had not been observed in estrus since calving were allocated alternately to treatment groups between 60 and 90 d post partum as follows: Experiment 1-Group 1: GnRH (Day 0, 100 micrograms i.m.), PGF2 alpha (Day 7, 25 mg i.m.), GnRH (Day 9, 100 micrograms i.m.) and AI (Day 10); Group 2: PGF2 alpha (Day 0, 25 mg i.m.), AI at estrus, or, if estrus was not observed, a second PGF2 alpha injection on Day 13, and AI on Day 16 and Day 17. Treatments in Experiment 2 were as follows: Group 1: as Experiment 1-Group 1 but AI at the observed estrus after Day 0, or at Day 10 if estrus was not observed; Group 2: as Experiment 1--Group 2, however, if a second PGF2 alpha injection was given on Day 13, AI at the observed estrus. Progesterone was measured in serum at Day 0 and in milk at AI. Pregnancy diagnosis was performed by measuring bovine pregnancy-specific protein B (bPSPB; Day 50 +/- 3) and confirmed by ultrasonography when the result was doubtful. In Experiment 1, farmers observed 47/101 (46.9%) Group 1 cows in estrus, 33/91 cows on Day 10 and 10 cows before Day 10. The progesterone concentrations were compatible with estrus in 69/86 (80%) cows on Day 10. In Group 2, 36/83 (43.4%) cows were inseminated after the first PGF2 alpha injection. After the second PGF2 alpha injection, only 29/43 (67%) cows had a low progesterone concentration at AI. Pregnancy rates were 36.1 and 32.5% for Groups 1 and 2, respectively. In Experiment 2, estrus was observed in 31/93 (33.7%) Group 1 cows. In Group 2, 51/75 (66%) cows were inseminated after the first injection of PGF2 alpha, 13/75 (17.3%) cows after the second injection, while 11/75 (14.7%) were not observed in estrus. Pregnancy rates were 53.7 and 53.3% in Groups 1 and 2, respectively. In conclusion, it is recommended that subestrus be treated with PGF2 alpha followed by AI at the observed estrus when estrus detection is good, while the use of GnRH + PGF2 alpha + GnRH is recommended when estrus detection is poor.  相似文献   

13.
Synchronization of ovulation in dairy cows using PGF2alpha and GnRH   总被引:2,自引:0,他引:2  
This paper reports a new method for synchronizing the time of ovulation in cattle using GnRH and PGF(2alpha). In Experiments 1 and 2, lactating dairy cows (n=20) ranging from 36 to 280 d postpartum and dairy heifers (n=24) 14 to 16 mo old were treated with an intramuscular injection of 100 mug GnRH at a random stage of the estrous cycle. Seven d later the cattle received PGF(2alpha) to regress corpora lutea (CL). Lactating cows and heifers received a second injection of 100 mug GnRH 48 and 24 h later, respectively. Lactating cows were artificially inseminated 24 h after the second GnRH injection. Ovarian morphology was monitored daily by trans-rectal ultrasonography from 5 d prior to treatment until ovulation. In Experiment 3, the flexibility in the timing of hormonal injections with this synchronization protocol was evaluated by randomly assigning 66 lactating dairy cows to 3 different treatment groups. Lactating cows received the injection of PGF(2alpha) 48 (Group 1), 24 (Group 2), and 0 h (Group 3) prior to the second injection of GnRH, which was administered at the same time in each group to ensure the second injection of GnRH was given when follicles were at a similar stage of growth. In Experiments 1 and 2, the first injection of GnRH caused ovulation and formation of a new or accessory CL in 18 20 cows and 13 24 heifers. In addition, this injection of GnRH initiated or was coincident with initiation of a new follicular wave in 20 20 lactating cows and 18 24 heifers. Corpora lutea regressed after PGF(2alpha) in 20 20 cows and in 18 24 heifers. All cows and 18 24 heifers ovulated a newly formed dominant follicle between 24 and 32 h after the second injection of GnRH. Ten of 20 cows conceived to the timed artificial insemination. In Experiment 3, the conception rate in Groups 1 and 2 were greater than in Group 3, (55 and 46 % vs 11%, respectively). In summary, this protocol could have a major impact on managing reproduction in lactating dairy cows, because it allows for AI to occur at a known time of ovulation and eliminates the need for detection of estrus.  相似文献   

14.
Simultaneous injections of prostaglandin F2alpha (PGF) and gonadotropin releasing hormone (GnRH) or saline were given to 32 diestrous dairy cows to test the ability of GnRH to improve estrous and ovulation synchrony beyond that of PGF alone. Cows were randomly assigned to receive PGF on Day 8 or Day 10 of the estrous cycle (estrus = Day 0), and all cows were further assigned to simultaneous injection of GnRH or saline. Corpus luteum (CL) regression, return to estrus and follicular activity were monitored by plasma progesterone assay, twice-daily estrous detection and ultrasonographic examination, respectively. Plasma progesterone concentrations declined to <1.0 ng/ml at 24 hours after PGF in all cows and were not affected by GnRH. Gonadotropin releasing hormone inducted premature ovulation or delayed return to estrus in 7 of 8 cows treated with PGF/GnRH on Day 8 and 3 of 8 cows treated with PGF/GnRH on Day 10. Further, cows with premature GnRH-induced ovulations failed to develop and maintain a fully functional CL, and all returned to estrus 7 to 13 days after the induced ovulation. These data indicate that GnRH administered simultaneously with a luteolytic dose of PGF disrupts follicular dynamics and induces premature ovulation or delays normal return to estrus and, therefore, does not improve the synchrony of estrus and ovulation achieved with PGF alone.  相似文献   

15.
Lactating Holstein cows (n=288) were grouped as pairs at parturition and randomly assigned to two treatments (control, C vs intervenient treatment, T). The reproductive management of the Group C cows (n=130) consisted of the intramuscular administration of 500 microg PGF2alpha analogue (PG) on Days 28 and 63 postpartum and breeding on the basis of estrus signs with the a.m.-p.m. rule after Day 63. Cows that were not bred by 77 d postpartum received another injection of PG and were bred at estrus or 84 h after PG treatment. Pregnancy diagnoses were perfomed by palpation of the uterus per rectum 42 to 48 d after AI. Cows in the T group (n=139) received intramuscular injections of 100 microg GnRH 14 d and PG 28 d after calving. On Day 56 postpartum, cows were given a second dose of GnRH followed by PG on Day 63 postpartum and a third GnRH injection 48 h after PG (OvSynch). Cows were inseminated at a fixed time (22+/-1 h) after GnRH. Five days after the fixed-time insemination cows were given 1500 IU hCG i.m.. Group C and T cows that returned to service or were diagnosed as non-pregnant continued to receive PG at intervals of 14 d with breeding at estrus or 84 h after the second PGF2alpha dose. A sustained increase in milk progesterone concentration was observed in 59.0% of T cows after GnRH administration on Day 14. A similar rise in milk progesterone concentrations was observed in 53.8% of C cows. The PG on Day 28 induced luteolysis more in Group T cows (53.2%) than in Group C cows (36.9%). The PG on Day 63 reduced milk progesterone concentrations to basal levels in 50.7% of T and 49.2% of Group C animals. The first service pregnancy rates (T, 40.3% vs C, 36.2%) and the overall pregnancy rates (all services, T, 83.5% vs C, 86.9%) were not different between the two groups. The two treatments did not differ in the interval from first service to pregnancy, calving to pregnancy or in calving interval, number of services per pregnancy or culling rates.  相似文献   

16.
The objectives of the present study were to determine the effects of resynchronization with GnRH on Day 21 after artificial insemination (AI) on pregnancy rate and losses of pregnancy in lactating dairy cows. Holstein cows (n=585) on two dairy farms were assigned to one of two treatments in a randomized complete block design. On Day 21 after a pre-enrollment AI, animals assigned to the resynchronization (RES) group received 100 microg of GnRH i.m., whereas animals in the control (CON) group received no treatment. All animals were examined ultrasonographically on Days 21 and 28 after AI, and blood samples were taken for progesterone measurement on Day 21. Pregnancy was diagnosed on Day 28 and reconfirmed 14 days later. Nonpregnant cows on Day 28 were inseminated using timed AI after the completion of the Ovsynch protocol 10 and 17 days after enrollment in the study for RES and CON groups, respectively. Progesterone concentration > or =2.35 ng/ml was used as an indicator of pregnancy on Day 21. For RES and CON cows, pregnancy rate at Days 21 (70.9% versus 73.0%, P<0.56), 28 (33.1% versus 33.6%; P<0.80) and 42 (27.0% versus 26.8%; P<0.98) after the pre-enrollment AI did not differ. Administration of GnRH on Day 21 after AI had no effect on pregnancy loss in RES and CON groups from days 21 to 28 (53.2% versus 53.5%; P<0.94) and days 28 to 42 (17.9%; P<0.74) after AI. Pregnancy rate after the resynchronization period was similar for both treatment groups. Resynchronization with GnRH given on Day 21 after AI for initiation of a timed AI protocol prior to pregnancy diagnosis does not affect pregnancy rate and pregnancy loss in lactating dairy cows.  相似文献   

17.
The aim of this study was to evaluate the effect of delaying ovulation subsequent to superstimulation of follicular growth in beef cows (Bos indicus) on embryo recovery rates and the capacity of embryos to establish pregnancies. Ovulation was delayed by three treatments using either progesterone (CIDR-B) or a GnRH agonist (deslorelin). Multiparous Nelore cows (n = 24) received three of four superstimulation treatments in an incomplete block design (n = 18 per group). Cows in Groups CTRL, P48 and P60 were treated with a CIDR-B device plus estradiol benzoate (EB, 4 mg, i.m.) on Day-5, while cows in Group D60 were implanted with deslorelin on Day-7. Cows were superstimulated with FSH (Folltropin-V, 200 mg), from Day 0 to 3, using twice daily injections in decreasing amounts. All cows were treated with a luteolytic dose of prostaglandin on Day 2 (08:00 h). CIDR-B devices were removed as follows: Group CTRL, Day 2 (20:00 h); Group P48, Day 4 (08:00 h); Group P60, Day 4 (20:00 h). Cows in Group CTRL were inseminated at 10, 20 and 30 h after first detected estrus. Ovulation was induced for cows in Group P48 (Day 4, 08:00 h) and Groups P60 and D60 (Day 4, 20:00 h) by injection of LH (Lutropin, 25 mg, i.m.), and these cows were inseminated 10 and 20 h after treatment with LH. Embryos were recovered on Days 11 or 12, graded and transferred to synchronized recipients. Pregnancies were determined by ultrasonography around Day 100. Data were analyzed by mixed procedure, Kruskal-Wallis and Chi-square tests. The number of ova/embryos, transferable embryos (mean +/- SEM) and pregnancy rates (%) were as follows, respectively: Group CTRL (10.8+/-1.8, 6.1+/-1.3, 51.5), P48 (12.6+/-1.9, 7.1+/-1.0, 52.3), P60 (10.5+/-1.6, 5.7+/-1.3, 40.0) and D60 (10.3+/-1.7, 5.0+/-1.2, 50.0). There were no significant differences among the groups (P > 0.05). It was concluded that fixed time AI in association with induced ovulation did not influence embryo recovery. Furthermore, pregnancy rates in embryos recovered from cows with delayed ovulation were similar to those in embryos obtained from cows treated with a conventional superstimulation protocol.  相似文献   

18.
Gümen A  Seguin B 《Theriogenology》2003,60(2):341-348
The objectives of this study evaluating induction of ovulation in early postpartum dairy cows were to: compare two methods of GnRH (100 mcg) administration (i.m. route and s.c. implant), and determine if prostaglandin F(2alpha) (PGF) causes release of LH or ovulation similar to that reported for GnRH. In trial #1, serum LH peaked at 2h after i.m. administration of GnRH and was declining at 4h. The s.c. GnRH implant also caused an elevation in serum LH at 2 and 4h after treatment, with LH declining at 6h. Serum LH was unchanged in control cows. Experimental treatment caused ovulation in 4 of 14 GnRH i.m. treated cows, 4 of 12 GnRH implanted cows and 0 of 13 control cows. Parity had no effect on LH response but did affect resulting ovulation rate as multiparous cows were more likely to ovulate than were primiparous cows in response to either GnRH treatment. All cows that ovulated had a follicle larger than 12 mm at the time of treatment. In trial #2, serum LH increased as before after i.m. administration of GnRH, however, serum LH was unchanged in cows treated with PGF or saline. Gonadotropin releasing hormone caused more cows to ovulate than did PGF or saline treatments, and GnRH shortened the interval from treatment to the onset of CL function over the PGF treatment; 13.9+/-2.6, 28.2+/-4.1 and 22.3+/-4.1 days for GnRH, PGF and saline, respectively. In summary, there was no difference in the ability of s.c. implantation and i.m. administration of GnRH to cause ovulation. Prostaglandin F(2alpha) did not cause release of LH or ovulation. In 22 early postpartum dairy cows treated with 100 mcg GnRH i.m. in these two trials, nearly all cows (95%) responded with a release of LH but only 45% (10/22) responded with an ovulation and subsequent formation of a CL.  相似文献   

19.
A previous study showed that noncyclic dairy cows treated with 10 microg of GnRH and a progesterone-releasing CIDR insert on Day 0, 25 mg of PGF2alpha and CIDR removal on Day 7, followed by 1 mg estradiol benzoate on Day 9 for those cows that still had not shown estrus (CGPE program) had higher conception rate (47% vs. 29%) than cows treated only with CIDR and estradiol benzoate as above (CE program). This study was to investigate the mechanisms by which the CGPE program improved conception rate compared with the CE program. Sixteen noncyclic Holstein-Friesian cows were randomly assigned to 2 groups balanced for the size and growth pattern of the dominant follicles, which were determined by ultrasonography over a 3-d period. One group received the above CGPE treatment, and the other group received the CE treatment. Follicular and luteal development were monitored by daily ultrasonography. Blood samples were collected daily from Day -2 to Day 11, and thereafter milk samples were collected thrice weekly for a further 24 d. Blood and milk samples were analyzed for progesterone. The GnRH treatment induced ovulation in 7 of 8 cows, resulting in elevated (P<0.05) progesterone concentrations between Days 4 and 7 for cows in the CGPE group. All induced CL underwent luteolysis by 24 h after PGF2alpha treatment. Within 5 d of CIDR removal, 7 of 8 cows in both the CE and CGPE groups ovulated. The interval from emergence of the ovulatory follicle to ovulation was similar (P=0.32) but less (P<0.05) variable for the CGPE group (9.0+/-0.3 d) compared with the CE group (10.3+/-1.2 d). Progesterone concentration in milk samples was similar between the two groups up to 10 d after ovulation. In summary, the GnRH treatment induced ovulation or turnover of dominant follicles, induced a synchronized initiation of a new follicular wave, and increased the progesterone concentration from 4 d after treatment. These could be the reasons for the increased conception rate of cows treated with the CGPE program.  相似文献   

20.
Xu ZZ  Burton LJ 《Theriogenology》1998,50(6):905-915
In a previous study we showed that estrus synchronization with 2 treatments of PGF2 alpha 13 d apart reduced conception rate at the synchronized estrus and that this reduction occurred mainly in cows in the early luteal phase at the second PGF2 alpha treatment. The objective of the present study was to determine the efficacy of a synchronization regimen in which PGF2 alpha was administered during the mid- to late-luteal phase to cows that had previously been synchronized with progesterone. Spring-calving cows from 6 dairy herds were used in this study. On Day -32 (Day 1 = the start of the breeding season), cows that had calved 2 or more weeks ago were randomly assigned to a synchronization (S, n = 732) or control (C, n = 731) group. Cows in Group S were treated with an intravaginal progesterone device (CIDR) for 12 d from Day -32 to Day -20, while those in Group C were left untreated. Similar percentages of cows in Group S (80.6%) and C (82.9%) had cycled by Day -7. The CIDR treatment synchronized the onset of estrus, resulting in 92.9% of cows in estrus being detected within 7 d after CIDR removal. Cows in Group S that had cycled by Day -7 were treated with PGF2 alpha (25 mg, i.m., Lutalyse) on Day -2. Cows in both groups that were anestrous on Day -7 were treated with a combination of progesterone and estradiol benzoate (EB) to induce estrus and ovulation (CIDR and a 10 mg EB capsule on Day -7, CIDR removal on Day -2, and injection of 1 mg EB 48 h after CIDR removal). The PGF2 alpha treatment synchronized the onset of estrus in 87.5% of the cows. Group S and C cows had similar conception rates to first (61.0 vs 58.3%) and second (58.4 vs 60.9%) AI; similar pregnancy rates over the AI period (82.8 vs 79.2%) and over the whole breeding season (91.9 vs 90.6%); and required a similar number of services per pregnancy to AI (1.7 vs 1.8). The interval from the start of the breeding season to conception for cows conceiving to AI or to combined AI and natural mating was shorter (P < 0.001) by 5.7 and 6.2 d, respectively, for the Group S cows. It is concluded that the treatment regimen tested in the present study achieved satisfactory estrus synchronization, had no detrimental effect on fertility at the synchronized estrus, and shortened the interval from start of the breeding season to conception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号