共查询到20条相似文献,搜索用时 0 毫秒
2.
The activation of the CAChi2 promoter as the result of bacterial infection and osmotic stresses was examined using the Agrobacterium-mediated transient expression assay. Several stress-related cis-acting elements were revealed within the upstream genomic sequence of the CAChi2 gene. In tobacco leaf tissues transiently transformed with the CAChi2 promoter-β-glucuronidase (GUS) gene, the CAChi2 promoter was up-regulated by Pseudomonas syringae pv. tabaci infection. The CAChi2- GUS activation was closely related to osmotic stresses, including treatment with mannitol and NaCl. The −378 CAChi2 promoter was sufficient for the CAChi2 gene induction by salicylic acid treatment. CAChi2 overexpression in the transgenic Arabidopsis plants enhanced bacterial disease resistance against Pseudomonas syringae pv. tomato infection. CAChi2-overexpressing Arabidopsis plants also exhibited increased tolerance to NaCl-induced osmotic stresses during seed germination and seedling growth. CAChi2 overexpression induced the expression of the NaCl stress-responsive gene RD29A in the absence of NaCl stress. The CAChi2-overexpressing transgenic plants exhibited increased sensitivity to abscisic acid during seed germination.
The nucleotide sequence data reported here has been deposited in the GenBank database under the accession number AY775335. 相似文献
4.
To identify plant defense responses that limit pathogen attack, Arabidopsis eds mutants that exhibit enhanced disease susceptibility to the virulent bacterial pathogen Pseudomonas syringae pv maculicola ES4326 were previously identified. In this study, we show that each of four eds mutants (eds5-1, eds6-1, eds7-1, and eds9-1) has a distinguishable phenotype with respect to the degree of susceptibility to a panel of bacterial phytopathogens and the ability to activate pathogenesis-related PR-1 gene expression after pathogen attack. None of the four eds mutants exhibited observable defects in mounting a hypersensitive response. Although all four eds mutants were also capable of mounting a systemic acquired resistance response, enhanced growth of P. s. maculicola ES4326 was still apparent in the secondarily infected leaves of three of the eds mutants. These data indicate that eds genes define a diverse set of previously unknown defense responses that affect resistance to virulent pathogens. 相似文献
5.
The NIM1 (for noninducible immunity, also known as NPR1) gene is required for the biological and chemical activation of systemic acquired resistance (SAR) in Arabidopsis. Overexpression of NIM1 in wild-type plants (hereafter referred to as NIM1 plants or lines) results in varying degrees of resistance to different pathogens. Experiments were performed to address the basis of the enhanced disease resistance responses seen in the NIM1 plants. The increased resistance observed in the NIM1 lines correlated with increased NIM1 protein levels and rapid induction of PR1 gene expression, a marker for SAR induction in Arabidopsis, following pathogen inoculation. Levels of salicylic acid (SA), an endogenous signaling molecule required for SAR induction, were not significantly increased compared with wild-type plants. SA was required for the enhanced resistance in NIM1 plants, however, suggesting that the effect of NIM1 overexpression is that plants are more responsive to SA or a SA-dependent signal. This hypothesis is supported by the heightened responsiveness that NIM1 lines exhibited to the SAR-inducing compound benzo(1,2,3)-thiadiazole-7-car-bothioic acid S-methyl ester. Furthermore, the increased efficacy of three fungicides was observed in the NIM1 plants, suggesting that a combination of transgenic and chemical approaches may lead to effective and durable disease-control strategies. 相似文献
8.
Like other filamentous fungi, the medicinal ascomycete Cordyceps militaris frequently degenerates during continuous maintenance in culture by showing loss of the ability to reproduce sexually or asexually. Degeneration of fungal cultures has been related with cellular accumulation of reactive oxygen species (ROS). In this study, an antioxidant glutathione peroxidase (Gpx) gene from Aspergillus nidulans was engineered into two C. militaris strains, i.e., the Cm01 strain which can fruit normally and the Cm04 strain which has lost the ability to form fruiting bodies on different media through subculturing. The results showed that the mitotically stable mutants had higher Gpx activities and stronger capacity to scavenge cellular ROS than their parental strains. Most significantly, the fruiting ability of Cm04 strain was restored by overexpression of the antioxidant enzyme. However, after being successively transferred for up to ten generations, two of three Cm04 mutants again lost the ability to fruit on insect pupae while Cm01 transformants remained fertile. This study confirms the relationship between fungal culture degeneration and cellular ROS accumulation. Our results indicate that genetic engineering with an antioxidant gene can be an effective way to reverse fungal degeneration during subculturing. 相似文献
9.
Herbicide resistance is an important trait often introduced into crop plants. Mechanisms of resistance can involve a mutant target protein that is unaffected by the herbicide, or metabolic detoxification or degradation of the herbicide. Recently, we showed that overexpression in Arabidopsis thaliana of either psNTP9, the garden pea apyrase gene, or AtPgp1, the A. thaliana homolog of the plant multidrug resistance (MDR) gene, enabled A. thaliana to germinate on the toxin cycloheximide and to grow better on toxic levels of the plant hormone N6-[2-isopentyl]adenine (2iP). Here we report that overexpression of either MDR or apyrase proteins resulted in increased resistance to herbicides from different chemical classes. Apyrase inhibition by small molecule inhibitors reversed this resistance. Treatment of untransformed plants with an apyrase inhibitor increased their sensitivity to the same herbicides. These results indicate that the genes may be involved in a resistance mechanism relating to decreased retention or increased active efflux of herbicide from the plant cell. 相似文献
12.
Rabl7 is a Late Embryogenesis Abundant (LEA) protein from maize, which accumulates largely during embryogenesis and also in vegetative tissues when subjected to stress conditions. We have analysed the effect of Rab 17 expression under a constitutive promoter in vegetative tissues of transgenic Arabidopsis thaliana plants. These transgenic plants have higher sugar and proline contents, and also higher water loss rate under water stress. In addition, these plants are more tolerant than non-transformed controls to high salinity and recover faster from mannitol treatment. Our results point to a protective effect of Rabl7 protein in vegetative tissues under osmotic stress conditions. 相似文献
13.
Cinnamyl alcohol dehydrogenase (CAD) is the enzyme in the last step of lignin biosynthetic pathway and is involved in the generation of lignin monomers. IbCAD1 gene in sweetpotato (Ipomoea batatas) was identified, and its expression was induced by abiotic stresses based on promoter analysis. In this study, transgenic Arabidopsis plants overexpressing IbCAD1 directed by CaMV 35S promoter were developed to determine the physiological function of IbCAD1. IbCAD1-overexpressing transgenic plants exhibited better plant growth and higher biomass compared to wild type (WT), under normal growth conditions. CAD activity was increased in leaves and roots of transgenic plants. Sinapyl alcohol dehydrogenase activity was induced to a high level in roots, which suggests that IbCAD1 may regulate biosynthesis of syringyl-type (S) lignin. Lignin content was increased in stems and roots of transgenic plants; this increase was in S lignin rather than guaiacyl (G) lignin. Overexpression of IbCAD1 in Arabidopsis resulted in enhanced seed germination rates and tolerance to reactive oxygen species (ROS), such as hydrogen peroxide (H2O2). Taken together, our results show that IbCAD1 controls lignin content by biosynthesizing S units and plays an important role in plant responses to oxidative stress. 相似文献
14.
Enzymatic and non‐enzymatic antioxidants play important roles in the tolerance of abiotic stress. To increase the resistance of seeds to oxidative stress, At2S3 promoter from Arabidopsis was used to achieve overexpression of the antioxidants in a seed‐specific manner. This promoter was shown to be capable of driving the target gene to have a high level of expression in seed‐related organs, including siliques, mature seeds, and early seedlings, thus making its molecular farming applications in plants possible. Subsequently, genes encoding Mn‐superoxide dismutase ( MSD1), catalase ( CAT1), and homogentisate phytyltransferase ( HPT1, responsible for the first committed reaction in the tocopherol biosynthesis pathway) were overexpressed in Arabidopsis under the control of the At2S3 promoter. Double overexpressers co‐expressing two enzymes and triple overexpressers were produced by cross pollination. Mn‐SOD and total CAT activities, as well as γ‐tocopherol content, significantly increased in the corresponding overproduction lines. Moreover, single MSD1‐transgene, double, and triple overexpressers displayed remarkably enhanced oxidative stress tolerance compared to wild type during seed germination and early seedling growth. Interestingly, an increase in the total CAT activity was also observed in the single MSD1‐transgenic lines as a result of MSD1 overexpression. Together, the combined increase in Mn‐SOD and CAT activities in seeds plays an essential role in the improvement of antioxidant capacity at early developmental stage in Arabidopsis. 相似文献
16.
Hydrogen sulfide (H2S) is an important gaseous molecule in various plant developmental processes and plant stress responses. In this study, the transgenic Arabidopsis thaliana plants with modulated exp... 相似文献
17.
Mutant pqr-216 from an Arabidopsis activation-tagged line showed a phenotype of increased tolerance to oxidative stress after treatment with 3 μ m paraquat (PQ). Based on the phenotype of transgenic plants overexpressing the genes flanking the T-DNA insert, it was clear that enhanced expression of a Nudix (nucleoside diphosphates linked to some moiety X) hydrolase gene, AtNUDX2 (At5g47650), was responsible for the tolerance. It has been reported that the AtNUDX2 protein has pyrophosphatase activities towards both ADP-ribose and NADH ( Ogawa et al ., 2005 ). Interestingly, the pyrophosphatase activity toward ADP-ribose, but not NADH, was increased in pqr-216 and Pro 35S :AtNUDX2 plants compared with control plants. The amount of free ADP-ribose was lower in the Pro 35S :AtNUDX2 plants, while the level of NADH was similar to those in control plants under both normal conditions and oxidative stress. Depletion of NAD + and ATP resulting from activation of poly(ADP-ribosyl)ation under oxidative stress was observed in the control Arabidopsis plants. Such alterations in the levels of these molecules were significantly suppressed in the Pro 35S :AtNUDX2 plants. The results indicate that overexpression of AtNUDX2 , encoding ADP-ribose pyrophosphatase, confers enhanced tolerance of oxidative stress on Arabidopsis plants, resulting from maintenance of NAD + and ATP levels by nucleotide recycling from free ADP-ribose molecules under stress conditions. 相似文献
18.
The Arabidopsis, abscisic acid responsive element-binding factor 3, ABF3 is known to play an important role in stress responses via regulating the expression of stress-responsive genes. In this study, we introduced pCAMBIA3301 vector harboring the ABF3 gene into creeping bentgrass ( Agrostis stolonifera) through Agrobacterium-mediated transformation in order to develop a stress-tolerant variety of turfgrass. After transformation, putative transgenic plants were selected using the herbicide resistance assay. Genomic integration of the transgene was confirmed by genomic PCR and Southern blot analysis, and gene expression was validated by northern blot analysis. Under drought-stressed condition, the transgenic plants overexpressing ABF3 displayed significantly enhanced drought tolerance with higher water content and slower water loss rate than the control plants. Furthermore, the stomata of the ABF3 transgenic plants closed more than those of wild-type creeping bentgrass plants, under both non-stressed and ABA treatment conditions. In addition, the transgenic plants showed enhanced tolerance to heat stress. These results suggest that the overexpression of the ABF3 gene in creeping bentgrass might enhance survival in water-limiting and high temperature environments through increased stomatal closure and reduced water losses. 相似文献
19.
Despite extensive studies in eukaryotic aldehyde dehydrogenases, functional information about the ALDH7 antiquitin-like proteins is lacking. A soybean antiquitin homologue gene, designated GmTP55, has been isolated which encodes a dehydrogenase motif-containing 55 kDa protein induced by dehydration and salt stress. GmTP55 is closely related to the stress-induced plant antiquitin-like proteins that belong to the ALDH7 family. Transgenic tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana) plants constitutively expressing GmTP55 have been obtained in order to examine the physiological role of this enzyme under a variety of stress conditions. Ectopic expression of GmTP55 in both Arabidopsis and tobacco conferred tolerance to salinity during germination and to water deficit during plant growth. Under salt stress, the germination efficiency of both transgenic tobacco and Arabidopsis seeds was significantly higher than that of their control counterparts. Likewise, under progressive drought, the transgenic tobacco lines apparently kept the shoot turgidity to a normal level, which contrasted with the leaf wilt phenotype of control plants. The transgenic plants also exhibited an enhanced tolerance to H(2)O(2)- and paraquat-induced oxidative stress. Both GmTP55-expressing Arabidopsis and tobacco seeds germinated efficiently in medium supplemented with H(2)O(2), whereas the germination of control seeds was drastically impaired. Similarly, transgenic tobacco leaf discs treated with paraquat displayed a significant reduction in the necrotic lesions as compared with control leaves. These transgenic lines also exhibited a lower concentration of lipid peroxidation-derived reactive aldehydes under oxidative stress. These results suggest that antiquitin may be involved in adaptive responses mediated by a physiologically relevant detoxification pathway in plants. 相似文献
|