首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the interaction between cytochrome c oxidase and its substrate cytochrome c by catalyzing the covalent linkage of the two proteins to yield 1 : 1 covalent enzyme-substrate complexes under conditions of low ionic strength. In addition to the 'traditional' oxidized complex formed between oxidized cytochrome c and the oxidized enzyme we prepared complexes under steady-state reducing conditions. Whereas for the 'oxidized' complex cytochrome c became bound exclusively to subunit II of the enzyme, for the 'steady-state' complex cytochrome c became bound to subunit II and two low molecular mass subunits, most likely VIb and IV. For both complexes we investigated: (a) the ability of the covalently bound cytochrome c to relay electrons into the enzyme, and (b) the ability of the covalently bound enzyme to catalyze the oxidation of unbound (exogenous) ferrocytochrome c. Steady-state spectral analysis (400-630 nm) combined with stopped-flow studies, confirmed that the bound cytochrome c mediated the efficient transfer of electrons from the reducing agent ascorbate to the enzyme. In the case of the latter, the half life for the ascorbate reduction of the bound cytochrome c and that for the subsequent transfer of electrons to haem a were both < 5 ms. In contrast the covalent complexes, when reduced, were found to be totally unreactive towards oxidized cytochrome c oxidase confirming that the previously observed reduction of haem a within the complexes occurred via intramolecular rather than intermolecular electron transfer. Additionally, stopped-flow analysis at 550 nm showed that haem a within both covalent complexes catalyzed the oxidation of exogenous ferrocytochrome c: The second order rate constant for the traditional complex was 0.55x10(6) m(-1) x s(-1) while that for the steady-state was 0.27x10(6) m(-1) x s(-1). These values were approximately 25-50% of those observed for 1 : 1 electrostatic complexes of similar concentrations. These results combined with those of the ascorbate and the electrophoresis studies suggest that electrons are able to enter cytochrome c oxidase via two independent pathways. We propose that during enzyme turnover the enzyme cycles between two conformers, one with a substrate binding site at subunit II and the other along the interface of subunits II, IV and VIb. Structural analysis suggests that Glu112, Glu113, Glu114 and Asp125 of subunit IV and Glu40, Glu54, Glu78, Asp35, Asp49, Asp73 and Asp74 of subunit VIb are residues that might possibly be involved.  相似文献   

2.
Ubiquinol oxidase has been reconstituted from ubiquinol-cytochrome c reductase (Complex III), cytochrome c and cytochrome c oxidase (Complex IV). The steady-state level of reduction of cytochrome c by ubiquinol-2 varies with the molar ratios of the complexes and with the presence of antimycin in a way that can be quantitatively accounted for by a model in which cytochrome c acts as a freely diffusible pool on the membrane. This model was based on that of Kröger & Klingenberg [(1973) Eur. J. Biochem. 34, 358-368] for ubiquinone-pool behaviour. Further confirmation of the pool model was provided by analysis of ubiquinol oxidase activity as a function of the molar ratio of the complexes and prediction of the degree of inhibition by antimycin.  相似文献   

3.
The reactions of horse heart cytochrome c with succinate-cytochrome c reductase and cytochrome oxidase were studied as a function of ionic strength using both spectrophotometric and oxygen electrode assay techniques. The kinetic parameter Vmax/Km for both reactions decreased very rapidly as the ionic strength was increased, indicating that electrostatic interactions were important to the reactions. A new semiempirical relationship for the electrostatic energy of interaction between cytochrome c and its oxidation-reduction partners was developed, in which specific complementary charge-pair interactions between lysine amino groups on cytochrome c and negatively charged carboxylate groups on the other protein are assumed to dominate the interaction. The contribution of individual cytochrome c lysine amino groups to the electrostatic interaction was estimated from the decrease in reaction rate caused by specific modification of the lysine amino groups by reagents that change the charge to 0 or -1. These estimates range from -0.9 kcal/mol for lysines immediately surrounding the heme crevice of cytochrome c to 0 kcal/mol for lysines well removed from the heme crevice region. The semiempirical relationship for the total electrostatic energy of interaction was in quantitative agreement with the experimental ionic strength dependence of the reaction rates when the parameters were based on the specific lysine modification results. The electrostatic energies of interaction between cytochrome c and its reductase and oxidase were nearly the same, providing additional evidence that the two reactions take place at similar sites on cytochrome c.  相似文献   

4.
Second derivative absorption spectroscopy has been used to assess the effects of complex formation between cytochrome c and cytochrome c oxidase on the conformation of the cytochrome a cofactor. When ferrocytochrome c is complexed to the cyanide-inhibited reduced or mixed valence enzyme, the conformation of ferrocytochrome a is affected. The second derivative spectrum of these enzyme forms displays two electronic transitions at 443 and 451 nm before complex formation, but only the 443-nm transition after cytochrome c is bound. This effect is not induced by poly-L-lysine, a homopolypeptide which is known to bind to the cytochrome c binding domain of cytochrome c oxidase. The effect is limited to cyanide-inhibited forms of the enzyme; no effect was observed for the fully reduced unliganded or fully reduced carbon monoxide-inhibited enzyme. The spectral signatures of these changes and the fact that they are exclusively associated with the cyanide-inhibited enzyme are both reminiscent of the effects of low pH on the conformation of cytochrome a (Ishibe, N., Lynch, S., and Copeland, R. A. (1991) J. Biol. Chem. 266, 23916-23920). These results are discussed in terms of possible mechanisms of communication between the cytochrome c binding site, cytochrome a, and the oxygen binding site within the cytochrome c oxidase molecule.  相似文献   

5.
Cysteine alone reduces horse heart cytochrome c very slowly (k approximately or equal too 1.0 M-1s-1) with a rate constant virtually identical in high and low ionic strength buffers. Copper catalyzes this reaction increasing the rate by a factor of 10(5) in 50 mM phosphate and by a factor of 10(6) in 10mM Tris buffers. When ferricytochrome c and cysteine are mixed in an oxygen electrode a "burst" of oxygen uptake is seen, the decline in which parallels the reduction of cytochrome c. When cytochrome oxidase is added to such a mixture two routes of electron transfer to oxygen exist: enzymatic and ferricytochrome c dependent nonenzymatic. Both processes are sensitive to cyanide, but azide inhibits only the authentic cytochrome c oxidase catalyzed process and BCS the ferricytochrome c stimulated reaction.  相似文献   

6.
A single species of tryptophan-59 formylated cytochrome c with a half-reduction potential of 0.085 ± 0.01 V at pH 7.0 was used to study its catalytic and functional properties. The spectral properties of the modified cytochrome show that the 6th ligand position is open to reaction with azide, cyanide, and carbon monoxide. Formylated cytochrome c binds to cytochrome c depleted rat liver and pigeon heart mitochondria with the precise stoichiometry of two modified cytochrome c molecules per molecule of cytochrome a (KD of approx 0.1 μm). Formylated cytochrome c was reducible by ascorbate and was readily oxidized by cytochrome c oxidase. The apparent Km value of the oxidase for the formylated cytochrome c was six times higher than for the native cytochrome and the apparent V was smaller. Formylated cytochrome c does not restore the oxygen uptake in C-depleted mitochondria but inhibits, in a competitive manner, the oxygen uptake induced by the addition of native cytochrome c. Formylated cytochrome c was inactive in the reaction with mitochondrial NADH-cytochrome c reductase but was able to accept electrons through the microsomal NADPH-cytochrome c reductase.  相似文献   

7.
Complex formation between cytochrome c oxidase and cytochrome c perturbs the optical absorption spectrum of heme c and heme a in the region of the alpha-, beta, and gamma-bands. The perturbations have been used to titrate cytochrome c oxidase with cytochrome c. A stoichiometry of one molecule of cytochrome c bound per molecule of cytochrome c oxidase is obtained (1 heme c per heme aa3). In contrast, a stoichiometry of 2:1 was found earlier using a gel-filtration method (Rieder, R., and Bosshard, H.R. (1978) J. Biol. Chem. 253, 6045-6053). From the result of the spectrophotometric titration and from the wavelength position of the perturbation signals it is concluded that cytochrome c oxidase contains only a single binding site for cytochrome c which is close enough to heme a to function as an electron transfer site. The second site detected earlier by the gel-filtration method must be remote from this electron transfer site. Scatchard plots of the titration data are curvilinear, possibly indicating interactions between cytochrome c-binding sites on adjacent monomers of dimeric cytochrome c oxidase. The relationship between cytochrome c binding and the reaction of cytochrome c oxidase with ferrocytochrome c is discussed.  相似文献   

8.
9.
An interaction between cytochrome a in oxidized cytochrome c oxidase (CcO) and anions has been characterized by EPR spectroscopy. Those anions that affect the EPR g = 3 signal of cytochrome a can be divided into two groups. One group consists of halides (Cl-, Br-, and I-) and induces an upfield shift of the g = 3 signal. Nitrogen-containing anions (CN-, NO2-, N3-, NO3-) are in the second group and shift the g = 3 signal downfield. The shifts in the EPR spectrum of CcO are unrelated to ligand binding to the binuclear center. The binding properties of one representative from each group, azide and chloride, were characterized in detail. The dependence of the shift on chloride concentration is consistent with a single binding site in the isolated oxidized enzyme with a Kd of approximately 3 mm. In mitochondria, the apparent Kd was found to be about four times larger than that of the isolated enzyme. The data indicate it is the chloride anion that is bound to CcO, and there is a hydrophilic size-selective access channel to this site from the cytosolic side of the mitochondrial membrane. An observed competition between azide and chloride is interpreted by azide binding to three sites: two that are apparent in the x-ray structure plus the chloride-binding site. It is suggested that either Mg2+ or Arg-438/Arg-439 is the chloride-binding site, and a mechanism for the ligand-induced shift of the g = 3 signal is proposed.  相似文献   

10.
11.
The percent of mitochondrial protein contamination in nuclei decreased 10-fold (from 18 to 1.8%) under purification of protein-labelled mitochondria before their introduction into nuclei-free homogenate, cytochromoxidase activity being unchanged. Thus, cytochromoxidase activity of nuclei does not correlate with the amount of nuclei-adsorbed mitochondrial protein, which demonstrates the presence of nuclear cytochromoxidase independent on mitochondrial protein. Radioactivity of protein-labelled mitochondria is proportially distributed between globuline, deoxyribonucleoprotein, acid and residual nuclear proteins, as it is shown under fractionation of nuclei isolated from protein-labeled mitochondria containing homogenate. The comparison of mitochondrial protein contamination of nuclear membranes and their possible contamination with cytochromoxidase and suecinate-cytochrome-c-reducatase activities revealed that cytochromoxidase activity of nuclear membranes is twice higher and succinate-cytochrome-c-reductase activity is considerably lower than it can be referred to mitochondrial protein contamination. The ratio of cytochrome-c-oxidase and succinate-cytochrome-c-reductase activities in isolated nuclear membranes is 4-7 times as high as that in mitochondrial membranes under the same isolation procedure. The data obtained make possible to consider the cytochromoxidase activity of nuclear membranes to be really nuclear enzyme, and not a contominant of nucleipreparation with mitochondrial membranes.  相似文献   

12.
Nakani S  Vitello LB  Erman JE 《Biochemistry》2006,45(48):14371-14378
Four covalent complexes between recombinant yeast cytochrome c and cytochrome c peroxidase (rCcP) were synthesized via disulfide bond formation using specifically designed protein mutants (Papa, H. S., and Poulos, T. L. (1995) Biochemistry 34, 6573-6580). One of the complexes, designated V5C/K79C, has cysteine residues replacing valine-5 in rCcP and lysine-79 in cytochrome c with disulfide bond formation between these residues linking the two proteins. The V5C/K79C complex has the covalently bound cytochrome c located on the back-side of cytochrome c peroxidase, approximately 180 degrees from the primary cytochrome c-binding site as defined by the crystallographic structure of the 1:1 noncovalent complex (Pelletier, H., and Kraut J. (1992) Science 258, 1748-1755). Three other complexes have the covalently bound cytochrome c located approximately 90 degrees from the primary binding site and are designated K12C/K79C, N78C/K79C, and K264C/K79C, respectively. Steady-state kinetic studies were used to investigate the catalytic properties of the covalent complexes at both 10 and 100 mM ionic strength at pH 7.5. All four covalent complexes have catalytic activities similar to those of rCcP (within a factor of 2). A comprehensive study of the ionic strength dependence of the steady-state kinetic properties of the V5C/K79C complex provides evidence for significant electrostatic repulsion between the two cytochromes bound in the 2:1 complex at low ionic strength and shows that the electrostatic repulsion decreases as the ionic strength of the buffer increases.  相似文献   

13.
14.
  • 1.1. The pyridoxal phosphate (PLP) modification of the lysine amino groups in cytochrome c causes decrease in the reaction rate with cytochrome c oxidase.
  • 2.2. The rate constants for (PLP);-cyt. c, PLP(Lys 86)-cyt. c, PLP(Lys 79)-cyt. c and native cytochrome c (at pH 7.4, 1=0.02) are 3.6 × 10−3'sec-', 5.5 × 10−3, 5.2 × 10−3-'sec−1 and 9.8 × 10−3sec−1, respectively.
  • 3.3. In spite of the same positive charge of singly PLP-cytochromes c the reaction between PLP(Lys 86)-cyt. c and cyt. c oxidase exhibits the ionic strength dependence that differs from those of the PLP(Lys 79)-cyt. c.
  • 4.4. The rate constants at zero and infinite ionic strength for PLP(Lys 86)-cyt. c is 2-fold less than that for PLP(Lys 79)-cyt. c.
  • 5.5. The positively charged cytochrome c lysines 86 and 79 form two from four or five predicted complementary charge interactions with carboxyl groups on cytochrome c oxidase.
  相似文献   

15.
Isolated and purified cytochrome c oxidase from beef heart muscle mitochondria (Kuboyama et al. (1972) J. Biol. Chem.247, 6375–6383) is shown to be very similar to the hemoprotein in situ with respect to its EPR absorption properties and the half-reduction potentials of the hemes and copper. The half-reduction potentials of cytochromes a and a3 in the purified cytochrome c oxidase are 205 mV and 360 mV, respectively, and these values are the same in the presence and absence of cytochrome c.Low-temperature EPR spectra show that the binding of CO to reduced cytochrome a3 changes the oxidized cytochrome a from high spin (g 6) to low spin (g 3). In samples at 5–8 °K the photodissociation of the reduced cytochrome a3CO compound shifts the spectrum of the oxidized low-spin cytochrome a to a lower g value and converts approximately 5% of the low-spin form to a high-spin form. The heme-heme interaction demonstrated in this reaction is very fast as evidenced by the fact that even at 5 °K the measured change in oxidized cytochrome is complete within 5 msec.  相似文献   

16.
Seven cytochromes c, in which individual lysines have been modified to the propylthiobimane derivatives, have been prepared. These derivatives were also converted to the porphyrin cytochromes c by treatment with HF. The properties of both types of modified proteins were studied in their reactions with cytochrome c oxidase. The results show that lysines 25, 27, 60, 72, and 87 do not contribute a full charge to the binding interaction with the oxidase. These five residues, with the exception of the lysine-60 derivative, on the front surface of the protein and contain the solvent-accessible edge of the heme prosthetic group. By contrast, lysines 8 and 13 at the top of the front surface do contribute a full charge to the binding interaction with the oxidase. The removal of the positive charge on any one lysine weakens the binding to cytochrome c oxidase by at least 1 kcal (1 cal = 4.1868 J). The presence of bimane at lysines 13 and 87 clearly forces the separation of the cytochrome c and oxidase, but this does not occur with the other complexes. The bimane-modified lysine-13 protein, and to a lesser extent that modified at lysine 8, show the interesting effect of enhanced complex formation with cytochrome c oxidase when subjected to pressure, possibly because of entrapment of water at the newly created interface of the complex. Our observations indicate that the two proteins of the cytochrome c - cytochrome oxidase complex have preferred, but not obligatory, spatial orientations and that interaction occurs without either protein losing significant portions of its hydration shell.  相似文献   

17.
The mechanism of electron transfer catalyzed by cytochrome oxidase was investigated by monitoring the reaction of cytochrome oxidase with cytochrome c under carefully controlled anaerobic conditions. The kinetics of the reaction were examined by varying conditions of ionic strength, inhibitor binding, and oxidation-reduction potential. An analogue of cytochrome c in which the iron atom was replaced with cobalt was used to probe the effect of redox potential on the reaction. Under conditions of low ionic strength, there is very rapid oxidation of cytochrome c and reduction of oxidase which occurs at a rate of 3 X 10(7) M-1 s-1. The number of electrons transferred exhibit a hyperbolic dependence on the concentration of cytochrome c reaching a maximum of 2 electrons transferred at the highest concentration of reduced cytochrome c employed. The total number of electrons transferred was always observed to be distributed equally between cytochrome a and a second acceptor which appears to be the associated copper center; electron transfer to cytochrome a3 did not occur in the absence of oxygen. Substitution of cytochrome c by the cobalt analogue (which represents a decrease in oxidation-reduction potential of about 400 mV) yielded identical results indicating that the origin of the lack of reactivity of cytochrome a3 is of a kinetic nature. The effect of increasing the ionic strength on the reaction was 2-fold: a marked decrease in reaction rate and the appearance of biphasic kinetics with the amplitude of the very fast absorbance changes at 605 nm decreasing from 80% to 40% of the total anticipated from static absorbance measurements. Each of the two phases accounted for a maximum of 1 electron at the highest ionic strength employed. These results are simulated in terms of a sample kinetic reaction scheme involving a two-step electron transfer at one binding site.  相似文献   

18.
Interaction of lauryl maltoside (LM) surfactant with bovine heart cytochrome c oxidase (CcO) has been studied by NMR techniques. Detailed 2-D (1)H and (13)C NMR techniques were used to assign the NMR signals of the surfactant nuclei. Paramagnetic dipolar shift of the surfactant (13)C NMR signals were used to identify the atoms close to the enzyme. The diamagnetic carbon monoxide complex of CcO did not cause any shift in the surfactant NMR spectra suggesting that the paramagnetic centres of the native CcO cause the shifts by dipolar interactions. The results showed that the polar head groups of the surfactant comprised of two maltoside rings are more affected, while the hydrophobic tail groups did not show any significant change on binding of the surfactant to the enzyme. This indicated that surfactant head groups possibly bind to the enzyme surface and the hydrophobic tail of the surfactant forms micelles and remains away from the enzyme. Based on the results, we propose that the membrane bound enzyme is possibly stabilised in aqueous solution by association with the micelles of the neutral surfactant so that the polar heads of the micelles bind to the polar surface of the enzyme. These micelles might form a 'belt like' structure around the enzyme helping it to remain monodispersed in the active form.  相似文献   

19.
The effect of intraliposomal ADP and ATP on the kinetics of cytochrome c oxidation in reconstituted bovine heart cytochrome c oxidase was measured by the photometric and polarographic method: 1. Intraliposomal ADP decreases and intraliposomal ATP increases the Km for cytochrome c when measured by the photometric assay under uncoupled conditions. 2. The above described effects are not obtained when the kinetics are measured with the polarographic assay. 3. Extraliposomal ATP increases the Km for cytochrome c similar to intraliposomal ATP, but this effect is measured with both methods of assay. 4. Under coupled conditions only a small decrease of the Km for cytochrome c by intraliposomal ADP is found.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号