首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In female mouse embryos, the paternal X chromosome (Xp) is preferentially inactivated during preimplantation development and trophoblast differentiation. This imprinted X-chromosome inactivation (XCI) is partly due to an activating imprint on the maternal X chromosome (Xm), which is set during oocyte growth. However, the nature of this imprint is unknown. DNA methylation is one candidate, and therefore we examined whether disruptions of the two de novo DNA methyltransferases in growing oocytes affect imprinted XCI. We found that accumulation of histone H3 lysine-27 trimethylation, a hallmark of XCI, occurs normally on the Xp, and not on the Xm, in female blastocysts developed from the mutant oocytes. Furthermore, the allelic expression patterns of X-linked genes including Xist and Tsix were unchanged in preimplantation embryos and also in the trophoblast. These results show that a maternal disruption of the DNA methyltransferases has no effect on imprinted XCI and argue that de novo DNA methylation is dispensable for Xm imprinting. This underscores the difference between imprinted XCI and autosomal imprinting.  相似文献   

2.
Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 22 X-linked genes, including XIST, using 27 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this analysis indicated heterogeneous maintenance of gene silencing along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals.  相似文献   

3.
4.
5.
6.
Mammalian development is strongly influenced by the epigenetic phenomenon called genomic imprinting, in which either the paternal or the maternal allele of imprinted genes is expressed. Paternally expressed Xist, an imprinted gene, has been considered as a single cis-acting factor to inactivate the paternally inherited X chromosome (Xp) in preimplantation mouse embryos. This means that X-chromosome inactivation also entails gene imprinting at a very early developmental stage. However, the precise mechanism of imprinted X-chromosome inactivation remains unknown and there is little information about imprinted genes on X chromosomes. In this study, we examined whether there are other imprinted genes than Xist expressed from the inactive paternal X chromosome and expressed in female embryos at the preimplantation stage. We focused on small RNAs and compared their expression patterns between sexes by tagging the female X chromosome with green fluorescent protein. As a result, we identified two micro (mi)RNAs–miR-374-5p and miR-421-3p–mapped adjacent to Xist that were predominantly expressed in female blastocysts. Allelic expression analysis revealed that these miRNAs were indeed imprinted and expressed from the Xp. Further analysis of the imprinting status of adjacent locus led to the discovery of a large cluster of imprinted genes expressed from the Xp: Jpx, Ftx and Zcchc13. To our knowledge, this is the first identified cluster of imprinted genes in the cis-acting regulatory region termed the X-inactivation center. This finding may help in understanding the molecular mechanisms regulating imprinted X-chromosome inactivation during early mammalian development.  相似文献   

7.
The existence of parentally imprinted gene expression in the somatic tissues of mammals and plants can be explained by a theory of intragenomic genetic conflict, which is a logical extension of classical parent-offspring conflict theory. This theory unites conceptually the phenomena of autosomal imprinting and X-chromosome inactivation. We argue that recent experimental studies of X-chromosome inactivation and andro-genetic development address previously published predictions of the conflict theory, and we discuss possible explanations for the occurrence of random X-inactivation in the somatic tissues of eutherians. © 1995 Wiley-Liss, Inc.  相似文献   

8.
The search for the mouse X-chromosome inactivation centre   总被引:11,自引:0,他引:11  
The phenomenon of X-chromosome inactivation in female mammals, whereby one of the two X chromosome present in each cell of the female embryo is inactivated early in development, was first described by Mary Lyon in 1961. Nearly 30 years later, the mechanism of X-chromosome inactivation remains unknown. Strong evidence has accumulated over the years, however, for the involvement of a major switch or inactivation centre on the mouse X chromosome. Identification of the inactivation centre at the molecular level would be an important step in understanding the mechanism of X-inactivation. In this paper we review the evidence for the existence and location of the X-inactivation centre on the mouse X-chromosome, present data on the molecular genetic mapping of this region, and describe ongoing strategies we are using to attempt to identify the inactivation centre at the molecular level.  相似文献   

9.
An extra copy of the X chromosome, unlike autosomes, exerts only minor effects on development in mammals including man and mice, because all X chromosomes except one are genetically inactivated. Contrary to this contention, we found that an additional maternally derived X (XM) chromosome, but probably not a paternally derived one (XP), consistently contributes to early death of 41,XXY and 41,XXX embryos in mice. Because of imprinted resistance to inactivation, two doses of XM remain active in the trophectoderm, and seem to be responsible for the failure in the development of the ectoplacental cone and extraembryonic ectoderm, and hence, from early embryonic death. Discordant observations in man indicating viability of XMXMXP and XMXMY individuals suggest that imprinting on the human X chromosome is either weak, unstable or erased before the initiation of X-inactivation in progenitors of extraembryonic membranes.  相似文献   

10.
Recent studies have revealed mechanistic parallels between imprinted X-chromosome inactivation and autosomal imprinting. We suggest that neither mechanism was present in ancestral egg-laying mammals, and that both arose when the evolution of the placenta exerted selective pressure to imprint growth-related genes. We also propose that non-coding RNAs and histone modifications were adopted for the imprinting of growth suppressors on the X chromosome and on autosomes. This provides a unified hypothesis for the evolution of X-chromosome inactivation and imprinting.  相似文献   

11.
The Polycomb group (PcG) proteins are thought to silence gene expression by modifying chromatin. The Polycomb repressive complex 2 (PRC2) plays an essential role in mammalian X-chromosome inactivation (XCI), a model system to investigate heritable gene silencing. In the mouse, two different forms of XCI occur. In the preimplantation embryo, all cells undergo imprinted inactivation of the paternal X-chromosome (Xp). During the peri-implantation period, cells destined to give rise to the embryo proper erase the imprint and randomly inactivate either the maternal X-chromosome or the Xp; extraembryonic cells, on the other hand, maintain imprinted XCI of the Xp. PRC2 proteins are enriched on the inactive-X during early stages of both imprinted and random XCI. It is therefore thought that PRC2 contributes to the initiation of XCI. Mouse embryos lacking the essential PRC2 component EED harbor defects in the maintenance of imprinted XCI in differentiating trophoblast cells. Assessment of PRC2 requirement in the initiation of XCI, however, has been hindered by the presence of maternally derived proteins in the early embryo. Here we show that Eed/ embryos initiate and maintain random XCI despite lacking any functional EED protein prior to the initiation of random XCI. Thus, despite being enriched on the inactive X-chromosome, PcGs appear to be dispensable for the initiation and maintenance of random XCI. These results highlight the lineage- and differentiation state–specific requirements for PcGs in XCI and argue against PcG function in the formation of the facultative heterochromatin of the inactive X-chromosome.  相似文献   

12.
13.
Disruption of imprinted X inactivation by parent-of-origin effects at Tsix   总被引:11,自引:0,他引:11  
Lee JT 《Cell》2000,103(1):17-27
In marsupials and in extraembryonic tissues of placental mammals, X inactivation is imprinted to occur on the paternal chromosome. Here, we find that imprinting is controlled by the antisense Xist gene, Tsix. Tsix is maternally expressed and mice carrying a Tsix deletion show normal paternal but impaired maternal transmission. Maternal inheritance occurs infrequently, with surviving progeny showing intrauterine growth retardation and reduced fertility. Transmission ratio distortion results from disrupted imprinting and postimplantation loss of mutant embryos. In contrast to effects in embryonic stem cells, deleting Tsix causes ectopic X inactivation in early male embryos and inactivation of both X chromosomes in female embryos, indicating that X chromosome counting cannot override Tsix imprinting. These results highlight differences between imprinted and random X inactivation but show that Tsix regulates both. We propose that an imprinting center lies within Tsix.  相似文献   

14.
Lee JT 《Current biology : CB》2003,13(6):R242-R254
In classical Mendelian inheritance, each parent donates a set of chromosomes to its offspring so that maternally and paternally encoded information is expressed equally. The phenomena of X-chromosome inactivation (XCI) and autosomal imprinting in mammals violate this dogma of genetic equality. In XCI, one of the two female X chromosomes is silenced to equalize X-linked gene dosage between XX and XY individuals. In genomic imprinting, parental marks determine which of the embryo's two autosomal alleles will be expressed. Although XCI and imprinting appear distinct, molecular evidence now shows that they share a surprising number of features. Among them are cis-acting control centers, long-distance regulation and differential DNA methylation. Perhaps one of the most intriguing similarities between XCI and imprinting has been their association with noncoding and antisense RNAs. Very recent data also suggest the common involvement of histone modifications and chromatin-associated factors such as CTCF. Collectively, the evidence suggests that XCI and genomic imprinting may have a common origin. Here, I hypothesize that the need for X-linked dosage compensation was a major driving force in the evolution of genomic imprinting in mammals. I propose that imprinting was first fixed on the X chromosome for XCI and subsequently acquired by autosomes.  相似文献   

15.
Origin and evolution of X chromosome inactivation   总被引:1,自引:0,他引:1  
Evolution of the mammalian sex chromosomes heavily impacts on the expression of X-encoded genes, both in marsupials and placental mammals. The loss of genes from the Y chromosome forced a two-fold upregulation of dose sensitive X-linked homologues. As a corollary, female cells would experience a lethal dose of X-linked genes, if this upregulation was not counteracted by evolution of X chromosome inactivation (XCI) that allows for only one active X chromosome per diploid genome. Marsupials rely on imprinted XCI, which inactivates always the paternally inherited X chromosome. In placental mammals, random XCI (rXCI) is the predominant form, inactivating either the maternal or paternal X. In this review, we discuss recent new insights in the regulation of XCI. Based on these findings, we propose an X inactivation center (Xic), composed of a cis-Xic and trans-Xic that encompass all elements and factors acting to control rXCI either in cis or in trans. We also highlight that XCI may have evolved from a very small nucleation site on the X chromosome in the vicinity of the Sox3 gene. Finally, we discuss the possible evolutionary road maps that resulted in imprinted XCI and rXCI as observed in present day mammals.  相似文献   

16.
In the mouse, there are two forms of X chromosome inactivation (XCI), random XCI in the fetus and imprinted paternal XCI, which is limited to the extraembryonic tissues. While the mechanism of random XCI has been studied extensively using the in vitro XX ES cell differentiation system, imprinted XCI during early embryonic development has been less well characterized. Recent studies of early embryos have reported unexpected findings for the paternal X chromosome (Xp). Imprinted XCI may not be linked to meiotic silencing in the male germ line but rather to the imprinted status of the Xist gene. Furthermore, the Xp becomes inactivated in all cells of cleavage-stage embryos and then reactivated in the cells of the inner cell mass (ICM) that form the epiblast, where random XCI ensues.  相似文献   

17.
X-chromosome inactivation (XCI) ensures dosage compensation in mammals. Random XCI is a process where a single X chromosome is silenced in each cell of the epiblast of mouse female embryos. Operating at the level of an entire chromosome, XCI is a major paradigm for epigenetic processes. Here we review the most recent discoveries concerning the role of long noncoding RNAs, pluripotency factors, and chromosome structure in random XCI.  相似文献   

18.
19.
Regulation of X-chromosome inactivation by the X-inactivation centre   总被引:1,自引:0,他引:1  
X-chromosome inactivation (XCI) ensures dosage compensation in mammals and is a paradigm for allele-specific gene expression on a chromosome-wide scale. Important insights have been made into the developmental dynamics of this process. Recent studies have identified several cis- and trans-acting factors that regulate the initiation of XCI via the X-inactivation centre. Such studies have shed light on the relationship between XCI and pluripotency. They have also revealed the existence of dosage-dependent activators that trigger XCI when more than one X chromosome is present, as well as possible mechanisms underlying the monoallelic regulation of this process. The recent discovery of the plasticity of the inactive state during early development, or during cloning, and induced pluripotency have also contributed to the X chromosome becoming a gold standard in reprogramming studies.  相似文献   

20.
In mammals, X-chromosome inactivation occurs in all female cells, leaving only a single active X chromosome. This serves to equalise the dosage of X-linked genes in male and female cells. In the mouse, the paternally derived X chromosome (X(P)) is imprinted and preferentially inactivated in the extraembryonic tissues whereas in the embryonic tissues inactivation is random. To investigate how X(P) is chosen as an inactivated X chromosome in the extraembryonic cells, we have produced experimental embryos by serial nuclear transplantation from non-growing (ng) oocytes and fully grown (fg) oocytes, in which the X chromosomes are marked with (1) an X-linked lacZ reporter gene to assay X-chromosome activity, or (2) the Rb(X.9)6H translocation as a cytogenetic marker for studying replication timing. In the extraembryonic tissues of these ng/fg embryos, the maternal X chromosome (X(M)) derived from the ng oocyte was preferentially inactivated whereas that from the fg oocyte remained active. However, in the embryonic tissues, X inactivation was random. This suggests that (1) a maternal imprint is set on the X(M) during oocyte growth, (2) the maternal imprint serves to render the X(M) resistant to inactivation in the extraembryonic tissues and (3) the X(M) derived from an ng oocyte resembles a normal X(P).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号