首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
颈动脉血管壁切应力的分析   总被引:1,自引:0,他引:1  
动脉中管壁的脉动低切应力在动脉粥样硬化形成中起始动和主要的决定作用。本文比较了几种计算血管壁切应力的方法,认为采用有约束的弹性管模型计算获得的动脉壁切应力更适合于临床应用。根据检测得到的正常人和动脉硬化性脑血管病患者的颈动脉血流速度、血管管径等数据,计算两者的颈动脉壁面切应力。研究发现动脉硬化性脑血管病患者的壁面切应力比正常人显著减小。这表明,颈动脉的壁面切应力可以作为动脉硬化性脑血管疾病的早期诊断的重要参考指标。  相似文献   

2.
In the present study, theoretical formulations for calculation of optimal bifurcation angle and relationship between the diameters of mother and daughter vessels using the power law model for non-Newtonian fluids are developed. The method is based on the distribution of wall shear stress in the mother and daughter vessels. Also, the effect of distribution of wall shear stress on the minimization of energy loss and flow resistance is considered. It is shown that constant wall shear stress in the mother and daughter vessels provides the minimum flow resistance and energy loss of biological flows. Moreover, the effects of different wall shear stresses in the mother and daughter branches, different lengths of daughter branches in the asymmetric bifurcations and non-Newtonian effect of biological fluid flows on the bifurcation angle and the relationship between the diameters of mother and daughter branches are considered. Using numerical simulations for non-Newtonian models such as power law and Carreau models, the effects of optimal bifurcation angle on the pressure drop and flow resistance of blood flow in the symmetric bifurcation are investigated. Numerical simulations show that optimal bifurcation angle decreases the pressure drop and flow resistance especially for bifurcations at large Reynolds number.  相似文献   

3.
Local hemodynamics has been identified as one main determinant in the onset and progression of atherosclerotic lesions at coronary bifurcations. Starting from the observation that atherosensitive hemodynamic conditions in arterial bifurcation are majorly determined by the underlying anatomy, the aim of the present study is to investigate how peculiar coronary bifurcation anatomical features influence near-wall and intravascular flow patterns. Different bifurcation angles and cardiac curvatures were varied in population-based, idealized models of both stenosed and unstenosed bifurcations, representing the left anterior descending (LAD) coronary artery with its diagonal branch. Local hemodynamics was analyzed in terms of helical flow and exposure to low/oscillatory shear stress by performing computational fluid dynamics simulations.Results show that bifurcation angle impacts lowly hemodynamics in both stenosed and unstenosed cases. Instead, curvature radius influences the generation and transport of helical flow structures, with smaller cardiac curvature radius associated to higher helicity intensity. Stenosed bifurcation models exhibit helicity intensity values one order of magnitude higher than the corresponding unstenosed cases. Cardiac curvature radius moderately affects near-wall hemodynamics of the stenosed cases, with smaller curvature radius leading to higher exposure to low shear stress and lower exposure to oscillatory shear stress. In conclusion, the proposed controlled benchmark allows investigating the effect of various geometrical features on local hemodynamics at the LAD/diagonal bifurcation, highlighting that cardiac curvature influences near wall and intravascular hemodynamics, while bifurcation angle has a minor effect.  相似文献   

4.
The patchy distribution of atherosclerosis within arteries is widely attributed to local variation in haemodynamic wall shear stress (WSS). A recently-introduced metric, the transverse wall shear stress (transWSS), which is the average over the cardiac cycle of WSS components perpendicular to the temporal mean WSS vector, correlates particularly well with the pattern of lesions around aortic branch ostia. Here we use numerical methods to investigate the nature of the arterial flows captured by transWSS and the sensitivity of transWSS to inflow waveform and aortic geometry. TransWSS developed chiefly in the acceleration, peak systolic and deceleration phases of the cardiac cycle; the reverse flow phase was too short, and WSS in diastole was too low, for these periods to have a significant influence. Most of the spatial variation in transWSS arose from variation in the angle by which instantaneous WSS vectors deviated from the mean WSS vector rather than from variation in the magnitude of the vectors. The pattern of transWSS was insensitive to inflow waveform; only unphysiologically high Womersley numbers produced substantial changes. However, transWSS was sensitive to changes in geometry. The curvature of the arch and proximal descending aorta were responsible for the principal features, the non-planar nature of the aorta produced asymmetries in the location and position of streaks of high transWSS, and taper determined the persistence of the streaks down the aorta. These results reflect the importance of the fluctuating strength of Dean vortices in generating transWSS.  相似文献   

5.
This work concerns with the implementation of a new stress-driven remodeling model for simulating the overall structure and mechanical behavior of a human carotid bifurcation. By means of an iterative finite element based procedure collagen fiber direction and maximal principal stresses are computed. We find that the predicted fibers' architecture at the cylindrical branches and at the apex of the bifurcation correlates well with histological observations. Some insights about the mechanical response of the sinus bulb and the bifurcation apex are revealed and discussed. The results are compared with other, isotropic and orthotropic, models available in the literature.  相似文献   

6.
The aim of this study is to investigate the blood flow pattern in carotid bifurcation with a high degree of luminal stenosis, combining in vivo magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). A newly developed two-equation transitional model was employed to evaluate wall shear stress (WSS) distribution and pressure drop across the stenosis, which are closely related to plaque vulnerability. A patient with an 80% left carotid stenosis was imaged using high resolution MRI, from which a patient-specific geometry was reconstructed and flow boundary conditions were acquired for CFD simulation. A transitional model was implemented to investigate the flow velocity and WSS distribution in the patient-specific model. The peak time-averaged WSS value of approximately 73 Pa was predicted by the transitional flow model, and the regions of high WSS occurred at the throat of the stenosis. High oscillatory shear index values up to 0.50 were present in a helical flow pattern from the outer wall of the internal carotid artery immediately after the throat. This study shows the potential suitability of a transitional turbulent flow model in capturing the flow phenomena in severely stenosed carotid arteries using patient-specific MRI data and provides the basis for further investigation of the links between haemodynamic variables and plaque vulnerability. It may be useful in the future for risk assessment of patients with carotid disease.  相似文献   

7.
Chen J  Lu XY 《Journal of biomechanics》2004,37(12):1899-1911
The non-Newtonian fluid flow in a bifurcation model with a non-planar daughter branch is investigated by using finite element method to solve the three-dimensional Navier–Stokes equations coupled with a non-Newtonian constitutive model, in which the shear thinning behavior of the blood fluid is incorporated by the Carreau–Yasuda model. The objective of this study is to investigate the influence of the non-Newtonian property of fluid as well as of curvature and out-of-plane geometry in the non-planar daughter vessel on wall shear stress (WSS) and flow phenomena. In the non-planar daughter vessel, the flows are typified by the skewing of the velocity profile towards the outer wall, creating a relatively low WSS at the inner wall. In the downstream of the bifurcation, the velocity profiles are shifted towards the flow divider. The low WSS is found at the inner walls of the curvature and the lateral walls of the bifurcation. Secondary flow patterns that swirl fluid from the inner wall of curvature to the outer wall in the middle of the vessel are also well documented for the curved and bifurcating vessels. The numerical results for the non-Newtonian fluid and the Newtonian fluid with original Reynolds number and the corresponding rescaled Reynolds number are presented. Significant difference between the non-Newtonian flow and the Newtonian flow is revealed; however, reasonable agreement between the non-Newtonian flow and the rescaled Newtonian flow is found. Results of this study support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.  相似文献   

8.
Summary The distribution of carotid body type I and periadventitial type I cells in the carotid bifurcation regions was investigated unilaterally in seven and bilaterally in two New Zealand White rabbits. Carotid body type I cells occurred in close proximity to the wall of the internal carotid artery immediately rostral to the carotid bifurcation, within a division of connective tissue with defineable but irregular borders. Caudally, and separate from the main mass of carotid body type I cells, isolated groups of periadventitial type I cells lay freely in the connective tissue around the internal carotid artery and alongside the carotid bifurcation and common carotid artery. A overall picture of the carotid body in the rabbit was reconstructed and the occurrence and significance of periadventitial type I cells discussed.The authors are indebted to Mr. Stephen Jones of the Department of Histopathology, St Bartholomew's Hospital, for expert assistance in the preparation of the material, and to Mr. A.J. Aldrich of the Department of Anatomy for photography. This work was supported by a grant from the Wellcome Trust to one of us (M. de B.D.)  相似文献   

9.
Flow instability has emerged as a new hemodynamic metric hypothesized to have potential value in assessing the rupture risk of cerebral aneurysms. However, diverse findings have been reported in the literature. In the present study, high-resolution hemodynamic simulations were performed retrospectively on 35 aneurysms (10 ruptured & 25 unruptured) located at the internal carotid artery (ICA). Simulated hemodynamic parameters were statistically compared between the ruptured and unruptured aneurysms, with emphasis on examining the correlation of flow instability with the status of aneurysm rupture. Pronounced flow instability was detected in 20% (2 out of 10) of the ruptured aneurysms, whereas in 44% (11 out of 25) of the unruptured aneurysms. Statistically, the flow instability metric (quantified by the temporally and spatially averaged fluctuating kinetic energy over the aneurysm sac) did not differ significantly between the ruptured and unruptured aneurysms. In contrast, low wall shear stress area (LSA) and pressure loss coefficient (PLC) exhibited significant correlations with the status of aneurysm rupture. In conclusion, the present study suggests that the presence of flow instability may not correlate closely with the status of aneurysm rupture, at least for ICA aneurysms. On the other hand, the retrospective nature of the study and the small sample size may have to some extent compromised the reliability of the conclusion, and therefore large-scale prospective studies would be needed to further address the issue.  相似文献   

10.
The development of renewable and clean energy has been the priority of the global research field due to the urgent effects of climate change. Microbial fuel cell (MFC) is recognized as a sustainable approach to simultaneously generate power and treat wastewater through the employment of microorganisms as catalyst. The use of buffer solution in the wastewater treatment makes the commercial application of MFCs challenging due to their environmental impact and high costs. This work uses rotational motion to generate the flow stress in the anode chamber of the MFCs to enhance biofilm growth and mass transfer that leads to an overall performance improvement of the system. The effects on pH, chemical oxygen demand (COD), and power density were evaluated under rotational speeds of the magnetic stirrer from 0 to 640 rpm. The influence of the stirrer was then assessed utilizing the same parameters specified for scenarios with and without buffer. The results reveal that at 480 rpm of stirring speed, the pH value was neutral with a maximum COD removal of 82 % for bufferless and 93 % for buffered scenarios. In addition, for bufferless operation at 480 rpm yielded a power density of 402 mWm−2. The results of the flow stress analysis for bufferless and buffered MFCs are beneficial for the commercialization and future development of the system for wastewater treatment applications.  相似文献   

11.
Summary The bilateral distribution of carotid body type-I cells was investigated in five rabbits, rats, guinea-pigs and mice by serially sectioning the carotid bifurcation regions. Carotid body type-I cells occurred bilaterally in close proximity to the wall of the internal carotid artery in the rabbit, rat and mouse and to the wall of the ascending pharyngeal artery in the guinea-pig. The rat carotid body was sometimes recessed into the lateral aspect of the superior cervical ganglion and was the most easily defined organ in the four animals studied. Caudally, and separate from the principal mass of carotid body type I cells, isolated groups of periadventitial type-I cells were observed in the connective tissues around the internal carotid artery and adjacent to the carotid bifurcation and common carotid artery in the rabbits only. An overall picture of the carotid body in the four animals was constructed. In all specimens rostral-caudal dimensions were recorded and compared bilaterally.The authors are indebted to Mr. Stephen Jones and Miss Alison Field of the Department of Histopathology, St Bartholomew's Hospital, for expert assistance in the preparation of the material; Miss J. McClelland and Miss C. Slatter for illustrations, and Mr. A. J. Aldrich and Mr. P.S. Hazell for photography. This work was supported by a grant from the Wellcome Trust to one of us (M. de B. D.)  相似文献   

12.
Effects of hemodynamic shear stress on endothelial cells have been extensively investigated using the “swirling well” method, in which cells are cultured in dishes or multiwell plates placed on an orbital shaker. A wave rotates around the well, producing complex patterns of shear. The method allows chronic exposure to flow with high throughput at low cost but has two disadvantages: a number of shear stress characteristics change in a broadly similar way from the center to the edge of the well, and cells at one location in the well may release mediators into the medium that affect the behavior of cells at other locations, exposed to different shears. These properties make it challenging to correlate cell properties with shear. The present study investigated simple alterations to ameliorate these issues. Flows were obtained by numerical simulation. Increasing the volume of fluid in the well-altered dimensional but not dimensionless shear metrics. Adding a central cylinder to the base of the well-forced fluid to flow in a square toroidal channel and reduced multidirectionality. Conversely, suspending a cylinder above the base of the well made the flow highly multidirectional. Increasing viscosity in the latter model increased the magnitude of dimensional but not dimensionless metrics. Finally, tilting the well changed the patterns of different wall shear stress metrics in different ways. Collectively, these methods allow similar flows over most of the cells cultured and/or allow the separation of different shear metrics. A combination of the methods overcomes the limitations of the baseline model.  相似文献   

13.
In this paper, we introduce a method to construct a Reduced-Order Model (ROM) to study the physiological flow and the Wall Shear Stress (WSS) conditions in Abdominal Aortic Aneurysms (AAA). We start the process by running a training case using Computational Fluid Dynamics (CFD) simulations with time-varying flow parameters, such that these parameters cover the range of parameters that we would like to consider in our ROM. We use the inflow angle as the variable parameter in the current study. Then we use the snapshot Proper Orthogonal Decomposition (POD) to construct the reduced-order bases, which are subsequently enhanced using a QR-factorization technique to satisfy the relevant fluid boundary conditions. The resulting ROM enables us to study the flow pattern and the WSS distribution over a range of system parameters computationally very efficiently. We have used this method to show how the WSS varies significantly for an AAA with a simplified geometry, over a range of inflow angles usually considered mild in clinical terms. We have validated the ROM results with CFD results. This approach enables comprehensive analysis of the model system across a range of inflow angles and frequencies without the need to re-compute the simulation for small changes.  相似文献   

14.
《Journal of biomechanics》2014,47(14):3517-3523
Previous efforts in heart valve tissue engineering demonstrated that the combined effect of cyclic flexure and steady flow on bone marrow derived stem cell-seeded scaffolds resulted in significant increases in engineered collagen formation [Engelmayr et al. Cyclic flexure and laminar flow synergistically accelerate mesenchymal stem cell-mediated engineered tissue formation: Implications for engineered heart valve tissues. Biomaterials 2006; 27(36): 6083–95]. Here, we provide a new interpretation for the underlying reason for this observed effect. In addition, another related investigation demonstrated the impact of fluid flow on DNA content and quantified the fluid-induced shear stresses on the engineered heart valve tissue specimens [Engelmayr et al. A Novel Flex-Stretch-Flow Bioreactor for the Study of Engineered Heart Valve Tissue Mechanobiology]. Annals of Biomedical Engineering 2008, 36, 1–13]. In this study, we performed more advanced CFD analysis with an emphasis on oscillatory wall shear stresses imparted on specimens when mechanically conditioned by a combination of cyclic flexure and steady flow. Specifically, we hypothesized that the dominant stimulatory regulator of the bone marrow stem cells is fluid-induced and depends on both the magnitude and temporal directionality of surface stresses, i.e., oscillatory shear stresses (OSS) acting on the developing tissues. Therefore, we computationally quantified the (i) magnitude of fluid-induced shear stresses as well as (ii) the extent of temporal fluid oscillations in the flow field using the oscillatory shear index (OSI) parameter. Noting that sample cyclic flexure induces a high degree of OSS, we incorporated moving boundary computational fluid dynamic simulations of samples housed within a bioreactor to consider the effects of: (1) No Flow, No Flexure (control group), (2) Steady Flow-alone, (3) Cyclic Flexure-alone and (4) Combined Steady flow and Cyclic Flexure environments. Indeed we found that the coexistence of both OSS and appreciable shear stress magnitudes explained the high levels of engineered collagen previously observed from combining cyclic flexure and steady flow states. On the other hand, each of these metrics on its own showed no association. This finding suggests that cyclic flexure and steady flow synergistically promote engineered heart valve tissue production via OSS, so long as the oscillations are accompanied by a critical magnitude of shear stress.  相似文献   

15.
The aim of this study was to delineate the flow patterns in a non-unidirectional flow field inside a ventricle-shaped cell culture chamber, and examine the resulting morphology and integrity of the endothelium in select regions of the monolayer. The chamber was perfused by pulsatile flow, and the coherent motion of the fluid was studied using flow visualization aided by image analysis. Four distinct flow patterns were discerned and examined: central jet, flow impingement, flow separation, and recirculating eddies. The influence of these patterns on endothelial cell morphology was assessed after 20 h of exposure to flow. There were no signs of damage to the endothelium in the jet region nor was there evidence of cell alignment with the flow. Yet, there were changes in cell morphology and cytoskeletal architecture as compared to control. By contrast, within the eddies where the flow was highly disturbed, there was apparent damage to the endothelium. Thus, exposure of cells to random velocity fluctuations in regions of quasi-static flow compromises the integrity of the monolayer. Identification of such sites and acquisition of the knowledge necessary to protect the cells from denudation will be valuable for the endothelialization efforts of cardiac prostheses.  相似文献   

16.
Shear stress is an important biomechanical parameter in regulating human mesenchymal stem cell (hMSC) construct development. In this study, the biomechanical characteristics of hMSCs within highly porous 3-D poly (ethylene terephthalate) (PET) matrices in a perfusion bioreactor system were analyzed for two flow rates of 0.1 and 1.5 mL/min, respectively over a 20-day culture period. A 1.4 times higher proliferation rate, higher CFU-F formation, and more fibronectin and HSP-47 secretion at day 20 were observed at the flow rate of 0.1 mL/min compared to those at the flow rate of 1.5 mL/min. The higher flow rate of 1.5 mL/min upregulated osteogenic differentiation potential at day 20 as measured by the expression of alkaline phosphatase activity and calcium deposition in the matrix after 14 days osteogenic induction, consistent with those reported in literatures. Mathematical modeling indicated that shear stress existed in the range of 1 x 10(-5) to 1 x 10(-4) Pa in the constructs up to a depth of 70 microm due to flow penetration in the porous constructs. Analysis of oxygen transport in the constructs for the two flow rates yielded oxygen levels significantly higher than those at which cell growth and metabolism are affected (Jiang et al., 1996). This indicates that differences in convective transport have no significant influence on cell growth and metabolism for the range of flow rates studied. These results demonstrate that shear stress is an important microenvironment parameter that regulates hMSC construct development at a range significantly lower than those reported previously in the perfusion system.  相似文献   

17.
Our knowledge of how geometry influences abdominal aortic aneurysm (AAA) biomechanics is still developing. Both iliac bifurcation angle and proximal neck angle could impact the haemodynamics and stresses within AAA. Recent comparisons of the morphology of ruptured and intact AAA show that cases with large iliac bifurcation angles are less likely to rupture than those with smaller angles. We aimed to perform fluid-structure interaction (FSI) simulations on a range of idealised AAA geometries to conclusively determine the influence of proximal neck and iliac bifurcation angle on AAA wall stress and haemodynamics.Peak wall shear stress (WSS) and time-averaged WSS (TAWSS) in the AAA sac region only increased when the proximal neck angle exceeded 30°. Both peak WSS (p < 0.0001) and peak von Mises wall stress (p = 0.027) increased with iliac bifurcation angle, whereas endothelial cell activation potential (ECAP) decreased with iliac bifurcation angle (p < 0.001) and increased with increasing neck angle.These observations may be important as AAAs have been shown to expand, develop thrombus and rupture in areas of low WSS. Here we show that AAAs with larger iliac bifurcation angles have higher WSS, potentially reducing the likelihood of rupture. Furthermore, ECAP was lower in AAA geometries with larger iliac bifurcation angles, implying less likelihood of thrombus development and wall degeneration. Therefore our findings could help explain the clinical observation of lower rupture rates associated with AAAs with large iliac bifurcation angles.  相似文献   

18.
19.
Summary Two postganglionic branches of the superior cervical ganglion enter the area of the carotid bifurcation in the rabbit and the cat. The common and external carotid arteries receive a rich adrenergic nerve supply, which can be demonstrated by fluorophores of biogenic amines appearing after formaldehyde treatment. The internal carotid artery is only sparsely innervated; however, it shows a dense sympathetic supply at the site of pressor receptors. Following removal of the superior cervical ganglion, a total loss of fluorescent adrenergic nerves occurs and degeneration of nerve endings possessing dense core vesicles is conspicuous. These nerve terminals are situated mainly subendothelially in the carotid body sinusoids; they only rarely terminate on type I cells.  相似文献   

20.
Steady flow measurements were carried out in a rigid three-dimensional model of the human carotid artery bifurcation at a Reynolds number of 640 and a flow division ratio of 50/50. Both axial and secondary velocities were measured with a laser-Doppler anemometer. In the bulb opposite to the flow divider a zone with negative axial velocities was found with a maximal diameter of about 60% of the local diameter of the branch and a cross-sectional extent of about 25% of the local cross-sectional area. In the bulb the maximum axial velocity shifted towards the divider wall and at the end of the bulb an axial velocity plateau arose near the non-divider wall. Halfway through the bulb, secondary flow showed a vortex through which fluid flowed towards the divider wall near the bifurcation plane and back towards the non-divider wall near the upper walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号