首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mitochondrial outer membrane contains translocase complexes for the import of precursor proteins. The translocase of the outer membrane complex functions as a general preprotein entry gate, whereas the sorting and assembly machinery complex mediates membrane insertion of β-barrel proteins of the outer membrane. Several α-helical outer membrane proteins are known to carry multiple transmembrane segments; however, only limited information is available on the biogenesis of these proteins. We report that mitochondria lacking the mitochondrial import protein 1 (Mim1) are impaired in the biogenesis of multispanning outer membrane proteins, whereas overexpression of Mim1 stimulates their import. The Mim1 complex cooperates with the receptor Tom70 in binding of precursor proteins and promotes their insertion and assembly into the outer membrane. We conclude that the Mim1 complex plays a central role in the import of α-helical outer membrane proteins with multiple transmembrane segments.  相似文献   

2.
The great majority of mitochondrial proteins are synthesized by cytosolic ribosomes and then imported into the organelle post-translationally. The translocase of the outer membrane (TOM) is a proteinaceous machinery that contains surface receptors for preprotein recognition and also serves as the main entry gateway into mitochondria. Mitochondrial targeting requires various cytosolic factors, in particular the molecular chaperones Hsc70/Hsp70 and Hsp90. The chaperone activity of Hsc70/Hsp70 and Hsp90 occurs in coordinated cycles of ATP hydrolysis and substrate binding, and is regulated by a number of co-chaperone proteins. The import receptor Tom70 is a member of the tetratricopeptide repeat (TPR) co-chaperone family and contains a conserved TPR clamp domain for interaction with Hsc70 and Hsp90. Such interaction is essential for the initiation of the import process. This review will discuss the roles of Hsc70 and Hsp90 in mitochondrial import and summarize recent progress in understanding these pathways.  相似文献   

3.
The essential gene TIM44 encodes a subunit of the inner mitochondrial membrane preprotein translocase that forms a complex with the matrix heat-shock protein Hsp70. The specific role of Tim44 in protein import has not yet been defined because of the lack of means to block its function. Here we report on a Saccharomyces cerevisiae mutant allele of TIM44 that allows selective and efficient inactivation of Tim44 in organello. Surprisingly, the mutant mitochondria are still able to import preproteins. The import rate is only reduced by approximately 30% compared with wild-type as long as the preproteins do not carry stably folded domains. Moreover, the number of import sites is not reduced. However, the mutant mitochondria are strongly impaired in pulling folded domains of preproteins close to the outer membrane and in promoting their unfolding. Our results demonstrate that Tim44 is not an essential structural component of the import channel, but is crucial for import of folded domains. We suggest that the concerted action of Tim44 and mtHsp70 drives unfolding of preproteins and accelerates translocation of loosely folded preproteins. While mtHsp70 is essential for import of both tightly and loosly folded preproteins, Tim44 plays a more specialized role in translocation of tightly folded domains.  相似文献   

4.
The mitochondrial inner membrane contains numerous multispanning integral proteins. The precursors of these hydrophobic proteins are synthesized in the cytosol and therefore have to cross the mitochondrial outer membrane and intermembrane space to reach the inner membrane. While the import pathways of noncleavable multispanning proteins, such as the metabolite carriers, have been characterized in detail by the generation of translocation intermediates, little is known about the mechanism by which cleavable preproteins of multispanning proteins, such as Oxa1, are transferred from the outer membrane to the inner membrane. We have identified a translocation intermediate of the Oxa1 preprotein in the translocase of the outer membrane (TOM) and found that there are differences from the import mechanisms of carrier proteins. The intermembrane space domain of the receptor Tom22 supports the stabilization of the Oxa1 intermediate. Transfer of the Oxa1 preprotein to the inner membrane is not affected by inactivation of the soluble TIM complexes. Both the inner membrane potential and matrix heat shock protein 70 are essential to release the preprotein from the TOM complex, suggesting a close functional cooperation of the TOM complex and the presequence translocase of the inner membrane. We conclude that mitochondria employ different mechanisms for translocation of multispanning proteins across the aqueous intermembrane space.  相似文献   

5.
The biogenesis of mitochondrial matrix proteins involves the translocase of the outer membrane, the presequence translocase of the inner membrane and the presequence translocase-associated motor. The mitochondrial heat shock protein 70 (mtHsp70) forms the central core of the motor. Recent studies led to the identification of Zim17, a mitochondrial zinc finger motif protein that interacts with mtHsp70. Different views have been reported on the localization of Zim17 in the mitochondrial inner membrane or matrix. Depletion of Zim17 impairs several critical mitochondrial processes, leading to inhibition of protein import, defects of Fe/S protein biogenesis and aggregation of Hsp70s in the matrix. Additionally, we found that inactivation of Zim17 altered the morphology of mitochondria. These pleiotropic effects raise the question of the specific function of Zim17 in mitochondria. Here, we report that Zim17 is a heat shock protein of the mitochondrial matrix that is loosely associated with the inner membrane. To address the function of Zim17 in organello, we generated a temperature-sensitive mutant allele of the ZIM17 gene in yeast. Upon a short-term shift of the yeast mutant cells to a non-permissive temperature, matrix Hsp70s aggregated while protein import, Fe/S protein activity and mitochondrial morphology were not, or only mildly, affected. Only after a long-term shift to non-permissive temperature, were strong defects in protein import, Fe/S protein activity and mitochondrial morphology observed. These findings suggest that the heat shock protein Zim17 plays a specific role in preventing protein aggregation in the mitochondrial matrix, and that aggregation of Hsp70s causes pleiotropic effects on protein biogenesis and mitochondrial morphology.  相似文献   

6.
Mitochondrial preproteins synthesized in the cytosol are imported through the mitochondrial outer membrane by the translocase of the outer mitochondrial membrane (TOM) complex. Tom40 is the major component of the complex and is essential for cell viability. We generated 21 different mutations in conserved regions of the Neurospora crassa Tom40 protein. The mutant genes were transformed into a tom40 null nucleus maintained in a sheltered heterokaryon, and 17 of the mutant genes gave rise to viable strains. All mutations reduced the efficiency of the altered Tom40 molecules to assemble into the TOM complex. Mitochondria isolated from seven of the mutant strains had defects for importing mitochondrial preproteins. Only one strain had a general import defect for all preproteins examined. Another mutation resulted in defects in the import of a matrix-destined preprotein and an outer membrane beta-barrel protein, but import of the ADP/ATP carrier to the inner membrane was unaffected. Five strains showed deficiencies in the import of beta-barrel proteins. The latter results suggest that the TOM complex distinguishes beta-barrel proteins from other classes of preprotein during import. This supports the idea that the TOM complex plays an active role in the transfer of preproteins to subsequent translocases for insertion into the correct mitochondrial subcompartment.  相似文献   

7.
The preprotein translocase of the yeast mitochondrial outer membrane (TOM) consists of the initial import receptors Tom70 and Tom20 and a approximately 400-kDa (400 K) general import pore (GIP) complex that includes the central receptor Tom22, the channel Tom40, and the three small Tom proteins Tom7, Tom6, and Tom5. We report that the GIP complex is a highly stable complex with an unusual resistance to urea and alkaline pH. Under mild conditions for mitochondrial lysis, the receptor Tom20, but not Tom70, is quantitatively associated with the GIP complex, forming a 500K to 600K TOM complex. A preprotein, stably arrested in the GIP complex, is released by urea but not high salt, indicating that ionic interactions are not essential for keeping the preprotein in the GIP complex. Under more stringent detergent conditions, however, Tom20 and all three small Tom proteins are released, while the preprotein remains in the GIP complex. Moreover, purified outer membrane vesicles devoid of translocase components of the intermembrane space and inner membrane efficiently accumulate the preprotein in the GIP complex. Together, Tom40 and Tom22 thus represent the functional core unit that stably holds accumulated preproteins. The GIP complex isolated from outer membranes exhibits characteristic TOM channel activity with two coupled conductance states, each corresponding to the activity of purified Tom40, suggesting that the complex contains two simultaneously active and coupled channel pores.  相似文献   

8.
The Tom70 import receptor on the mitochondrial outer membrane specifically recognizes Hsp90 and Hsc70, a critical step for the import of mitochondrial preproteins, the targeting of which depends on these cytosolic chaperones. To analyze the role of Hsp90 in mitochondrial import, the effects of the Hsp90 inhibitors geldanamycin and novobiocin were compared. Geldanamycin occludes the N-terminal ATP-binding site of Hsp90, whereas novobiocin targets the C-terminal region of the chaperone. Here, novobiocin was found to inhibit preprotein import and, in particular, targeting to the purified cytosolic fragment of Tom70. Hsp90 cross-linking to preprotein and coprecipitation of Hsp90 with Tom70 were both impaired by novobiocin. Overall, novobiocin treatment increased preprotein aggregation, contributing to reduced import competence. In contrast, geldanamycin had no apparent effect on preprotein interactions with Hsp90, formation of preprotein-chaperone complexes, Hsp90 docking onto Tom70, or preprotein association with the outer membrane. Instead, geldanamycin impaired formation of preprotein import intermediates at the outer membrane. This suggests a novel active role for Hsp90 in import steps subsequent to Tom70 targeting. Our results outline the mechanisms of Hsp90 function in preprotein targeting and transport.  相似文献   

9.
Young JC  Hoogenraad NJ  Hartl FU 《Cell》2003,112(1):41-50
The role of cytosolic factors in protein targeting to mitochondria is poorly understood. Here, we show that in mammals, the cytosolic chaperones Hsp90 and Hsp70 dock onto a specialized TPR domain in the import receptor Tom70 at the outer mitochondrial membrane. This interaction serves to deliver a set of preproteins to the receptor for subsequent membrane translocation dependent on the Hsp90 ATPase. Disruption of the chaperone/Tom70 recognition inhibits the import of these preproteins into mitochondria. In yeast, Hsp70 rather than Hsp90 is used in import, and Hsp70 docking is required for the formation of a productive preprotein/Tom70 complex. We outline a novel mechanism in which chaperones are recruited for a specific targeting event by a membrane-bound receptor.  相似文献   

10.
The central channel Tom40 of the preprotein translocase of outer membrane (TOM) complex is thought to be responsible for the import of virtually all preproteins synthesized outside the mitochondria. In this study, we analyze the topogenesis of the peripheral benzodiazepine receptor (PBR), which integrates into the mitochondrial outer membrane (MOM) through five hydrophobic transmembrane segments (TMSs) and functions in cholesterol import into the inner membrane. Analyses of in vitro and in vivo import into TOM component–depleted mitochondria reveal that PBR import (1) depends on the import receptor Tom70 but requires neither the Tom20 and Tom22 import receptors nor the import channel Tom40, (2) shares the post-Tom70 pathway with the C-tail–anchored proteins, and (3) requires factors of the mitochondrial intermembrane space. Furthermore, membrane integration of mitofusins and mitochondrial ubiquitin ligase, the MOM proteins with two and four TMSs, respectively, proceeds through the same initial pathway. These findings reveal a previously unidentified pathway of the membrane integration of MOM proteins with multiple TMSs.  相似文献   

11.
A large majority of the 1000–1500 proteins in the mitochondria are encoded by the nuclear genome, and therefore, they are translated in the cytosol in the form and contain signals to enable the import of proteins into the organelle. The TOM complex is the major translocase of the outer membrane responsible for preprotein translocation. It consists of a general import pore complex and two membrane import receptors, Tom20 and Tom70. Tom70 contains a characteristic TPR domain, which is a docking site for the Hsp70 and Hsp90 chaperones. These chaperones are involved in protecting cytosolic preproteins from aggregation and then in delivering them to the TOM complex. Although highly significant, many aspects of the interaction between Tom70 and Hsp90 are still uncertain. Thus, we used biophysical tools to study the interaction between the C-terminal domain of Hsp90 (C-Hsp90), which contains the EEVD motif that binds to TPR domains, and the cytosolic fragment of Tom70. The results indicate a stoichiometry of binding of one monomer of Tom70 per dimer of C-Hsp90 with a KD of 360 ± 30 nM, and the stoichiometry and thermodynamic parameters obtained suggested that Tom70 presents a different mechanism of interaction with Hsp90 when compared with other TPR proteins investigated.  相似文献   

12.
Tim14 and Tim16 are essential components of the import motor of the mitochondrial TIM23 preprotein translocase. Tim14 contains a J domain in the matrix space that is anchored in the inner membrane by a transmembrane segment. Tim16 is a J-related protein with a moderately hydrophobic segment at its N terminus. The J and J-like domains function in the regulation of the ATPase activity of the Hsp70 chaperone of the import motor. We report here on the role of the hydrophobic segments of Tim16 and Tim14 in the TIM23 translocase. Yeast cells lacking the hydrophobic N-terminal segment in either Tim16 or Tim14 are viable but show growth defects and decreased import rates of matrix-targeted preproteins into mitochondria. The interaction of the Tim14.Tim16 complex with the core complex of the TIM23 translocase is destabilized in these cells. In particular, the N-terminal domain of Tim16 is crucial for the interaction of the Tim14.Tim16 complex with the TIM23 preprotein translocase. Deletion of hydrophobic segments in both, Tim16 and Tim14, is lethal. We conclude that import into the matrix space of mitochondria requires association of the co-chaperones Tim16 and Tim14 with the TIM23 preprotein translocase.  相似文献   

13.
The role of plant mitochondrial outer membrane proteins in the process of preprotein import was investigated, as some of the principal components characterized in yeast have been shown to be absent or evolutionarily distinct in plants. Three outer membrane proteins of Arabidopsis thaliana mitochondria were studied: TOM20 (translocase of the outer mitochondrial membrane), METAXIN, and mtOM64 (outer mitochondrial membrane protein of 64 kD). A single functional Arabidopsis TOM20 gene is sufficient to produce a normal multisubunit translocase of the outer membrane complex. Simultaneous inactivation of two of the three TOM20 genes changed the rate of import for some precursor proteins, revealing limited isoform subfunctionalization. Inactivation of all three TOM20 genes resulted in severely reduced rates of import for some but not all precursor proteins. The outer membrane protein METAXIN was characterized to play a role in the import of mitochondrial precursor proteins and likely plays a role in the assembly of beta-barrel proteins into the outer membrane. An outer mitochondrial membrane protein of 64 kD (mtOM64) with high sequence similarity to a chloroplast import receptor was shown to interact with a variety of precursor proteins. All three proteins have domains exposed to the cytosol and interacted with a variety of precursor proteins, as determined by pull-down and yeast two-hybrid interaction assays. Furthermore, inactivation of one resulted in protein abundance changes in the others, suggesting functional redundancy. Thus, it is proposed that all three components directly interact with precursor proteins to participate in early stages of mitochondrial protein import.  相似文献   

14.
Mitochondria import a large number of nuclear-encoded proteins via membrane-bound transport machineries; however, little is known about regulation of the preprotein translocases. We report that the main protein entry gate of mitochondria, the translocase of the outer membrane (TOM complex), is phosphorylated by cytosolic kinases-in particular, casein kinase 2 (CK2) and protein kinase A (PKA). CK2 promotes biogenesis of the TOM complex by phosphorylation of two key components, the receptor Tom22 and the import protein Mim1, which in turn are required for import of further Tom proteins. Inactivation of CK2 decreases the levels of the TOM complex and thus mitochondrial protein import. PKA phosphorylates Tom70 under nonrespiring conditions, thereby inhibiting its receptor activity and the import of mitochondrial metabolite carriers. We conclude that cytosolic kinases exert stimulatory and inhibitory effects on biogenesis and function of the TOM complex and thus regulate protein import into mitochondria.  相似文献   

15.
The preprotein translocase of the outer mitochondrial membrane is a multi-subunit complex with receptors and a general import pore. We report the molecular identification of Tom7, a small subunit of the translocase that behaves as an integral membrane protein. The deletion of TOM7 inhibited the mitochondrial import of the outer membrane protein porin, whereas the import of preproteins destined for the mitochondrial interior was impaired only slightly. However, protein import into the mitochondrial interior was strongly inhibited when it occurred in two steps: preprotein accumulation at the outer membrane in the absence of a membrane potential and subsequent further import after the re-establishment of a membrane potential. The delay of protein import into tom7delta mitochondria seemed to occur after the binding of preproteins to the outer membrane receptor sites. A lack of Tom7 stabilized the interaction between the receptors Tom20 and Tom22 and the import pore component Tom40. This indicated that Tom7 exerts a destabilizing effect on part of the outer membrane translocase, whereas Tom6 stabilizes the interaction between the receptors and the import pore. Synthetic growth defects of the double mutants tom7delta tom20delta and tom7delta tom6delta provided genetic evidence for the functional relationship of Tom7 with Tom20 and Tom6. These results suggest that (i) Tom7 plays a role in sorting and accumulation of the preproteins at the outer membrane, and (ii) Tom7 and Tom6 perform complementary functions in modulating the dynamics of the outer membrane translocase.  相似文献   

16.
The maintenance of correct mitochondrial shape requires numerous proteins that act on the surface or inside of the organelle. Although the soluble F-box protein Mfb1 was recently found to associate peripherally with mitochondria and to regulate organelle connectivity in budding yeast, how it localizes to mitochondria is unknown. Here, we show that two tetratricopeptide repeat proteins-the general preprotein import receptor Tom70 (a component of translocase of the outer membrane) and its paralogue Tom71-are required for Mfb1 mitochondrial localization. Mitochondria in cells lacking Tom70 and Tom71 form short tubules and aggregates, aberrant morphologies similar to those observed in the mfb1-null mutant. In addition, Mfb1 interacts with Tom71 in vivo, and binds to mitochondria through Tom70 in vitro. Our data indicate an unexpected role for Tom70 in recruitment of soluble proteins to the mitochondrial surface, and indicate that Tom71 has a specialized role in Mfb1-mediated mitochondrial morphogenesis.  相似文献   

17.
Most mitochondrial preproteins are maintained in a loosely folded import-competent conformation by cytosolic chaperones, and are imported into mitochondria by translocator complexes containing a preprotein receptor, termed translocase of the outer membrane of mitochondria (Tom) 20. Using two-hybrid screening, we identified arylhydrocarbon receptor-interacting protein (AIP), an FK506-binding protein homologue, interacting with Tom20. The extreme COOH-terminal acidic segment of Tom20 was required for interaction with tetratricopeptide repeats of AIP. An in vitro import assay indicated that AIP prevents preornithine transcarbamylase from the loss of import competency. In cultured cells, overexpression of AIP enhanced preornithine transcarbamylase import, and depletion of AIP by RNA interference impaired the import. An in vitro binding assay revealed that AIP specifically binds to mitochondrial preproteins. Formation of a ternary complex of Tom20, AIP, and preprotein was observed. Hsc70 was also found to bind to AIP. An aggregation suppression assay indicated that AIP has a chaperone-like activity to prevent substrate proteins from aggregation. These results suggest that AIP functions as a cytosolic factor that mediates preprotein import into mitochondria.  相似文献   

18.
Mitochondrial preproteins that are imported via the translocase of the mitochondrial outer membrane (Tom)70 receptor are complexed with cytosolic chaperones before targeting to the mitochondrial outer membrane. The adenine nucleotide transporter (ANT) follows this pathway, and its purified mature form is identical to the preprotein. Purified ANT was reconstituted with chaperones in reticulocyte lysate, and bound proteins were identified by mass spectrometry. In addition to 70-kDa heat-shock cognate protein (Hsc70) and 90-kDa heat-shock protein (Hsp90), a specific subset of cochaperones were found, but no mitochondria-specific targeting factors were found. Interestingly, three different Hsp40-related J-domain proteins were identified: DJA1, DJA2, and DJA4. The DJAs bound preproteins to different extents through their C-terminal regions. DJA dominant-negative mutants lacking the N-terminal J-domains impaired mitochondrial import. The mutants blocked the binding of Hsc70 to preprotein, but with varying efficiency. The DJAs also showed significant differences in activation of the Hsc70 ATPase and Hsc70-dependent protein refolding. In HeLa cells, the DJAs increased new protein folding and mitochondrial import, although to different extents. No single DJA was superior to the others in all aspects, but each had a profile of partial specialization. The Hsp90 cochaperones p23 and Aha1 also regulated Hsp90-preprotein interactions. We suggest that multiple cochaperones with similar yet partially specialized properties cooperate in optimal chaperone-preprotein complexes.  相似文献   

19.
We cloned a 38-kDa rat mitochondrial outer membrane protein (OM38) with structural homology to the central component of preprotein translocase of the fungal mitochondrial outer membrane, Tom40. Although it has no predictable alpha-helical transmembrane segments, OM38 is resistant to alkaline carbonate extraction and is inaccessible to proteases and polyclonal antibodies added from outside the mitochondria, suggesting that it is embedded in the membrane, probably in a beta-barrel structure, as has been similarly speculated for fungal Tom40. Immunoprecipitation demonstrated that OM38 is associated with the major import receptors rTOM20 and rTOM22, and several other unidentified components with molecular masses of 5-10 kDa in digitonin-solubilized membrane: OM10, OM7.5, and OM5. Blue native polyacrylamide gel electrophoresis revealed that OM38 is a component of a approximately 400-kDa complex, firmly associating with rTOM22 and loosely associating with rTOM20. The preprotein in transit to the matrix interacted with the TOM complex containing OM38, and immunodepletion of OM38 resulted in the loss of preprotein import activity of the detergent-solubilized and reconstituted outer membrane vesicles. Taken together, these results indicate that OM38 is a structural and functional homolog of fungal Tom40 and functions as a component of the preprotein import machinery of the rat mitochondrial outer membrane.  相似文献   

20.
Mitochondrial GrpE (Mge1p) is a mitochondrial cochaperone essential for viability of the yeast Saccharomyces cerevisiae. To study the role of Mge1p in the biogenesis of mitochondrial proteins, we isolated a conditional mutant allele of MGE1 which conferred a temperature-sensitive growth phenotype and led to the accumulation of mitochondrial preproteins after shifting of the cells to the restrictive temperature. The mutant Mge1 protein was impaired in its interaction with the matrix heat shock protein mt-Hsp70. The mutant mitochondria showed a delayed membrane translocation of preproteins, and the maturation of imported proteins was impaired, as evidenced by the retarded second proteolytic processing of a preprotein in the matrix. Moreover, the aggregation of imported proteins was decreased in the mutant mitochondria. The mutant Mge1p differentially modulated the interaction of mt-Hsp70 with preproteins compared with the wild type, resulting in decreased binding to preproteins in membrane transit and enhanced binding to fully imported proteins. We conclude that the interaction of Mge1p with mt-Hsp70 promotes the progress of the Hsp70 reaction cycle, which is essential for import and maturation of mitochondrial proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号