首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Calpain I purified from human erythrocyte cytosol activates both the ATP hydrolytic activity and the ATP-dependent Ca2+ transport function of the Ca2+-translocating ATPase solubilized and purified from the plasma membrane of human erythrocytes and reconstituted into phosphatidylcholine vesicles. Following partial proteolysis of the enzyme by calpain I, both the initial rates of calcium ion uptake and ATP hydrolysis were increased to near maximal levels similar to those obtained upon addition of calmodulin. The proteolytic activation resulted in the loss of further stimulation of the rates of Ca2+ translocation or ATP hydrolysis by calmodulin as well as an increase of the affinity of the enzyme for calcium ion. However, the mechanistic Ca2+/ATP stoichiometric ratio was not affected by the proteolytic treatment of the reconstituted Ca2+-translocating ATPase. The proteolytic activation of the ATP hydrolytic activity of the reconstituted enzyme could be largely prevented by calmodulin. Different patterns of proteolysis were obtained in the absence or in the presence of calmodulin during calpain treatment: the 136-kDa enzyme was transformed mainly into a 124-kDa active ATPase fragment in the absence of calmodulin, whereas a 127-kDa active ATPase fragment was formed in the presence of calmodulin. This study shows that calpain I irreversibly activates the Ca2+ translocation function of the Ca2+-ATPase in reconstituted proteoliposomes by producing a calmodulin-independent active enzyme fragment, while calmodulin antagonizes this activating effect by protecting the calmodulin-binding domain against proteolytic cleavage by calpain.  相似文献   

2.
Antibodies raised in rabbits against the purified erythrocyte membrane Ca2+ pumping ATPase were affinity-purified using an ATPase-Sepharose column. Addition of a few molecules of the purified antibody per molecule of ATPase was sufficient to inhibit the ATPase activity. Extensively washed ghosts or preincubated pure ATPase sometimes develop an appreciable Mg2+-ATPase activity. In such cases, the antibodies inhibited the Mg2+-ATPase as well as the Ca2+-ATPase. This is consistent with the hypothesis that a portion of the Mg2+-ATPase activity of ghosts is derived from the Ca2+-ATPase. When nitrophenylphosphatase activity was observed, both Mg2+ - and Ca2+-stimulated activities were observed. Only the Ca2+ activity was inhibited by the antibodies, confirming that this activity is due to the Ca2+ pump, and suggesting that the Mg2+-nitrophenylphosphatase is due to a separate enzyme. Amounts of antibody comparable to those which inhibited the Ca2+-ATPases had no effect on the Na+-K+-ATPase; 4-fold higher amounts of antibody significantly stimulated the Na+-K+-ATPase, but this effect of the antibody was not specific: Immunoglobulins from the nonimmune serum also significantly stimulated the Na+-K+-ATPase.In resealed erythrocyte membranes, antibodies incorporated into the ghosts inactivated the Ca2+-ATPase, while antibodies added to the outside had no significant effect.  相似文献   

3.
In resting muscle, cytoplasmic Ca2+ concentration is maintained at a low level by active Ca2+ transport mediated by the Ca2+ ATPase from sarcoplasmic reticulum. The region of the protein that contains the catalytic site faces the cytoplasmic side of the membrane, while the transmembrane helices form a channel-like structure that allows Ca2+ translocation across the membrane. When the coupling between the catalytic and transport domains is lost, the ATPase mediates Ca2+ efflux as a Ca2+ channel. The Ca2+ efflux through the ATPase channel is activated by different hydrophobic drugs and is arrested by ligands and substrates of the ATPase at physiological pH. At acid pH, the inhibitory effect of cations is no longer observed. It is concluded that the Ca2+ efflux through the ATPase may be sufficiently fast to support physiological Ca2+ oscillations in skeletal muscle, that occur mainly in conditions of intracellular acidosis.  相似文献   

4.
The effect of an intracellular cryoprotectant glycerol on human erythrocyte Ca2+-ATPase activity and possible involvement of calmodulin in the regulation of Ca2+-pump under these conditions were investigated. The experiments were carried out using saponin-permeabilized cells and isolated erythrocyte membrane fractions (white ghosts). Addition of rather low concentrations of glycerol to the medium increased Ca2+-ATPase activity in the saponin-permeabilized cells; the maximal effect was observed at 10% glycerol. Subsequent increase in glycerol concentrations above 20% was accompanied by inhibition of Ca2+-ATPase activity. Lack of stimulating effect of glycerol on white ghost Ca2+-ATPase may be attributed to removal of endogenous compounds regulating activity of this ion transport system. Inhibitory analysis using R24571 revealed that activation of Ca2+-ATPase by 10% glycerol was observed only in the case of inhibitor administration after modification of cells with glycerol; in the case of inhibitor addition before erythrocyte contact with glycerol, this phenomenon disappeared. These data suggest the possibility of regulation of human erythrocyte Ca2+-ATPase by glycerol; this regulatory effect may be attributed to both glycerol-induced structural changes in the membrane and also involvement of calmodulin in modulation of catalytic activity of the Ca2+-pump.  相似文献   

5.
A high affinity Ca2+/Mg2+ ATPase has been identified and localized in synaptic membrane subfractions. This enzyme is stimulated by low concentrations of Ca2+ (1 M) believed to approximate the range of Ca2+ in the synaptosomal cytosol (0.1 to 5.0 M). The opiate agonist levorphanol, in a concentration-dependent fashion, inhibited Ca2+-stimulated ATP hydrolysis in lysed synaptic membranes. This inhibition was reversed by naloxone, while dextrorphan, the inactive opiate isomer, was without effect. Inhibition by levorphanol was most pronounced in a subfraction of synaptic membranes (SPM-1). The inhibition of Ca2+-stimulated ATP hydrolysis was characterized by a reduction inV max for Ca2+. Levorphanol pretreatment reduced the Hill coefficient (HN) of 1.5 to 0.7, suggesting cooperative interaction between the opiate receptor and the enzyme protein. Levorphanol, but not dextrorphan, also inhibited (28%) ATP-dependent Ca2+ uptake by synaptic membranes. Opiate ligand stereoisomers were tested for their effects on calmodulin stimulating of high affinity Ca2+/Mg2+ ATPase in synaptic membranes. Levorphanol (10 M), but not the inactive stereoisomer (+)dextrorphan, significantly inhibited (35%) the calmodulin-activated Ca2+-dependent ATP hydrolysis activity in a preparation of lysed synaptic membranes. Both Ca2+-dependent and calmodulin-dependent stimulation of the enzyme in the presence of optimal concentrations of the other co-substrate were inhibited by levorphanol (35–40%) but not dextrorphan. Inhibition of ATP hydrolysis was characterized by a reduction inV max for both Ca2+ and calmodulin stimulation of the enzyme. Calmodulin stimulation of enzyme activity was most pronounced in SPM-1, the membrane fraction which also exhibits the maximal opiate inhibition (40%) of the Ca2+-ATPase. The results demonstrate that opiate receptor activation inhibits a high affinity Ca2+/Mg2+ ATPase in synaptic plasma membranes in a stereospecific fashion. The inhibition of the enzyme may occur by a mechanism involving both Ca2+ and calmodulin. Inhibition of calmodulin activation may contribute to the mechanism by which opiate ligands disrupt synaptosomal Ca2+ buffering mechanisms. Changes in the cytosolic distribution of synaptosomal Ca2+ following inhibition of Ca2+/Mg2+ ATPase may underlie some of the pharmacological effects of opiate drugs.  相似文献   

6.
Summary Human erythrocyte Ca2+-translocating ATPase was solubilized from calmodulin-depleted membranes using the detergent Triton X-100, and subsequently purified by calmodulin-affinity chromatography. The purified enzyme was reconstituted in artificial phospholipid vesicles using a cholate-dialysis method and various phospholipids. The reconstituted enzyme was able to translocate Ca2+ inside the vesicles, both in the absence and in the presence of the Ca2+-chelating agent, oxalate, inside the vesicles. The tightness of coupling between ATP hydrolysis and cation translocation was investigated by the use of different ionophoretic compounds. The efficiency of Ca2+ translocation was measured by the ability of the ionophores to stimulate ATP hydrolytic activity of the reconstituted enzyme. It was found that the maximum stimulation of the ATP hydrolytic activity was induced by the electroneutral Ca2+/2H+ ionophore A23187 (9 to 10-fold). A Ca2+ ionophore unable to translocate H+, CYCLEX-2E, was less efficient in stimulating the activity of the reconstituted enzyme (two- to threefold). However, the combined addition of CYCLEX-2E plus protonophores further increased the ATP hydrolytic activity (around fourfold), whereas, the protonophores did not further stimulate ATP hydrolysis in the presence of A23187. Furthermore, in the absence of Ca2+ ionophore, the electroneutral K+(Na+)/H+ ionophoretic exchanger, nigericin, or the electroneutral Na+(K+)/H+ ionophoretic exchanger, monensin, stimulated the rate of ATP hydrolysis in the reconstituted enzyme two- or threefold, respectively. These results suggest that the Ca2+-ATPase not only translocates Ca2+ but also H+ in the opposite direction.  相似文献   

7.
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis.  相似文献   

8.
Calmodulin-free ghost membranes were prepared from erythrocytes of kwashiorkor children and from healthy children in the same age bracket. In the absence of calmodulin, the specific activity of Mg2+-dependent Ca2+-pumping ATPase (Ca2++Mg2+-ATPase) of kwashiorkor membranes was more than 40 percent lower than the specific activity of the normal enzymes, whose maximum velocity was increased by at least four-fold by the modulator protein. In constrast, the maximum velocity of the enzymes of kwashiorkor membranes was enhanced by calmodulin by about 11/2 times the basal activity of the normal enzymes and by 2 times the basal activity of the kwashiorkor enzymes. The affinity of the pump for ATP was lower in the membranes of kwashiorkor children (Km for ATP=30.6±2.8 M ATP) in comparison to normal membranes (Km for ATP=21.7±2.0 M ATP). Similarly, calmodulin-affinity of the enzymes, was lower in kwashiorkor membranes than in the normal membranes irrespective of source of calmodulin. Calmodulin from haemolysates of kwashiorkor red cells activated the enzymes of normal and kwashiorkor membranes to the same degree as calmodulin partially purified from the haemolysate of healthy children. A determination of the dependence of the activity of the pump on calcium in the absence and presence of calmodulin reveals that the affinity of the kwashiorkor enzymes for Ca2+ is at least 70 percent lower than that of enzymes of normal membranes. Altogether, these findings suggest that the Ca2+-pumping ATPase of kwashiorkor membranes is less functional than the enzymes of healthy erythrocytes.  相似文献   

9.
Electrical stimulation of the rat heart sarcolemmal membranes with a square wave current was found to increase Ca2+-ATPase activity. This activation of the enzyme was dependent upon the voltage of the electric current, frequency of stimulation and duration of stimulation of the sarcolemmal membranes. The increase in ca2+-ATPase was reversible upon terminating the electrical stimulation. The activation of sarcolemmal Ca2+-ATPase due to electrical stimulation was markedly depressed when the reaction was carried out at high pH (7.8 to 8.2), low pH (6.6 to 7.0), high temperatures (45 to 50°C) and low temperatures (17 to 25°C) of the incubation medium. Ca2+-antagonists, verapamil and D-600, unlike other types of inhibitors such as propranolol and ouabain, were found to reduce the activation of sarcolemmal Ca2+-ATPase by electrical stimulation. These results support the view that Ca2+/Mg2+ ATPase may be involved in the gating mechanism for opening Ca2+-channels in the sarcolemmal membrane upon excitation of the cardiac muscle.  相似文献   

10.
We have compared effects of dimethylsulfoxide (Me2SO) and two polyols on the Ca2+-ATPase purified from human erythrocytes. As studied under steady-state conditions over a broad solute concentration range and temperature, Me2SO, glycerol, and xylitol do not inhibit the Ca2+-ATPase activity; this is in contrast to numerous other organic solutes that we have investigated. Under specific experimental conditions, Me2SO (but not glycerol) substantially increases Ca2+-ATPase activity, suggesting a possible facilitation of enzyme oligomerization. The activation is more pronounced at low Ca2+ concentrations. In contrast to glycerol, Me2SO shows no protective effect on enzyme structure as assessed by determining residual Ca2+-ATPase activity after exposing the enzyme to thermal denaturation at 45°C. Under these conditions several other organic solutes strongly enhance the denaturating effect of temperature. Because of the temperature dependence of its effect on the Ca2+-ATPase activity we believe that Me2SO activates the Ca2+-ATPase by indirect water-mediated interactions.  相似文献   

11.
Summary I have investigated the effect of lead on the erythrocyte ghosts (Ca2+,Mg2+)-ATPase, with special attention to the role of calmodulin in this phenomena. Under regular incubation conditions, lead inhibits the enzyme with an IC50 of 6.0 µM. The presence of exogenously added calmodulin apparently does not change this inhibitory value. DTT added during the incubation period does not affect the inhibitory action of lead. However, when the membranes are preincubated with DTT, an important IC50 displacement is observed, either with or without added calmodulin. Since [125I]calmodulin binding to the membranes is enhanced when lead is used, the possibility of a lead/calmodulin complex that optimally stimulates the enzyme using lead concentrations between 1.0 and 10.0 µM, is suggested. Based on the experimental data, I propose two well defined actions of lead; first, an inhibitory action upon the ATPase above 1.0 µM lead, most probably related to essential sullphydryl groups in the enzyme; and second, a direct action of lead upon calmodulin at lead concentrations below 1.0 µM.A preliminary report has been presented at the 5th European Bioenergetics Conference. Aberystwyth, Wales. 20–26 July 1988. EBEC Reports. vol 5; p294 (1988).  相似文献   

12.
Ligand binding to transport sites constitutes the initial step in the catalytic cycle of transport ATPases. Here, we consider the well characterized Ca2+ ATPase of sarcoplasmic reticulum (SERCA) and describe a series of Ca2+ binding isotherms obtained by equilibrium measurements in the presence of various H+ and Mg2+ concentrations. We subject the isotherms to statistical mechanics analysis, using a model based on a minimal number of mechanistic steps. The analysis allows satisfactory fits and yields information on occupancy of the specific Ca2+ sites under various conditions. It also provides a fundamental method for analysis of binding specificity to transport sites under equilibrium conditions that lead to tightly coupled catalytic activation.  相似文献   

13.
Activation of the human red cell calcium ATPase by calcium pretreatment   总被引:1,自引:0,他引:1  
Some kinetic parameters of the human red cell Ca2+-ATPase were studied on calmodulin-free membrane fragments following preincubation at 37°C. After 30 min treatment with EGTA(1 mm) plus dithioerythritol (1 mm), a V max of about 0.4 μmol Pi/mg × hr and a K s of 0.3 μm Ca2+ were found. When Mg2+ (10 mm) or Ca2+(10 μm) were also added during preincubation, V maxbut not Kwas altered. Ca2+ was more effective than Mg2+, thus increasing V max to about 1.3 μmol Pi/mg × hr. The presence of both Ca2+ and Mg2+ during pretreatment decreasedKto 0.15 μm, while having no apparent effect on V max. Conversely, addition of ATP (2 mm) with either Ca2+ or Ca2+ plus Mg2+increased Vmax without affecting K. Preincubation with Ca2+ for periods longer than 30 min further increased Vmaxand reduced Kto levels as low as found with calmodulin treatment. The Ca2+ activation was not prevented by adding proteinase inhibitors (iodoacetamide, 10 mm; leupeptin, 200 μm; pepstatinA, 100 μm; phenylmethanesulfonyl fluoride, 100 μm). The electrophoretic pattern of membranes preincubated with or without Mg2+, Ca2+ or Ca2+ plus Mg2+ did not differ significantly from each other. Moreover, immunodetection of Ca2+-ATPase by means of polyclonal antibodiesrevealed no mobility change after the various treatments. The above stimulation was not altered by neomycin (200 μm), washing with EGTA (5 mm) or by both incubating and washing with delipidized serum albumin (1 mg/ml), or omitting dithioerythritol from the preincubation medium. On the other hand, the activation elicited by Ca2+ plus ATP in the presence of Mg2+ was reduced 25–30% by acridine orange (100 μm), compound 48/80 (100 μm) or leupeptin (200 μm) but not by dithio-bis-nitrobenzoic acid (1 mm). The fluorescence depolarization of 1,6-diphenyl-and l-(4-trimethylammonium phenyl)-6-phenyl 1,3,5-hexatriene incorporated into membrane fragments was not affected after preincubating under the different conditions. The results show that proteolysis, fatty acid production, an increased phospholipid metabolism or alteration of membrane fluidity are not involved in the Ca2+ effect. Ca2+ preincubation may stimulate the Ca2+-ATPase activity by stabilizing or promoting the E1 conformation.  相似文献   

14.
In order to determine whether polymorphic forms of the Ca2+ + Mg2+-dependent ATPase exist, we have examined the cross-reactivity of five monoclonal antibodies prepared against the rabbit skeletal muscle sarcoplasmic reticulum enzyme with proteins from microsomal fractions isolated from a variety of muscle and nonmuscle tissues. All of the monoclonal antibodies cross-reacted in immunoblots against rat skeletal muscle Ca2+ + Mg2+-dependent ATPase but they cross-reacted differentially with the enzyme from chicken skeletal muscle. No cross-reactivity was observed with the Ca2+ + Mg2+-dependent ATPase of lobster skeletal muscle. The pattern of antibody cross-reactivity with a 100,000 dalton protein from sarcoplasmic reticulum and microsomes isolated from various muscle and nonmuscle tissues of rabbit demonstrated the presence of common epitopes in multiple polymorphic forms of the Ca2+ + Mg2+-dependent ATPase. One of the monoclonal antibodies prepared against the purified Ca2+ + Mg2+-dependent ATPase of rabbit skeletal muscle sarcoplasmic reticulum was found to cross-react with calsequestrin and with a series of other Ca2+-binding proteins and their proteolytic fragments. Its cross-reactivity was enhanced in the presence of EGTA and diminished in the presence of Ca2+. Its lack of cross-reactivity with proteins that do not bind Ca2+ suggests that it has specificity for antigenic determinants that make up the Ca2+-binding sites in several Ca2+-binding proteins including the Ca2+ + Mg2+-dependent ATPase.This paper is dedicated to the memory of Dr. David E. Green.  相似文献   

15.
The effects of ethanol in vitro on calmodulin-dependent Ca2+-activated ATPase (CaM–Ca2+-ATPase) activity were studied in synaptic plasma membranes (SPM) prepared from the brain of normal and chronically ethanol-treated rats. In SPM from normal animals, ethanol at 50–200 mM inhibited the Ca2+-ATPase activity. Lineweaver-Burk analysis indicates that the inhibition was the result of a decreased affinity of the enzyme for calmodulin, whereas the maximum activity of the enzyme was not changed. Arrhenius analysis indicates that the enzyme activity was influenced by lipid transition of the membranes, and ethanol in vitro resulted in a shift of the transition temperature toward a lower value. From animals receiving chronic ethanol treatment (3 weeks), the SPM were resistant to the inhibitory effect of ethanol on the enzyme activity. The resistance to ethanol inhibition was correlated with a higher enzyme affinity for calmodulin and a higher transition temperature, as compared with normal SPM. Since the calmodulin-dependent Ca2+-ATPase in synaptic plasma membranes is believed to be the Ca2+ pump controlling free Ca2+ levels in synaptic terminals, its inhibition by ethanol could therefore lead to altered synaptic activity.Abbreviations used ATPase adenosine triphosphatase - CaM calmodulin - CaM–Ca2+-ATPase calmodulin-dependent Ca2+-activated ATPase - EGTA ethylene-bis(oxyethylenenitrilo)tetraacetic acid - EtOH ethanol - Hepes N—2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - SPM synaptic plasma membranes - TFP trifluoperazine - Tris tris(hydroxymethyl)aminomethane - Km Michaelis constant - Td transition temperature - Vmax maximum velocity  相似文献   

16.
The thermodynamic efficiency of the calmodulin-activated form of the Ca2+-pumping ATPase of the bovine cardiac sarcolemma (SL) was evaluated in sealed vesicles under reversible conditions. The free internal Ca2+ concentration ([Ca2+]i) established in the SL vesicle lumen by action of the ATPase was determined as a function of the [ATP]/([ADP][Pi]) ratio for the following experimental conditions: 250mM sucrose, 100mM KCI, 0.1mM Mg2+, 25mM HEPES, 25mM Tris, pH 7.40, at 37°C, [Ca2+]o=50nM (1mM Ca/EGTA buffer), 0.75mM Mg-ATP, 0.1mM Pi, variable [ADP]. Under these conditions, with the pump working near itsK m of 64nM, the [Ca2+]i achieved was 18mM, decreasing with increasing [ADP] for [ADP] 0.84mM. A plot of the square of the [Ca2+]i/[Ca2+]o ratio against [ATP]/([ADP][Pi]) gave a straight line with a slope of 1.5×107M. This was in agreement, within the experimental error, with the equilibrium constant for ATP hydrolysis under these conditions (1.09×107M). These results demonstrate (1) tight coupling between Ca2+ transport and ATP hydrolysis with a stoichiometry of 2 Ca2+ moved per ATP split and (2) a low degree of passive leakage. Analysis at low [ADP] (<0.83mM) showed the unexpected result that ADP increases the rate of theforward reaction of the pump. The maximal effect on the initial rate is a 96±5% increase, with an EC50 of approximately 0.4mM (ADP). Similar but lesser stimulation was observed with CDP. The implications of the above results for the energetics of the pump and for its physiological function in the beating heart are discussed.  相似文献   

17.
A humoral ouabain-like plasma factor has been observed in patients with essential hypertension (EHT). In the present study, we hypothesized that this humoral factor might be responsible for the elevated cytosolic free calcium concentrations [Ca2+]i seen in these patients. Patients with mild to moderate EHT and their normotensive first degree blood relatives (NTBR) participated in the study. Platelet Na+, K+-ATPase activity was assayed in EHT patients and their NT first-degree relatives. To confirm the ouabain-like activity in plasma from EHT patients, control platelets were incubated with EHT and NTBR plasma and their Na+, K+-ATPase activity was measured. In addition, the effect of EHT plasma on platelet45Ca-uptake was studied. Thein vitro effects of ouabain (10 ΜM) on (i)45Ca-uptake and (ii) [Ca2+]i response in control platelets were also observed. A decreased Na+K+-ATPase activity (P< 0.05) was observed in platelet membranes from EHT patients. Incubation of control platelets with EHT plasma decreased their Na+, K+-ATPase activity (P< 0.01) and increased their45Ca-uptake (P< 0.05). C-18 Sep-Pak filtered hypertensive plasma extracts (containing the ouabain-like fraction) also decreased Na+, K+-ATPase activity (P< 001) in control platelet membranes.In vitro incubation of control platelets with ouabain increased45Ca-uptake (P< 005) and [Ca2+]i response (P< 0.05) in these platelets. Thus it appears that an ouabain-like factor in the EHT plasma may contribute to the elevated platelet [Ca2+]i observed in EHT patients.  相似文献   

18.
Regulation of cardiac sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase   总被引:2,自引:0,他引:2  
Summary The two high affinity calcium binding sites of the cardiac (Ca2+ + Mg2+)-ATPase have been identified with the use of Eu3+. Eu3+ competes for the two high affinity calcium sites on the enzyme. With the use of laser-pulsed fluorescent spectroscopy, the environment of the two sites appear to be heterogeneous and contain different numbers of H2O molecules coordinated to the ion. The ion appears to be occluded even further in the presence of ATP. Using non-radiative energy transfer studies, we were able to estimate the distance between the two Ca2+ sites to be between 9.4 to 10.2 A in the presence of ATP. Finally, from the assumption that the calcium site must contain four carboxylic side chains to provide the 6–8 ligands needed to coordinate calcium, and based on our recently published data, we predict the peptidic backbone of the two sites.  相似文献   

19.
Regulatory role of prolactin (PRL) on Ca2+ mobilization in human mammary gland cell line MCF-7 was examined. Direct addition of PRL did not affect cytoplasmic Ca2+ concentration ([Ca2+]i); however, treatment with PRL for 24h significantly decreased the peak level and duration time of [Ca2+]i elevation evoked by ATP or thapsigargin (TG). Intracellular Ca2+ release by IP3 or TG in permeablized cells was not decreased after PRL-treatment, indicating that the Ca2+ release was not impaired by PRL treatment. Extracellular Ca2+ entry evoked by ATP or TG was likely to be intact, because entry of extracellular Ba2+ was not affected by PRL treatment. Among Ca2+-ATPases expressed in MCF-7 cells, we found significant increase of secretory pathway Ca2+-ATPase type 2 (SPCA2) mRNA in PRL-treated cells by RT-PCR experiments including quantitative RT-PCR. Knockdown of SPCA2 by siRNA in PRL-treated cells showed similar Ca2+ mobilization to that in PRL-untreated cells. The present results suggest that PRL facilitates Ca2+ transport into Golgi apparatus and may contribute the supply of Ca2+ to milk.  相似文献   

20.
The conformational states of Ca2+-ATPase in sarcoplasmic reticulum (SR) vesicles with or without a thousand-fold transmembrane Ca2+ gradient have been studied by fluorescence spectroscopy and fluorescence quenching. In consequence of the establishment of the transmembrane Ca2+ gradient, the steady-state fluorescence results revealed a reproducible 8% decrease in the intrinsic fluorescence while time-resolved fluorescence measurements showed that 13 tryptophan residues in SR · Ca2+-ATPase could be divided into three groups. The fluorescence lifetime of one of these groups increased from 5.5 ns to 5.95 ns in the presence of a Ca2+ gradient. Using KI and hypocrellin B (a photosensitive pigment obtained from a parasitic fungus, growing in Yunnan, China), the fluorescence quenching further indicated that the dynamic change of this tryptophan group, located at the protein-lipid interface, is a characteristic of transmembrane Ca2+ gradient-mediated conformational changes in SR · Ca2+-ATPase.Abbreviations SR sarcoplasmic reticulum - HB hypocrellin B - Trp tryptophan - DMSO dimethysulfoxide - Hepes N-2-hydroxyethyl piperazine-N-ethanesulfonic acad - SR(50005) SR vesicles with 1000-fold transmembrane Ca2+ gradient - SR(5050) SR vesicles without Ca2+ gradient - Ksv(app) apparent Stern-Volmer constant - Ksvi Stern-Volmer constant of component i for dynamic quenching  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号