首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aldosterone-stimulated Na+ transport is mediated by new protein synthesis, but the identification of specific aldosterone-induced proteins (AIPs) has proven difficult and the cellular function of such proteins is unknown. Using high resolution two-dimensional polyacrylamide gel electrophoresis and autoradiography we have identified AIPs of similar isoelectric points (5.8 to 6.4) and molecular weights (70,000 to 80,000) in membrane-rich and cytosolic subcellular fractions of epithelial cells derived from single toad urinary bladders. The ability of actinomycin D to inhibit both AIP synthesis and aldosterone-induced Na+ transport is consistent with a role for these proteins in the natriferic action of aldosterone. In addition, since non-natriferic concentrations of cortisol did not induce similar proteins, AIP synthesis appears to be mineralocorticoid-specific. The relationship of AIP synthesis to Na+ transport was also studied. Since amiloride, which blocks Na+ transport in high resistance epithelia, did not affect the synthesis of these proteins, Na+ transport is not required for their synthesis. In addition, similar proteins were not induced when Na+ transport was stimulated by antidiuretic hormone and theophylline. Consequently, AIP synthesis is not merely a nonspecific consequence of the cellular metabolic changes associated with Na+ transport.  相似文献   

2.
P Wang  J Meijer  F P Guengerich 《Biochemistry》1982,21(23):5769-5776
Epoxide hydrolase (EC 3.3.2.3) was purified to electrophoretic homogeneity from human liver cytosol by using hydrolytic activity toward trans-8-ethylstyrene 7,8-oxide (TESO) as an assay. The overall purification was 400-fold. The purified enzyme has an apparent monomeric molecular weight of 58 000, significantly greater than the 50 000 found for human (or rat) liver microsomal epoxide hydrolase or for another TESO-hydrolyzing enzyme also isolated from human liver cytosol. Purified cytosolic TESO hydrolase catalyzes the hydrolysis of cis-8-ethylstyrene 7,8-oxide 10 times more rapidly than does the microsomal enzyme, catalyzes the hydrolysis of TESO and trans-stilbene oxide as rapidly as the microsomal enzyme, but catalyzes the hydrolysis of styrene 7,8-oxide, p-nitrostyrene 7,8-oxide, and naphthalene 1,2-oxide much less effectively than does the microsomal enzyme. Purified cytosolic TESO hydrolase does not hydrolyze benzo[a]pyrene 4,5-oxide, a substrate for the microsomal enzyme. The activities of the purified enzymes can explain the specific activities observed with subcellular fractions. Anti-human liver microsomal epoxide hydrolase did not recognize cytosolic TESO hydrolase in purified form or in cytosol, as judged by double-diffusion immunoprecipitin analysis, precipitation of enzymatic activity, and immunoelectrophoretic techniques. Cytosolic TESO hydrolase and microsomal epoxide hydrolase were also distinguished by peptide mapping. The results provide evidence that physically different forms of epoxide hydrolase exist in different subcellular fractions and can have markedly different substrate specificities.  相似文献   

3.
The stimulation of sodium transport by aldosterone in target tissues requires the synthesis of both mRNA and proteins. Aldosterone-induced mRNA and proteins have been demonstrated in toad urinary bladder and rat kidney. We have isolated total RNA and poly(A)-containing RNA from hormone-treated and untreated toad bladder mucosal cells for translation in a rabbit reticulocyte lysate system. Aldosterone-induced proteins synthesized in this system have physical properties similar to those of aldosterone-induced proteins synthesized in the intact toad bladder.  相似文献   

4.
Similar aldosterone-induced proteins have been demonstrated in two renal epithelia, the urinary bladder of the toad, Bufo marinus, and epithelia formed by cells of the A6 line derived from the kidney of the toad, Xenopus laevis. The proteins are induced along with the stimulation of Na+ transport but their synthesis is not dependent on Na+ transport per se. In view of the similar characteristics of the aldosterone-induced proteins in these two different epithelia, we suggest that they may have an important role in aldosterone-induced Na+ transport.  相似文献   

5.
The Journal of Membrane Biology - Transepithelial sodium transport was virtually abolished when toad urinary hemibladders, mounted in chambers and short-circuited, were exposed on their serosal...  相似文献   

6.
J Mathew  V L Sallee  J Curtis  J Mrotek 《Steroids》1985,46(2-3):697-716
Cholesterol, pregnenolone, progesterone, 11-deoxycorticosterone (11-DOC) and corticosterone were quantitated in subcellular fractions isolated from in vivo adrenocorticotropin (ACTH)-stimulated rat adrenal zona fasciculata/reticularis. Six adrenal subcellular fractions separated by discontinuous sucrose gradient centrifugation (lipid, 0.125 M sucrose, cytosolic, microsomal, mitochondrial and nuclear) were extracted with alkaline ether/ethanol and assayed by high pressure liquid chromatography (HPLC). Lipid fractions contained the major cholesterol stores, while most pregnenolone and progesterone was found in lipid, microsomal and mitochondrial fractions. The 0.125 M sucrose and cytosol fractions together contained approximately 75% of the total 11-DOC and corticosterone. The five steroids were only present in small amounts in organelle fractions containing steroidogenic enzymes. Homogenate and lipid fraction cholesterol decreased between 10 and 15 min and again 30 min after ACTH injection. In the homogenate, lipid, microsomal and mitochondrial fractions, pregnenolone and progesterone were increased after ACTH injection; peak pregnenolone and progesterone concentrations were often measured in adrenal gland sucrose, cytosolic, microsomal and mitochondrial fractions 15 to 20 min after rats were injected with ACTH. Although ACTH increased 11-DOC and corticosterone in all but the mitochondrial and nuclear fractions, the sucrose, cytosolic and microsomal 11-DOC, and cytosolic corticosterone increased most dramatically. In many fractions, peak 11-DOC and corticosterone concentrations were most often observed between the 10 and 15 min periods and again at 30 min.  相似文献   

7.
On subcellular fractionation, carbonyl reductase (EC 1.1.1.184) activity in guinea pig lung was found in the mitochondrial, microsomal, and cytosolic fractions; the specific activity in the mitochondrial fraction was more than five times higher than those in the microsomal and cytosolic fractions. Further separation of the mitochondrial fraction on a sucrose gradient revealed that about half of the reductase activity is localized in mitochondria and one-third in a peroxidase-rich fraction. Although carbonyl reductase in both the mitochondrial and microsomal fractions was solubilized effectively by mixing with 1% Triton X-100 and 1 M KCl, the enzyme activity in the mitochondrial fraction was more highly enhanced by the solubilization than was that in the microsomal fraction. Carbonyl reductases were purified to homogeneity from the mitochondrial, microsomal, and cytosolic fractions. The three enzymes were almost identical in catalytic, structural, and immunological properties. Carbonyl reductase, synthesized in a rabbit reticulocyte lysate cell-free system, was apparently the same in molecular size as the subunit of the mature enzyme purified from cytosol. These results indicate that the same enzyme species is localized in the three different subcellular compartments of lung.  相似文献   

8.
In vivo protein synthesis rates in various brain regions (cerebral cortex, cerebellum, hippocampus, hypothalamus, and striatum) of 4-, 12-, and 24-month-old rats were examined after injection of a flooding dose of labeled valine. The incorporation of labeled valine into proteins of mitochondrial, microsomal, and cytosolic fractions from cerebral cortex and cerebellum was also measured. At all ages examined, the incorporation rate was 0.5% per hour in cerebral cortex, cerebellum, hippocampus, and hypothalamus and 0.4% per hour in striatum. Of the subcellular fractions examined, the microsomal proteins were synthesized at the highest rate, followed by cytosolic and mitochondrial proteins. The results obtained indicate that the average synthesis rate of proteins in the various brain regions and subcellular fractions examined is fairly constant and is not significantly altered in the 4 to 24-month period of life of rats.A preliminary report of these results was previously presented at: WFN-ESN Joint Meeting on: Cerebral Metabolism in Aging and Neurological Disorders, Baden, August 28–31, 1986.  相似文献   

9.
Homogenates of the placental tissue of near term sheep were separated by differential centrifugation into mitochondrial, microsomal and cytosolic fractions. The relative proportions of the major neutral lipids and phospholipids, together with their fatty acid compositions, were determined in the homogenates and in each subcellular fraction. The cytosolic fraction contained the highest proportion of cholesteryl esters (CEs) and these possessed a fatty acid composition markedly different from the total CEs extracted from the homogenate. Both the mitochondrial and microsomal fractions contained significant proportions of solvent front phospholipid (SFP) and whereas the mitochondrial SFP displayed the relatively unsaturated fatty acid composition characteristic of diphosphatidylglycerol (cardiolipin), the fatty acids of the microsomal SFP were distinctly more saturated. These results are compared with those obtained from other mammalian tissues, both ruminant and non-ruminant, and discussed in terms of the function of the components of the subcellular fractions.  相似文献   

10.
Summary Two methods are described by which epithelial cells from toad urinary bladders can be obtained for analysis of their intracellular water and electrolyte contents. In the first, a method similar to that described in 1968 by J. T. Gatzy and W. O. Berndt, sheets of epithelial cells are scraped from bladders after incubation in sodium Ringer's and collagenase (400 mg/liter). The scraped cells were incubated under various conditions and their composition subsequently determined. Oxygen consumption was also measured. In the second method, epithelial cells were scraped from hemibladders removed from chambers. These cells were then analyzed without further incubation. The morphology of epithelial cells obtained by each method is illustrated. Both methods yield similar results and evidence is provided that the derived intracellular values obtained truly reflect the composition of the epithelial cells.  相似文献   

11.
The work presented here deals with the status of glutathione-S-transferase (GST; E.C. 2.5.1.18), the major enzyme of the phase II detoxification pathway, in bovine filarial worms Setaria cervi. GST activity was determined in various subcellular fractions of bovine filarial worms S. cervi (Bubalus bubalis Linn.) and was found to be mainly associated with cytosolic and microsomal fractions. The respective specific activities of the enzyme from cytosolic and microsomal fractions of S. cervi females were determined to be 0.122 +/- 0.024 and 0.010 +/- 0.0052 micromol/min/mg protein, respectively. Cytosolic enzyme was found to possess optimal activity between pH 6.5 and 7.5, whereas the microsomal enzyme showed a broad pH optima, centered at pH 6.0. Kinetic studies on the cytosolic and microsomal forms of the enzyme revealed significant differences between them, thereby indicating that microsomal GST from S. cervi is quite distinct to the cytosolic protein catalyzing the same reaction.  相似文献   

12.
Abstract: The distribution of calretinin, calbindin D28k, and parvalbumin was examined in subcellular fractions prepared from rat cerebellum and analyzed by immunoblot. Calretinin was also quantified by radioimmunoassay. As expected, all three soluble, EF-hand calcium-binding proteins were predominantly localized in the cytosolic fraction. Calretinin and calbindin D28k were also detected in membrane fractions. Calretinin was more abundant in synaptic membrane than in microsomal fractions. The cerebellar microsomal fraction contained the greatest concentration of membrane-associated calbindin D28k. The association of calretinin and calbindin D28k with membrane fractions was decreased in samples prepared or incubated in low calcium. Quantification of calretinin in subcellular fractions of rat cerebellum revealed a greater amount of calretinin in cytosolic fractions prepared or incubated in low calcium and reduced amounts of calretinin in all membrane fractions incubated in low calcium with the exception of the mitochondrial fraction. These results imply that calretinin and calbindin D28k might have physiological target molecules that are associated with, or are components of, brain membranes.  相似文献   

13.
Subcellular fractions isolated and purified from rat brain cerebral cortices were assayed for phosphatidylinositol (PI-), phosphatidylinositol-4-phosphate (PIP-), and diacylglycerol (DG-) kinase activities in the presence of endogenous or exogenously added lipid substrates and [γ-32P]ATP. Measurable amounts of all three kinase activities were observed in each subcellular fraction, including the cytosol. However, their subcellular profiles were uniquely distinct. In the absence of exogenous lipid substrates, PI-kinase specific activity was greatest in the microsomal and non-synaptic plasma membrane fractions (150–200 pmol/min per mg protein), whereas PIP-kinase was predominantly active in the synaptosomal fraction (136 pmol/min per mg protein). Based on percentage of total protein, total recovered PI-kinase activity was most abundant in the cytosolic, synaptosomal, microsomal and mitochondrial fractions (4–11 nmol/min). With the exception of the microsomal fraction, a similar profile was observed for PIP-kinase activity when assayed in the presence of exogenous PIP (4 nmol/20 mg protein in a final assay volume of 0.1 ml). Exogenous PIP (4 nmol/20 mg protein) inhibited PI-kinase activity in most fractions by 40–70%, while enhancing PIP-kinase activity. PI- and PIP-kinase activities were observed in the cytosolic fraction when assayed in the presence of exogenously added PI or PIP, respectively, but not in heat-inactivated membranes containing these substrates. When subcellular fractions were assayed for DG-kinase activity using heat-inactivated DG-enriched membranes as substrate, DG-kinase specific activity was predominantly present in the cytosol. However, incubation of subcellular fractions in the presence of deoxycholate resulted in a striking enhancement of DG-kinase activities in all membrane fractions. These findings demonstrate a bimodal distribution between particulate and soluble fractions of all three lipid kinases, with each exhibiting its own unique subcellular topography. The preferential expression of PIP-kinase specific activity in the synaptic membranes is suggestive of the involvement of PIP2 in synaptic function, while the expression of PI-kinase specific activity in the microsomal fraction suggests additional, yet unknown, functions for PIP in these membranes.  相似文献   

14.
In order to test the possibilities in protein degradation between cell organelles comparatively, [3H]- and [14C]-leucine short-time labelled subcellular fractions from rat liver were incubated with each other at pH 6.9. All fractions tested were able to degrade short-lived proteins from foreign fractions, whereby the lysosomal supernatant fraction showed the highest proteolytic activity, which declines in the sequence: lysosomes--nuclei--mitochondria--cytosol--microsomes. Short-lived cytosolic proteins were especially suited as substrate for neutral proteases from all other fractions, but also microsomal, mitochondrial and nuclear proteins were well degraded by foreign fractions in comparison with the substrate autoproteolysis. Therefore in vivo manyfold cooperations between several organelles in protein catabolism seem to be possible.  相似文献   

15.
We have undertaken the analytical fractionation of epithelial cells from toad urinary bladder, a tissue extensively used to study epithelial transport of ions and water. In an attempt to establish markers for the main subcellular organelles, a number of enzymes were assayed in cell homogenates. The nearly ubiquitous plasma membrane marker 5'-nucleotidase, and the transferases that donate N-acetylglucosaminyl, galactosyl, and sialyl residues to glycoproteins and glycolipids in the Golgi complex were not detectable. Glucose-6-phosphatase activity was low in relation to that of nonspecific phosphatases and, therefore, not suitable for identifying the endoplasmic reticulum. Like the cytosolic enzyme lactate, dehydrogenase, catalase was essentially found in the high-speed supernatant, with a noteworthy part of aminopeptidase (substrate, leucyl-beta-naphthylamide) and NAD glycohydrolase. Other enzymes, including cytochrome c oxidase, acid phosphatase, acid N-acetyl-beta-glucosaminidase, alkaline phosphatase, alkaline phosphodiesterase I, nucleoside diphosphatase (substrate ADP), oligomycin-resistant Mg++-ATPase, and mannosyltransferase (acceptor, dolichylphosphate) were fairly active and largely sedimentable. After differential centrifugation, cytochrome oxidase, acid phosphatase, and acid N-acetyl-beta-glucosaminidase were typically associated with the large granule fraction, whereas the other sedimentable enzymes exhibited a broad distribution profile overlapping the nuclear, large granule, and microsome fractions. Their behavior in density equilibrium centrifugation is examined in a companion paper.  相似文献   

16.
Rats were given a 0.05% polychlorinated biphenyls (PCB) diet supplemented with adequate nutrients for 10 days and not only PCB-induced lipid peroxidation as measured by thiobarbituric acid (TBA)-reactive substances but also variations of lipid peroxides scavengers in liver and its subcellular fractions (nuclei and cell debris, mitochondrial, microsomal and cytosolic fractions) were investigated. The lipid peroxidation in liver and subcellular fractions in the PCB-treated group increased significantly except in the nuclei and cell debris fraction. The increase in lipid peroxidation in the microsomal fraction appeared to be associated in part with the decrease in vitamin E (alpha-tocopherol) content and induction of drug-metabolizing enzymes. In the cytosolic fraction, the total lipid content increased, glutathione peroxidase (GSHPx) activity decreased and the quantity of free radical-reactive substances suppressing lipid peroxidation was low as measured by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) value. From these results, the increase in lipid peroxidation in the cytosolic fraction in the PCB-treated group was ascribed to the abundance and availability of oxidizable substrate attended with fatty liver, to the decline in GSHPx activity, and to the insufficiency in antioxygenic activity as observed by the decrease in the DPPH value.  相似文献   

17.
The present study examines the role of calcium in modulating epithelial cytomorphology by using verapamil, a calcium antagonist, and considering its effects on cytosolic granule distribution and exocytosis in toad urinary bladder. The effect of verapamil on the detection and distribution of microfilaments in toad urinary bladder using immunogold labeling techniques in toad urinary bladder epithelial cells was also examined. Verapamil, which inhibits antidiuretic hormone (ADH)-mediated water flow, increased the number, size and distribution of dense calcium-containing secretory granules in bladder epithelial cells. This calcium antagonist prevented granule exocytosis, such that, six-times the number of granules were present in verapamil-treated tissues. The normal cytomorphological changes that accompany the actions of ADH were attenuated by verapamil, including ADH-induction of microvilli. ADH increased the number of actin microfilaments as determined using protein A-gold by immunolabeling, whereas, verapamil treatment was unremarkable as compared to control. The results suggest that calcium may play a prominent role in mediating granule exocytosis and membrane fusion events that normally accompany hormone action.  相似文献   

18.
The subcellular distribution of proteins normally visible on two-dimension gels of rat brain tissue punches and crude brain homogenate was investigated using two-dimensional gel electrophoresis and computerized scanning densitometry. Seven enriched subcellular fractions (cytosol, mitochondria, microsomes, nucleus, crude synaptic vesicles, myelin and synaptic membrane) were generated from a crude extract of rat brain. Fifty microgram samples of the crude homogenate and each fraction were then taken and the proteins within these samples separated by two-dimensional gel electrophoresis. Proteins were stained with silver and the gels then analyzed by computerized scanning densitometry. Of 136 proteins visible on two-dimension gels of the crude homogenate that were quantitatively examined, a total of 73 (54%) were identified as being primarily located in a single subcellular fraction. The majority of these 73 proteins were found to be located primarily in either the cytosolic or mitochondrial fractions, while fewer proteins were identified as being primarily located in the microsomal, nuclear or crude synaptic vesicular subfractions. In contrast, the myelin and synaptic membrane fractions were found to be the primary location for only a single protein each that is clearly visible in the crude homogenate. In addition, gels of four of the subfractions (mitochondria, cytosol, nucleus and myelin) contained proteins that are not normally visible on gels generated using a crude extract. The subcellular location of a number of proteins found previously to be altered by specific experimental manipulations was also determined, providing further information on these proteins in brain. These results should prove useful in future experiments designed towards isolating and characterizing specific proteins of neurochemical interest.  相似文献   

19.
1. On incubating cerebral-cortex slices at 37° in an oxygenated medium marked changes resulted in the subcellular distribution of proteins and phosphoproteins in the tissue. The protein content of the nuclear fraction more than doubled, whereas the yields of microsomal and supernatant proteins were both markedly decreased. The amount of phosphoprotein/mg. of protein decreased in the microsomal and supernatant fractions, but showed little change in the nuclear and mitochondrial fractions. The loss of microsomal protein could be partly prevented by rinsing the slices briefly in cold sucrose solution before dispersion; the altered subcellular distribution was apparently related to contamination of the dispersing solution with traces of salts from the medium. 2. The subcellular location of the phosphoprotein sensitive to the effects of electrical pulses applied to cerebral slices in vitro has been reinvestigated by two different procedures. Comparison between unstimulated and stimulated slices after incubation in the presence of [32P]orthophosphate showed that phosphoprotein radioactivity increased on stimulation to a greater extent in a membrane-rich fraction than in a mitochondria-rich fraction, these being obtained by immediate density-gradient fractionation of the tissue dispersion. With fractions isolated by differential centrifuging the percentage increase in a combined mitochondrial and nuclear fraction was 5% as compared with 24% (P<0·02) in the microsomal fraction and 30% in the original dispersion before fractionation. The sensitive phosphoprotein therefore appears to be located in structures sedimenting with the microsomal fraction, rather than with the nuclear fraction as previously claimed.  相似文献   

20.
The possibility that estrogen receptors may exist in uterine plasma membranes was investigated by covalent labeling of estrogen receptors in mouse uterine cells with [3H]tamoxifen aziridine (TA). Isolated epithelial and stromal cells of immature mice were incubated with [3H]TA in the presence or absence of unlabeled tamoxifen, homogenized and separated into nuclear, cytosolic and microsomal fractions by differential centrifugation. These fractions were subjected to SDS-polyacrylamide gel electrophoresis and the proteins labeled covalently with TA were visualized by autoradiography. Proteins labeled specifically with [3H]TA were observed almost exclusively in the nuclear fraction of both epithelial and stromal cells. In contrast, very little labeled protein was detected in the cytosolic or microsomal fraction. Although these data do not preclude the possibility that estrogen binding sites are present in plasma membranes of uterine cells, this cellular fraction is definitely not labeled to a significant extent by [3H]TA. Thus, if membrane estrogen binding sites exist, their structural conformations may be different from that of nuclear estrogen receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号