首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An improved linkage map for human chromosome 19 containing 35 short tandem repeat polymorphisms (STRPs) and one VNTR (D19S20) was constructed. The map included 12 new (GATA)n tetranucleotide STRPs. Although total lengths of the male (114 cM) and female (128 cM) maps were similar, at both ends of the chromosome male recombination exceeded female recombination, while in the interior portion of the map female recombination was in excess. Cosmid clones containing the STRP sequences were identified and were positioned along the chromosome by fluorescent in situ hybridization. Four rounds of careful checking and removal of genotyping errors allowed biologically relevant conclusions to be made concerning the numbers and distributions of recombination events on chromosome 19. The average numbers of recombinations per chromosome matched closely the lengths of the genetic maps computed by using the program CRIMAP. Significant numbers of chromosomes with zero, one, two, or three recombinations were detected as products of both female and male meioses. On the basis of the total number of observed pairs of recombination events in which only a single informative marker was situated between the two recombinations, a maximal estimate for the rate of meiotic STRP “gene” conversion without recombination was calculated as 3 × 10−4/meiosis. For distances up to 30 cM between recombinations, many fewer chromosomes which had undergone exactly two recombinations were observed than were expected on the basis of the assumption of independent recombination locations. This strong new evidence for human meiotic interference will help to improve the accuracy of interpretation of clinical DNA test results involving polymorphisms flanking a genetic abnormality.  相似文献   

2.
We have constructed a linkage map of 14 short tandem repeat polymorphisms (11 with heterozygosity > 70%) on the long arm of human chromosome 22 using 23 non-CEPH pedigrees. Twelve of the markers could be positioned uniquely with a likelihood of at least 1,000:1, and distributed at an average distance of 6.62 cM (range 1.5–16.1 cM). The sex-combined map covers a total of 79.6 cM, the female map 93.2 cM and the male map 64.6 cM. Based on comparisons between physical maps and other genetic maps, we estimate that our map covers 70%–80% of the chromosome. The map integrates markers from previous genetic maps and uniquely positions one marker (D22S307). Data from physical mapping on the location of four genetic markers correlates well with our linkage map, and provides information on an additional marker (D22S315). This map will facilitate high resolution mapping of additional polymorphic loci and disease genes on chromosome 22, and act as a reference for building and verifying physical maps.  相似文献   

3.
Genetic linkage studies have mapped Huntington's disease (HD) to the distal portion of the short arm of chromosome 4 (4p16.3), 4 cM distal to D4S10 (G8). To date, no definite flanking marker has been identified. A new DNA marker, D4S90 (D5); which maps to the distal region of 4p16.3, is described. The marker was used in a genetic linkage study in the CEPH reference families with seven other markers at 4p16. The study, together with knowledge of the physical map of the region, places D4S90 as the most distal marker, 6 cM from D4S10. A provisional linkage study with HD gave a maximum lod score of 2.14 at a theta of 0.00 and no evidence of linkage disequilibrium. As D4S90 appears to be located terminally, it should play an important role in the accurate mapping and cloning of the HD gene.  相似文献   

4.
A 2-cM genetic linkage map of human chromosome 7p that includes 47 loci.   总被引:5,自引:0,他引:5  
A new high-resolution genetic linkage map for human chromosome 7p has been constructed. The map is composed of 47 loci (54 polymorphic systems), 19 of which are uniquely placed with odds of at least 1000:1. Four genes are represented, including glucokinase (GCK, ATP:D-hexose-6-phosphotransferase, EC 2.7.1.2) which was mapped via a (CA)n dinucleotide repeat polymorphism. The sex-average map measures 94.4 cM and the male and female maps measure 73.2 and 116.1 cM, respectively. We believe that the genetic map extends nearly the full length of the short arm of chromosome 7 since a centromere marker has been incorporated, and the most distal marker, D7S21, has been cytogenetically localized by in situ hybridization to 7p22-pter. The average marker spacing is 2 cM, and the largest interval between uniquely placed markers is 13 cM (sex-average map). Overall, female recombination was observed to be about 1.5 times that of males, and a statistically significant sex-specific recombination frequency was found for a single interval. The map is based on genotypic data gathered from 40 CEPH reference pedigrees and was constructed using the CRI-MAP program package. The map presented here represents a combined and substantially expanded dataset compared to previously published chromosome 7 maps, and it will serve as a "baseline" genetic map that should prove useful for future efforts to develop a 1-cM map and for construction of a contiguous clone-based physical map for this chromosome.  相似文献   

5.
A genetic linkage map of cassava has been generated with total of 355 molecular markers, 231 amplified fragment length polymorphisms (AFLPs), 41 simple sequence repeats (SSRs), 48 sequence-related amplified polymorphisms (SRAPs), and 35 expressed sequence tag (EST)-SSRs segregating from an F1 population of an intraspecific cross between SC6, as female parent, and Mianbao, as male parent. The genetic map consisted of 18 linkage groups and spanned a 1,707.9 cM genetic distance, with the average marker interval being 4.81 cM. Thirty-five EST-SSR markers that were developed by our laboratory were mapped onto this map. The genetic map generated in this study will enrich the information of structural genomics in cassava, facilitating to identify quantitative trait loci (QTL) of interest and to serve as a useful complement for construction of an integrated map in the future.  相似文献   

6.
《Genomics》1995,29(3)
Three sets of linkage maps (index, comprehensive microsatellite, and unified) have been constructed for human chromosome 14 based on genotypes from the CEPH reference pedigrees. The index maps consist of 18 microsatellite markers, with heterozygosities of at least 68% and intermarker spacing no greater than 11 cM. The sex-average comprehensive microsatellite map is 125 cM in length and includes 115 markers with 54 loci uniquely placed with odds for marker order of at least 1000:1. The sex-average index map length is 121 cM, and the female- and male-specific maps are 143 and 101 cM, respectively. A unified map was also constructed from 147 loci (162 marker systems), which includes 32 RFLP markers in addition to the 115 microsatellites. The sex-average length of the unified map is 128 cM with 69 loci uniquely placed. Our maps are anchored by a microsatellite telomere marker sCAW1 (D14S826), developed from a telomere YAC clone TYAC196, which extends the linkage map to the physical terminus of the long arm of chromosome 14. Furthermore, we have also physically mapped seven of the loci by fluorescencein situhybridization of cosmid clones orAlu-PCR products amplified from YACs containing the marker sequences. Together with previously established cytogenetic map designations for other loci, our maps display links between genetic markers for 10 of 13 cytogenetic bands of chromosome 14 at the 550 genome band resolution.  相似文献   

7.
Genetic linkage studies have mapped Huntington's disease (HD) to the distal portion of the short arm of chromosome 4 (4p16.3), 4 cM distal to D4S10 (G8). To date, no definite flanking marker has been identified. A new DNA marker, D4S90 (D5), which maps to the distal region of 4p16.3, is described. The marker was used in a genetic linkage study in the CEPH reference families with seven other markers at 4p16. The study, together with knowledge of the physical map of the region, places D4S90 as the most distal marker, 6 cM from D4S10. A provisional linkage study with HD gave a maximum lod score of 2.14 at a θ of 0.00 and no evidence of linkage disequilibrium. As D4S90 appears to be located terminally, it should play an important role in the accurate mapping and cloning of the HD gene.  相似文献   

8.
The genetic etiology for many forms of hearing impairment (HI) is very diverse. Non-syndromic HI (NSHI) is one of the most heterogeneous traits known. Autosomal recessive forms of prelingual HI account for approximately 75% of hereditary cases. A novel autosomal recessive NSHI locus, DFNB44, was mapped to a 20.9 cM genetic interval on chromosome 7p14.1-q11.22, according to the Marshfield genetic map, in a consanguineous Pakistani family. Multipoint linkage analysis resulted in a maximum LOD score of 5.0 at marker D7S1818. The 3-unit support interval ranged from marker D7S2209 to marker D7S2435, spanning a 30.1 Mb region on the sequence-based physical map.  相似文献   

9.
甘蓝型油菜花瓣缺失基因的图谱定位   总被引:4,自引:1,他引:3  
在无花瓣品系APT02和正常有花瓣品种中双4号构建的的F2分离群体中,运用AFLP和SRAP两种标记技术对甘蓝型油菜花瓣缺失基因进行分子标记和图谱定位。在两亲本间筛选20对AFLP引物和170对SRAP 引物,进一步通过BSA法筛选,获得了与甘蓝型油菜花瓣缺失基因WHB连锁的1个SRAP标记e8m3_4(600bp)和1个AFLP标记E3247_15(150bp),标记与基因WHB之间的遗传距离分别为5 cM和13.5cM;构建了一个甘蓝型油菜(Brassica napus.L )的分子标记遗传连锁图谱,该图谱共包含213个AFLP标记、56个SRAP标记和1个形态标记,分布于17个主要连锁群、两个三联体和4个连锁对中,遗传图距总长2487.1cM,标记间平均距离为10.09 cM。通过图谱定位,控制花瓣缺失性状的基因WHB被定位到第4连锁群(LG4)上。  相似文献   

10.
Multiple highly polymorphic markers have been used to construct a genetic map of the q12-q13.1 region of chromosome 20 and to map the location of the maturity-onset diabetes of the young (MODY) locus. The genetic map encompasses 23 cM and includes 11 loci with PIC values >.50, seven of which have PICs >.70. New dinucleotide repeat polymorphisms associated with the D20S17, PPGB, and ADA loci have been identified and mapped. The dinucleotide repeat polymorphisms have increased the PIC of the ADA locus to .89 and, with an additional RFLP at the D20S17 locus, the PIC of the D20S17 locus to .88. The order of the D20S17 and ADA loci determined genetically (cen–ADA–D20S17–qter) was confirmed by multicolor fluorescence in situ hybridization. The previously unmapped PPGB marker is closely linked to D20S17, with a two-point lod score of 50.53 at [unk] = .005. These markers and dinucleotide repeat markers associated with the D20S43, D20S46, D20S55, D20S75, and PLC1 loci and RFLPs at the D20S16, D20S17, D20S22, and D20S33 have been used to map the MODY locus on chromosome 20 to a 13-cM (sex averaged) interval encompassing ADA, D20S17, PPGB, D20S16, and D20S75 on the long arm of chromosome 20 and to create a genetic framework for additional genetic and physical mapping studies of the region. With these multiple highly polymorphic loci, any MODY family of appropriate size can be tested for the chromosome 20 linkage.  相似文献   

11.
Dense maps of short-tandem-repeat polymorphisms (STRPs) have allowed genome-wide searches for genes involved in a great variety of diseases with genetic influences, including common complex diseases. Generally for this purpose, marker sets with a 10 cM spacing are genotyped in hundreds of individuals. We have performed power simulations to estimate the maximum possible intermarker distance that still allows for sufficient power. In this paper we further report on modifications of previously published protocols, resulting in a powerful screening set containing 229 STRPs with an average spacing of 18.3 cM. A complete genome scan using our protocol requires only 80 multiplex PCR reactions which are all carried out using one set of conditions and which do not contain overlapping marker allele sizes. The multiplex PCR reactions are grouped by sets of chromosomes, which enables on-line statistical analysis of a set of chromosomes, as sets of chromosomes are being genotyped. A genome scan following this modified protocol can be performed using a maximum amount of 2.5 micrograms of genomic DNA per individual, isolated from either blood or from mouth swabs.  相似文献   

12.
Multiple epiphyseal dysplasia (MED) is an inherited chondrodystrophy that results in deformity of articular surfaces and in subsequent degenerative joint disease. The disease is inherited as an autosomal dominant trait with high penetrance. An MED mutation has been mapped by genetic linkage analysis of DNA polymorphisms in a single large pedigree. Close linkage of MED to 130 tested chromosomal markers was ruled out by discordant inheritance patterns. However, strong evidence for linkage of MED to markers in the pericentromeric region of chromosome 19 was obtained. The most closely linked marker was D19S215, with a maximum LOD score of 6.37 at theta = .05. Multipoint linkage analysis indicated that MED is located between D19S212 and D19S215, a map interval of 1.7 cM. Discovery of the map location of MED in this family will facilitate identification of the mutant gene. The closely linked DNA polymorphisms will also provide the means to determine whether other inherited chondrodystrophies have underlying defects in the same gene.  相似文献   

13.
We have constructed a 2.4-cM resolution genetic linkage map for chromosome 7q that is bounded by centromere and telomere polymorphisms and contains 66 loci (88 polymorphic systems), 38 of which are uniquely placed with odds for order of at least 1000:1. Ten genes are included in the map and 11 markers have heterozygosities of at least 70%. This map is the first to incorporate several highly informative markers derived from a telomere YAC clone HTY146 (locus D7S427), including HTY146c3 (HET 92%). The telomere locus markers span at least 200 kb of the 7q terminus and no crossovers within the physical confines of the locus were observed in approximately 240 jointly informative meioses. The sex-equal map length is 158 cM and the largest genetic interval between uniquely localized markers in this map is 11 cM. The female and male map lengths are 181 and 133 cM, respectively. The map is based on the CEPH reference pedigrees and includes over 4000 new genotypes, our previously reported data plus 29 allele systems from the published CEPH version 5 database, and was constructed using the program package CRI-MAP. This genetic linkage map can be considered a baseline map for 7q, and will be useful for defining the extent of chromosome deletions previously reported for breast and prostate cancers, for developing additional genetic maps such as index marker and 1-cM maps, and ultimately for developing a fully integrated genetic and physical map for this chromosome.  相似文献   

14.
A genetic linkage map for the ectomycorrhizal basidiomycete Laccaria bicolor was constructed from 45 sib-homokaryotic haploid mycelial lines derived from the parental S238N strain progeny. For map construction, 294 simple sequence repeats (SSRs), single-nucleotide polymorphisms (SNPs), amplified fragment length polymorphisms (AFLPs) and random amplified polymorphic DNA (RAPD) markers were employed to identify and assay loci that segregated in backcross configuration. Using SNP, RAPD and SSR sequences, the L. bicolor whole-genome sequence (WGS) assemblies were aligned onto the linkage groups. A total of 37.36 Mbp of the assembled sequences was aligned to 13 linkage groups. Most mapped genetic markers used in alignment were colinear with the sequence assemblies, indicating that both the genetic map and sequence assemblies achieved high fidelity. The resulting matrix of recombination rates between all pairs of loci was used to construct an integrated linkage map using JoinMap. The final map consisted of 13 linkage groups spanning 812 centiMorgans (cM) at an average distance of 2.76 cM between markers (range 1.9-17 cM). The WGS and the present linkage map represent an initial step towards the identification and cloning of quantitative trait loci associated with development and functioning of the ectomycorrhizal symbiosis.  相似文献   

15.
The Huntington disease (HD) gene has been mapped 4 cM distal to D4S10 within the telomeric chromosome band, 4p16.3. The published physical map of this region extends from D4S10 to the telomere but contains two gaps of unknown size. Recombination events have been used to position the HD mutation with respect to genetic markers within this region, and one such event places the gene proximal to D4S168, excluding the distal gap as a possible location for the defect. One previously published recombination event appeared to have excluded the proximal gap. We have reassessed this event and have moved the proximal boundary for the HD candidate region centromeric to the gap within a "hot spot" for recombination between D4S10 and D4S125. We have closed the proximal gap and report here the complete physical map spanning the HD candidate region from D4S10 to D4S168, the maximum size of which can now be placed accurately at 2.5 Mb.  相似文献   

16.
We present a genetic map for Xenopus tropicalis, consisting of 2886 Simple Sequence Length Polymorphism (SSLP) markers. Using a bioinformatics-based strategy, we identified unique SSLPs within the X. tropicalis genome. Scaffolds from X. tropicalis genome assembly 2.0 (JGI) were scanned for Simple Sequence Repeats (SSRs); unique SSRs were then tested for amplification and polymorphisms using DNA from inbred Nigerian and Ivory Coast individuals. Thus identified, the SSLPs were genotyped against a mapping cross panel of DNA samples from 190 F2 individuals. Nearly 4000 SSLPs were genotyped, yielding a 2886-marker genetic map consisting of 10 major linkage groups between 73 and 132 cM in length, and 4 smaller linkage groups between 7 and 40 cM. The total effective size of the map is 1658 cM, and the average intermarker distance for each linkage group ranged from 0.27 to 0.75 cM. Fluorescence In Situ Hybridization (FISH) was carried out using probes for genes located on mapped scaffolds to assign linkage groups to chromosomes. Comparisons of this map with the X. tropicalis genome Assembly 4.1 (JGI) indicate that the map provides representation of a minimum of 66% of the X. tropicalis genome, incorporating 758 of the approximately 1300 scaffolds over 100,000 bp. The genetic map and SSLP marker database constitute an essential resource for genetic and genomic analyses in X. tropicalis.  相似文献   

17.
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS or SACS) is a neurodegenerative disease frequent in northeastern Québec. In a previous study, we localized the disease gene to chromosome region 13q11 by identifying excess sharing of a marker allele in patients followed by linkage analysis and haplotyping. To create a detailed physical map of this region, we screened CEPH mega-YACs with 41 chromosome 13 sequence-tagged-sites (STSs) known to map to 13q11-q12. The YAC contig, composed of 27 clones, extends on the genetic map from D13S175 to D13S221, an estimated distance of at least 19.3 cM. A high-resolution BAC and PAC map that includes the ARSACS critical region flanked by D13S1275 and D13S292 was constructed. These YAC and BAC/PAC maps allowed the accurate placement of 29 genes and ESTs previously mapped to the proximal region of chromosome 13q. We confirmed the position of two candidate genes within the critical region and mapped the other 27 genes and ESTs to nearby intervals. Six BAC/PAC clones form a contig between D13S232 and D13S787 for sequencing within the ARSACS critical region.  相似文献   

18.
The construction of a dense genetic map for Vitis vinifera and its anchoring to a BAC-based physical map is described: it includes 994 loci mapped onto 19 linkage groups, corresponding to the basic chromosome number of Vitis. Spanning 1245 cM with an average distance of 1.3 cM between adjacent markers, the map was generated from the segregation of 483 single-nucleotide polymorphism (SNP)-based genetic markers, 132 simple sequence repeats (SSRs), and 379 AFLP markers in a mapping population of 94 F(1) individuals derived from a V. vinifera cross of the cultivars Syrah and Pinot Noir. Of these markers, 623 were anchored to 367 contigs that are included in a physical map produced from the same clone of Pinot Noir and covering 352 Mbp. On the basis of contigs containing two or more genetically mapped markers, region-dependent estimations of physical and recombinational distances are presented. The markers used in this study include 118 SSRs common to an integrated map derived from five segregating populations of V. vinifera. The positions of these SSR markers in the two maps are conserved across all Vitis linkage groups. The addition of SNP-based markers introduces polymorphisms that are easy to database, are useful for evolutionary studies, and significantly increase the density of the map. The map provides the most comprehensive view of the Vitis genome reported to date and will be relevant for future studies on structural and functional genomics and genetic improvement.  相似文献   

19.
Sesame (Sesamum indicum L.) is one of the oldest oilseed crops with high seed oil quality. The first sesame genetic linkage map based on F2 segregating population of an intraspecific cross between two cultivars was constructed. Using three types of PCR-based markers, 284 polymorphic loci including 10 EST-SSR marker, 30 AFLP marker and 244 RSAMPL marker, respectively, had been screened. Subsequently, a total of 220 molecular markers were mapped in 30 linkage groups covering a genetic length of 936.72 cM, and the average distance between markers was 4.93 cM. In this map, the linkage groups contained from 2 to 33 loci each and ranged in distance from 6.44 cM to 74.52 cM. Based on map information, sesame genome length was estimated to be approximately 1,232.53 cM, and genome coverage of this map was about 76.0%. As a starting point of sesame genome study, the genetic linkage map will be hopeful to tag traits of breeding interest and further aid in the sesame molecular breeding. Furthermore, RSAMPL marker had been also appreciated in this paper, for its first usage in genetic map construction and higher utilization potential in some crop species lacking much genome information.  相似文献   

20.
A genetic linkage map was constructed in a backcross family of the red flour beetle, Tribolium castaneum, based largely on sequences from bacterial artificial chromosome (BAC) ends and untranslated regions from random cDNA's. In most cases, dimorphisms were detected using heteroduplex or single-strand conformational polymorphism analysis after specific PCR amplification. The map incorporates a total of 424 markers, including 190 BACs and 165 cDNA's, as well as 69 genes, transposon insertion sites, sequence-tagged sites, microsatellites, and amplified fragment-length polymorphisms. Mapped loci are distributed along 571 cM, spanning all 10 linkage groups at an average marker separation of 1.3 cM. This genetic map provides a framework for positional cloning and a scaffold for integration of the emerging physical map and genome sequence assembly. The map and corresponding sequences can be accessed through BeetleBase (http://www.bioinformatics.ksu.edu/BeetleBase/).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号