首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The binding of cis-Pt(NH3)2B1B2 to the bases B1 and B2, i.e., guanine (G), cytosine (C), adenine (A), and thymine (T), of DNA is studied theoretically. The components of the binding are analyzed and a model structure is proposed for the intrastrand binding to the dB,pdB2 sequence of a kinked double helical DNA. Quantum mechanical calculations of the ligand binding energy indicates that cw-Pt(NH3)2 +2 (cis-PDA) binds to N7(G), N3(C), 02(C), 06(G), N3(A), N7(A), 04(T) and 02(T) in order of decreasing binding energy. Conformational analysis provides structures of kinked DNA in which adjacent bases chelate to cis-PDA. Only bending toward the major groove allows the construction of acceptable square planar complexes. Examples are presented for kinks of ?70° and ?40° at the receptor site to orient the base pairs for ligand binding to B, and B2 to form a nearly square planar complex. The energies for complex formation of cis-PDA to the various intra-strand base sites in double stranded DNA are estimated. At least 32 kcal/mole separates the energetically favorable dGpdG·cis-PDA chelate from the dCpdG·cis-PDA chelate. All other possible chelate structures are much higher in energy which correlates with their lack of observation in competition with the preferred dGpdG chelate.

The second most favorable ligand energy occurs with N3(C). A novel binding site involving dC(N3)pdG(N7) is examined. Denaturation can result in an anti ? syn rotation of C about its glycosidic bond to place N3(C) in the major groove for intrastrand binding in duplex DNA. This novel intrastrand dCpdG complex and the most favored dGpdG structure are illustrated with stereographic projections.  相似文献   

2.
A high melting cis-[Pt(NH3)2[d(GpG)]]adduct of a decanucleotide duplex   总被引:2,自引:0,他引:2  
The [cis-Pt(NH3)2(d(GCCGGATCGC)-N7(4), N7(5))]-d(GCGATCCGGC) duplex has been prepared with Tm = 49 degrees C (vs 58 degrees C for the unplatinated form). NMR of the ten observable imino protons supports a kinked structure with intact base pairing of the duplex on the 3'-side of the d(GpG).cis-Pt chelate (relative to the platinated strand) The modification of the B-DNA type CD spectrum, due to the platinum chelate, is comparable to that observed for the platination (at a 0.05 Pt:base ratio) of the Micrococcus Lysodeikticus DNA (72% GC).  相似文献   

3.
The results of a study of the binding to DNA of substituted cis-Pt(II) diammines, (cis-DP) are presented. Computer modeling of a series of cis-Pt(NH2R)2(+2)--where R = H, CH3, cyclopropyl, cyclobutyl, and cyclopentyl--to N7(G) atoms of two adjacent intrastrand guanine bases in a square planar complex in a pentamer duplex of DNA were performed. The stability of the complexes is studied by calculating the relative conformational energy of the cis-DP-DNA complexes with molecular mechanics (MM) and the intrinsic binding energy, which is the relative binding energy for ligand replacement in the presence of the substituents R with quantum mechanics. In the model, the receptor site geometry and the conformation of the DNA is changed little in the accommodation of the series of monosubstituted diammines. These diammines bind to one family of DNA conformations, denoted as IC in a previous study, and this suggests that a common conformational feature in the DNA may exist to explain the smooth trend in activity. The slight increase in van der Waals energy resulting from an increasing number of atoms in the substituents is countered by a larger decrease in the ligand replacement energy as the substituent increases in size. This overall decrease in relative energy is consistent with the slight decrease in activity as the substituent size increases.  相似文献   

4.
In the present study the nature and the hydrolysis of DNA-Pt complexes with the platinum compounds, [Pt(dien)Cl]Cl, trans- and cis-Pt(NH3)2Cl2, using potentiometric chloride determinations, have been investigated. The trans-Pt(NH3)2Cl2 and the [Pt(dien)Cl]Cl react with the GC planes at the N7(G) sites, while the cis-Pt(NH3)2Cl2 compound reacts with the GC planes and forms a chelate by using the N7(G) and O6(G) sites. The complex is a specific 1:1 Pt:DNA adduct. The platinum atom in cis-Pt(NH3)2Cl2 liberates both chlorine atoms on chelation. A mechanism for the in vivo antitumor activity of the cis-Pt(NH3)2Cl2 is proposed and the structure activity relationship is discussed.  相似文献   

5.
The binding of cis-Pt(II) diammine (cis-DP) to double-stranded DNA was studied with several kinked conformations that can accommodate the formation of a square planar complex. Molecular mechanics (MM) calculations were performed to optimize the molecular fit. These results were combined with quantum mechanical (QM) calculations to ascertain the relative energetics of ligand binding through water vs direct binding of the phosphate to the ammine and platinum, and to guide the selection of DNA conformations to model complex formation. Based on QM and MM calculations, models are proposed that may be characterized by several general features. A structure involving hydrogen bonding between each ammine and distinct adjacent phosphate groups, referred to as closed conformation (CC), has already been reported. This is also found in the crystal structure of small dimers. We report alternative conformations that may be important in platination of duplex DNA. They are characterized by an intermediate conformation (IC), involving hydrogen bonding between one ammine and phosphate group, and an open conformation (OC), without ammine phosphate hydrogen bonding. The IC and OC can be stabilized by water bridges in the space between the ammine and the phosphate groups. Sugar puckers alternate from the type C(2')-endo or C(1')-exo (S), to the type C(3')-endo or C(2')-exo (N), with intermediate types near O(1')-endo (O). In general, the sugar puckers alternate from S to N to S through the platinated region (3'-TpG*pG*p-5'), with the complexed strand exhibiting, (3')-S*-N*-S-(5') alternation, while the complementary strand shows either (3')-S*-N*-S-(5') or (3')-S*-N*-O-(5') alternation. In both the OC and IC, a hydrogen bond is found between the ammine and O4(T) on thymine (T) at the (3') end, adjacent to the complex site. There is a continuous range of backbone conformations through the platinated region which relate the OC to the IC. The models presented suggest that the dynamics of the binding of the cis-Pt(II)-diammines to adjacent N7(G) in double-stranded DNA may encompass several conformational possibilities, and that water bridges may play a roll in supporting open and intermediate conformations. Proton-proton distances are reported to assist in the experimental determination of conformations.  相似文献   

6.
The binding energies of nitrogen, oxygen, phosphorus, chlorine and Pt in several DNA - Pt (II) complexes are reported and discussed. The nitrogen band of DNA is slightly shifted upon complexation with Pt. Oxygen binding energies in the complexes studied clearly show that cis-Pt(NH3)2Cl2 forms a specific chelate N7(Gua) - O6 (Gua) with DNA as opposed to trans-Pt(NH3)2Cl2 and the other Pt compounds which react only with the N7(Gua) site of DNA.  相似文献   

7.
The nonamer 5'd(CTCAGCCTC) 3' 1 has been reacted with cis-diamminediaquaplatinum(II) in water at pH 4.2. The major reaction product was shown by enzymatic digestion and 1H NMR to be the d(ApG)cis-Pt(NH3)2 chelate [cis-Pt(NH3)2[d(CTCAGCCTC)-N7(4),N7(5)]] 1-Pt. When mixed with its complementary strand 2, 1-Pt forms a B DNA type duplex 3-Pt with a Tm of 35 degrees C (versus 58 degrees C for the unplatinated duplex). The NMR study of the exchangeable protons of 3-Pt revealed that the helix distortion is localized on the CA*G*-CTG moiety (the asterisks indicating the platinum chelation sites) with a strong perturbation of the A*(4)T(15) base pair related to a large tilt of A*(4).  相似文献   

8.
The rates of degradation of N-7 platinated deoxyguanosine (dG) and deoxyguanylyl-(3'-5')-deoxyguanosine (dGpdG) were followed in 66 mM Tris-HCl (pH 7.4) at 100 degrees C. The half-life for the intramolecular cross-link of cis-diamminedichloroplatinum(II) (cis-Pt) between two neighboring guanines (Pt-dGpdG) was 86 min, and the half-life of the intermolecular cross-link of cis-Pt on two guanines (dG-Pt-dG) was 54 min. For comparison the half-lives of dGpdG and the N-7 methylated dGpdG (Me-dGpdG) were 636 min and 11 min, respectively. The end product of the degradation of dGpdG, Pt-dGpdG and dG-Pt-dG was guanine, while Me-dGpdG was degraded to 7-methylguanine. In the case of dG-Pt-dG the main reaction pathway was through the depurination of one of the deoxyguanosines; in the case of Pt-dGpdG the degradation occurred either through the cleavage of one of the N-glycosidic bonds or through the cleavage of one of the Pt-bonds.  相似文献   

9.
The reaction of the antitumor active agent cis-[Pt(NH3)2(4-mepy)Cl]Cl (4-mepy stands for 4-methylpyridine) with d(GpG) has been investigated by 1H magnetic resonance spectroscopy. Initially, two mononuclear complexes cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(1)] 1 and cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(2)] 2 are formed in an unexpected ratio 65:35, as determined by 1H NMR and enzymatic digestion techniques. Both products react further with a second equivalent of cis-[Pt(NH3)2(4-mepy)Cl]Cl forming the dinuclear platinum complex [cis-Pt(NH3)2(4-mepy)]2[mu-d(GpG)- N7(1),N7(2)] 3. With [Pt(dien)Cl]Cl and [Pt(NH3)3Cl]Cl similar complexes are formed. No evidence was found for the formation of chelates cis-Pt(NH3)(4-mepy) [d(GpG)-N7(1),N7(2)], which would be formed upon ammonia release from the mononuclear complexes 1 and 2. Even addition of strong nucleophiles, like sodium diethyldithiocarbamate, thiourea, cysteine, or methionine, before or after reaction, do not induce the formation of a chelate. Under all conditions the N-donor ligands remain coordinated to Pt in 1,2 and 3. In addition, the results of bacterial survival and mutagenesis experiments with E. coli strains show that the in vivo formation of bifunctional adducts in DNA, comparable to those induced by cis-Pt(NH3)2Cl2, by treatment of cells with cis-[Pt(NH3)2(4-mepy)Cl]Cl is unlikely. Also, a mechanism of binding and intercalation is not supported by experimental data. All experiments suggest that the mechanism of action of this new class of antitumor agents must be different from that of cis-Pt(NH3)2Cl2.  相似文献   

10.
Lambda DNA loses transfectivity and acquires interstrand cross-links after treatment with either trans-Pt(II) or cis-Pt(II). With trans-Pt(II) there is close to an equivalence between the fraction of lambda DNA cross-linked and the fraction inactivated. In contrast, with cis-Pt(II) there are approx. 5 inactivating lesions for each lambda DNA interstrand cross-link. These results suggested that trans-PT(II) does not introduce intrastrand inactivating lesions into lambda DNA while cis-Pt(II) does so. To verify this conclusion, the cross-linked and uncross-linked fractions of lambda DNA treated with trans-PT(II) or cis-Pt(II) were separated on alkaline sucrose gradients. After trans-Pt(II) treatment, the uncross-linked fraction of lambda DNA was transfective when renaturated. However after cis-Pt(II) treatment the uncross-linked fraction of lambda DNA was not transfective when renatured. Thiourea treatment restored transfectivity to all inactivated fractions, showing that these lesions are reversible. We conclude that trans-Pt(II) inactivates lambda DNA primarily by introducing interstrand cross-links but that cis-Pt(II), although it also introduces interstrand cross-links, inactivates lambda DNA primarily by introducing intrastrand lesions.  相似文献   

11.
In the presence of DNA, the antitumor drug N2-methyl-9-hydroxyellipticinium (elliptinium; NMHE) [Le Pecq, J. B., Gosse, C., Dat-Xuong, N., & Paoletti, C. (1975) C. R. Seances Acad. Sci., Ser. D 281, 1365-1367] is oxidized by the horseradish peroxidase-hydrogen peroxide (HRP-H2O2) system to the quinone imine derivative N2-methyl-9-oxoellipticinium (NMOE) [Auclair, C., & Paoletti, C. (1981) J. Med. Chem. 24, 289-295], which interacts with DNA according to the intercalation mode. When excess H2O2 was used, the major part of the quinone imine was further oxidized to the o-quinone N2-methyl-9,10-dioxoellipticinium [Bernadou, J., Meunier, G., Paoletti, C., & Meunier, B. (1983) J. Med. Chem. 26, 574-579]. In the presence of stoichiometric amounts of H2O2 (H2O2/NMHE = 1), NMOE reacts with DNA, yielding a fluorescent compound irreversibly linked to the nucleic acid, which is related to the covalent binding of the ellipticinium chromophore. Under optimal reaction conditions, NMHE binding occurs according to a first-order process (k = 4.3 X 10(-3) min-1) with a linear increase with respect to drug to nucleotide ratio up to a maximum binding of 1 NMHE per 20 base pairs (r = 0.05). The fluorescence spectra (ex, 330 nm; em, 548 nm) of NMHE bound to DNA, the occurrence of energy transfer from the DNA to the drug, and the DNA length increase of the DNA-NMHE adduct suggest that the binding occurs at the intercalating site with limited denaturation of the DNA helix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
A conformational study of the double-stranded decanucleotide d(GCCG*G*ATCGC).d(GCGATCCGGC), with the G* guanines chelating a cis-Pt(NH3)2 moiety, has been accomplished using 1H and 31P NMR, and molecular mechanics. Correlation of the NMR data with molecular models has disclosed an equilibrium between several kinked conformations and has ruled out an unkinked structure. The deformation is localized at the CG*G*.CCG trinucleotide where the helix is kinked by approximately 60 degrees towards the major groove and unwound by 12-19 degrees. The models revealed an unexpected mobility of the cytosine complementary to the 5'-G*. This cytosine can stack on either branch of the kinked complementary strand. The energy barrier between the two positions has been calculated to be less than or equal to 12 kJ/mol. The NMR data are in support of rapid flip-flopping of this cytosine. An explanation for the strong downfield shift observed in the 31P resonance of the G*pG* phosphate is given.  相似文献   

14.
The cytotoxic dinuclear platinum(II) complexes [[cis-Pt(NH(3))(2)](2)(mu-OH)(mu-pz)](NO(3))(2) (pz=pyrazolate) (1) and [[cis-Pt(NH(3))(2)](2)(mu-OH)(mu-1,2,3-ta-N1,N2)](NO(3))(2) (1,2,3-ta=1,2,3-triazolate) (2), were allowed to react with the hairpin-stabilized double-stranded oligonucleotide d(TATGGCATT(4)ATGCCATA), to determine the amounts of intrastrand and interstrand DNA adducts. The reaction kinetics was investigated by reversed-phase HPLC, and the resulting products were analyzed using mass spectroscopy combined with enzymatic digestion, and Maxam-Gilbert sequencing. The reaction of 1 results in the formation of the 1,2-intrastrand d(GG) adduct as the major final product. The two most abundant products of 2 were identified as isomeric 1,2-intrastrand d(GG) adducts differing probably in platinum coordination to the triazole ring. No GG-interstrand crosslinks were detected with either compound. d(GGC)-d(GCC) sequences of DNA do thus not appear to represent significant targets for forming interstrand crosslinks with either 1 or 2.  相似文献   

15.
Comprehensive conformational analysis of the biologically active nucleoside 2',3'-didehydro-2',3'-dideoxyaguanosine (d4G) has been performed at the MP2/6-311++G(d,p)//DFT B3LYP/6-31G(d,p) level of theory. The energetic, geometrical and polar characteristics of twenty d4G conformers as well as their conformational equilibrium were investigated. The electron density topological analysis allowed us to establish that the d4G molecule is stabilized by nine types of intramolecular interactions: O5'H...N3, O5'H...C8, C8H...O5', C2'H...N3, C5'H1...N3, C5'H2...N3, C8H...H1C5', C8H...H2'C5' and N2H1...O5'. The obtained results of conformational analysis permit us to think that d4G may be a terminator of the DNA chain synthesis in the 5'-3' direction. Thus it can be inferred that d4G competes with canonical 2'-deoxyaguanosine in binding an active site of the corresponding enzyme.  相似文献   

16.
Four new trans-planaramineplatinum(II) complexes, three of the form: trans-PtCl2L2, code named CH1, CH2 and CH4 where L = 3-hydroxypyridine, 4-hydroxypyridine and imidazo[1,2-alpha]pyridine, respectively, and one of the form: PtClL3, code named CH3 where L = 3-hydroxypyridine, have been prepared and characterized by elemental analyses and IR, Raman, mass and 1H NMR spectral studies. The interactions of the compounds with salmon sperm and pBR322 plasmid DNAs have been investigated and their activity against human ovarian cancer cell lines: A2780, A2780cisR and A2780ZD0473R have also been determined. The compounds are believed to form mainly monofunctional N7(G) and bifunctional intrastrand N7(G)N7(G) adducts with DNA, causing a local distortion of DNA as a result of which gel mobility of the DNA changes. The compound containing three planaramine ligands per molecule (CH3) is found to be less reactive than the compounds containing two planaramine ligands per molecule (CH1, CH2 and CH4), which in turn are less reactive than compounds containing one of the same planaramine ligands per molecule. The decrease in reactivity is reflected in lower molar conductivity values (indicating lower degree of dissociation), less pronounced changes caused to DNA conformation (indicating decreased level of platinum-DNA binding) and lower activity. The decreased reactivity of the compounds is due to a greater steric crowding produced by the bulky planaramine ligands. Changes in DNA conformation are also found to be a function of the actual nature of the planaramine ligand. The results illustrate structure-activity relationship.  相似文献   

17.
The reaction products of cis-PtCl2(NH)3)2 with several deoxyribonucleotides containing d(ApG) and/or d(GpA) have been studied. The various reaction products were separated by high-performance liquid chromatography and characterized by means of absorbance at 254 nm in combination with atomic absorption spectroscopy and 300-MHz 1H-NMR (pH dependence of the non-exchangeable base-protons, T1 relaxation time determinations). For the larger fragments the results from these techniques were confirmed by enzymatic degradation studies of the platinated fragments. The smallest of the investigated nucleotides, d(ApG) and d(GpA), both formed a variety of different platinum chelates. In the reaction with d(ApG) 15% cis-Pt(NH3)2-[d(ApG)N1(1),N7(2)] and 78% cis-Pt(NH3)2[d(ApG)N7(1),N7(2)] were found, 4% of the reacted material consisted of a 1 mol Pt/2 mol dinucleotide product, and 3% of an unidentified 1:1 product. From the main product two rotamers were found to occur: at room temperature, 81% anti,anti and 19% anti,syn product is present. With d(GpA) about equal amounts of N1,N7 and N7,N7 products were found; for both products the anti,anti and anti,syn conformations were found, respectively. Upon reaction of cis-PtCl2(NH3)2 with d(pApG) and d(pGpA) only the N7,N7 products were found; at room temperature and pH greater than 1.5 these products were present in anti,anti conformation. However, for the d(pApG)-platinum chelate at -20 degrees C a small amount (less than 5%) of a second product could be observed in NMR. For the d(pGpA)-platinum chelate a second N7,N7-coordinated product was observed when the pH of the NMR sample was lowered to 1.1 (at this pH the free 5'-phosphate group is protonated). With the larger fragments d(ApGpA), d(pApGpA) and d(TpApGpApT) the intra-molecular competition between the formation of the d(ApG) or the d(GpA) chelates could be studied. Using these nucleotides no N1-coordinated products or rotamers were observed. In the case of d(ApGpA) and d(TpApGpApT) the d(GpA) chelate (67% and 75% respectively) was favoured over the d(ApG) chelate, while with d(pApGpA) about equal amounts of both chelates were formed.  相似文献   

18.
The three diguanosine phosphates GpG (4 X 10(-4) M), d(GpG) (10(-5) M), and d(pGpG) (10(-5) M) have been reacted with cis-[Pt(NH3)2(H2O)2](NO3)2 (1 Pt/dinucleotide) in water at pH 5.5 and 37 degrees C. In each case a single product is formed. The three complexes have been characterized by proton nuclear magnetic resonance (1H NMR) and circular dichroism (CD) analyses. They are N(7)-N(7) chelates of the metal with an anti-anti configuration of the bases. They present a conformational change upon deprotonation of guanine N(1)H whose pKa is ca. 8.7 (D2O). Their CD spectra, compared to those of the free dinucleotides, exhibit an increase of ellipticity in the 275-nm region, which can be qualitatively related to the characteristic increase reported for platinated DNA and poly(dG) . poly(dC). These results are in favor of the hypothesis of intrastrand cross-linking of adjacent guanines, by the cis-PtII(NH3)2 moiety, after a local denaturation of DNA.  相似文献   

19.
Kang M  Chifotides HT  Dunbar KR 《Biochemistry》2008,47(8):2265-2276
The 2D NMR analysis in solution of the DNA duplex d(CTCTC*A*ACTTCC).d(GGAAGTTGAGAG) binding to the dirhodium unit cis-[Rh2(mu-O2CCH3)2(eta1-O2CCH3)]+ showed that an unprecedented intrastrand adduct, dsII, is formed with the dirhodium unit cross-linking in the major groove residues C5 and A6 (indicated with asterisks), also corroborated by enzyme digestion studies. Formation of the dirhodium complex dsII destabilizes significantly the duplex as indicated by the substantial decrease in its melting temperature (DeltaTm = -22.9 degrees C). The reduced thermal stability of dsII is attributed to the decreased stacking of the bases and the complete disruption and/or weakening of the hydrogen bonds within the base pairs in the immediate vicinity of the metalation site (C5.G20 and A6.T19), but the effects due to the metal binding are more severe for the base pairs in the 5' direction to the lesion site. The NMR spectroscopic data indicate that Watson-Crick hydrogen bonding is completely disrupted for the C5.G20 site and considerably weakened for A6.T19. In dsII, the bases C5 and A6 bind to eq positions of the dirhodium unit cis-[Rh2(mu-O2CCH3)2(eta1-O2CCH3)]+, which retains one monodentate and two bridging acetate groups, presumably due to steric reasons. Binding of A6 takes place via N7, whereas binding of the C5 base takes place via the exocyclic N4 site, resulting in the anti-cytosine rotamer with respect to site N3 in its metal-stabilized rare iminooxo form.  相似文献   

20.
The dinuclear platinum complexes [[trans -PtCl (NH3)2]2[mu]-[NH2(CH2) n NH2]](NO3)2[1,1/t,t ( n = 4,6)] and [[cis-PtCl(NH3)2]2[mu];-[NH2(CH2) n NH2](NO3) 2[1,1/c,c ( n = 4,6)] exhibit antitumour activity comparable with cisplatin. 1,1/c,c complexes do not form 1,2 GG intrastrand adducts, the major adduct of cisplatin, with double-stranded DNA. This 1H NMR spectroscopy study shows that, in the absence of a complementary strand, 1,1/c,c ( n = 4,6) form a 1,2 GG (N7, N7) intrastrand adduct with r(GpG), d(GpG) and d(TGGT). Initial binding to r(GpG) (and also reaction with GMP) at 37 degrees C was slower for 1,1/c,c compared with 1,1/t,t, whereas the second binding step (adduct closure) was faster for 1,1/c,c. However, the 1H NMR spectra of the 1,1/c,c adducts at 37 degrees C show two H8 signals, one of which is broad and becomes sharper on increasing the temperature, indicating restricted rotation around the Pt-N7 bond. For the d(GpG)-1,1/c,c ( n = 4) adduct, 2D NMR spectroscopy assigned the broad H8 signal to the 3' G, which has syn base orientation and 60% S-type/40% N-type sugar conformation. The 5' G has anti base orientation and S-type sugar conformation. Apart from the restricted rotation around the 3' G, the structure is similar to that of 1,2 GG intrastrand adducts of 1,1/t,t. This steric hindrance may explain the inability of 1,1/c,c complexes to form 1,2 GG intrastrand adducts with sterically more demanding double-stranded DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号