首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
于基成  刘秋  邵阳  刘长建  闫建芳  齐小辉 《生态学报》2014,34(20):5896-5906
以大肠杆菌、金黄色葡萄球菌和尖孢镰刀枯萎病菌作为测试靶目标,采用9种分离培养基从大连海域13个不同采样点的海洋沉积物样品中分离到165株海洋链霉菌。从165株海洋放线菌中筛选到对金黄色葡萄球菌具有抑制活性的菌株85株,占总菌株数的51.5%;对大肠杆菌具有抑制活性的菌株27株,占总菌株数的16.4%;对尖孢镰刀枯萎病菌具有抑制活性的菌株仅有6株,占总菌株数的3.6%。因此,海洋链霉菌的活性更多地表现为对细菌的抗性,尤其对革兰氏阳性细菌具有更高的抑制活性。对其中具有抑制活性或形态独特的菌株进行了16S r DNA序列分析,并构建系统发育树,显示活性海洋链霉菌具有丰富的种类多样性和广谱抗菌活性。同种海洋链霉菌与土壤链霉菌活性比较结果也表明,海洋链霉菌多表现抗革兰氏阳性细菌活性。  相似文献   

2.
Marine actinomycetes provide a rich source of structurally unique and bioactive secondary metabolites. Numerous genera of marine actinomycetes have been isolated from marine sediments as well as several sponge species. In this study, 16 different species of Caribbean sponges were collected from four different locations in the coastal waters off Puerto Rico in order to examine diversity and bioactive metabolite production of marine actinomycetes in Caribbean sponges. Sediments were also collected from each location, in order to compare actinomycete communities between these two types of samples. A total of 180 actinomycetes were isolated and identified based on 16S rRNA gene analysis. Phylogenetic analysis revealed the presence of at least 14 new phylotypes belonging to the genera Micromonospora, Verruscosispora, Streptomyces, Salinospora, Solwaraspora, Microbacterium and Cellulosimicrobium. Seventy-eight of the isolates (19 from sediments and 59 from sponges) shared 100 % sequence identity with Micromonospora sp. R1. Despite having identical 16S rRNA sequences, the bioactivity of extracts and subsequent fractions generated from the fermentation of both sponge- and sediment-derived isolates identical to Micromonospora sp. R1 varied greatly, with a marked increase in antibiotic metabolite production in those isolates derived from sponges. These results indicate that the chemical profiles of isolates with high 16S rRNA sequence homology to known strains can be diverse and dependent on the source of isolation. In addition, seven previously reported dihydroquinones produced by five different Streptomyces strains have been purified and characterized from one Streptomyces sp. strain isolated in this study from the Caribbean sponge Agelas sceptrum.  相似文献   

3.
In vitro antimicrobial screening of nine marine sponges (Porifera) and two seaweeds, collected from south east coast of India, against selected clinical isolates of bacteria and fungi was conducted in this study. Methanolic extracts of all the marine organisms demonstrated activity against one or more of microbes tested. Sigmadocia carnosa was the most active exhibiting a broad spectrum antimicrobial activity against each of the microbe tested with the exception of Fusarium species. Contrary to this, the genus Echinogorgia did not show any detectable bactericidal activity but, Echninogorgia reticulata was weakly fungicidal against Rhodotorula species and E. compecta against Fusarium and Nocardia species. Considerable antibacterial activity was exhibited by Haliclona cribricutis and Chrotella australiensis against Klebsiella species and Vibrio cholerae, respectively. Petrocia testudinaria showed equally good activity against the bacterium V. chlorae and the fungus Cryptococcus neoformans. The sponges Callyspongia fibrosa, Ircinia species and the seaweed Stoecheospermum margilatum are totally inactive against fungi. The extracts showing good antimicrobial activity are undergoing further analysis to identify the active constituents.  相似文献   

4.
The marine sponge Amphimedon sp., collected from Hurghada (Egypt) was investigated for its sponge-derived actinomycetes diversity. Nineteen actinomycetes were cultivated and phylogenetically identified using 16S rDNA gene sequencing were carried out. The strains belong to genera Kocuria, Dietzia, Micrococcus, Microbacterium and Streptomyces. Many silent biosynthetic genes clusters were investigated using genome sequencing of actinomycete strains and has revealed in particular the genus Streptomyces that has indicated their exceptional capacity for the secondary metabolites production that not observed under classical cultivation conditions. In this study, the effect of N-acetylglucosamine on the metabolome of Streptomyces sp. RM66 was investigated using three actinomycetes media (ISP2, M1 and MA). In total, twelve extracts were produced using solid and liquid fermentation approaches. Liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) data were analysed using metabolomics tools to compare natural product production across all crude extracts. Our study highlighted the elicitation effect of N-acetylglucosamine on the secondary metabolite profiles of Streptomyces sp. RM66. These results highlight the of N-acetylglucosamine application as an elicitor to induce the cryptic metabolites and for increasing the chemical diversity. All the twelve extracts were tested for their antibacterial activity was tested against Staphylococcus aureus NCTC 8325, antifungal activity against Candida albicans 5314 (ATCC 90028) and anti-trypanosomal activity against Trypanosoma brucei brucei. Extract St1 showed the most potent one with activities 2.3, 3.2 and 4.7 ug/ml as antibacterial, antifungal and anti-trypanosomal, respectively.  相似文献   

5.
Crude methanolic extracts of 37 marine organisms (16 species of flora, 21 species of fauna) were screened for antibacterial properties against 5 strains of bacteria isolated from marine environments. Of these, 10 plant and 9 animal extracts exhibited antibacterial activity against at least one bacterial strain. The extracts of 6 species were active against all the strains: i.e., Stoechospermum marginatum (brown algae), Cymodocea rotundata (seagrass), Petrosia sp. and Psammaplysilla purpurea (sponges), Sinularia compressa (soft coral), and Cassiopeia sp. (jellyfish). Among the plants, Padina tetrastromatica (brown algae) extract exhibited significant activity (9–11-mm inhibition zone at 500 μg per 6-mm disc) against Bacillus pumilus and Pseudomonas vesicularis, while the extracts of Petrosia, Psammaplysilla, and Cassiopeia were strongly active (11–13-mm inhibition zone at 500 μg per 6-mm disc) against B. circulans and P. putida. It was further confirmed that the attachment of bacterial strains on glass slides was inhibited remarkably with increasing concentrations of bioextracts of Petrosia sp. and Psammaplysilla purpurea. The present findings could form the basis for exploring the antibacterial potential of bioactive molecules from some of the marine organisms that exhibited moderate to strong antibacterial properties.  相似文献   

6.
A total of 74 actinomycete isolates were cultivated from two marine sponges, Geodia barretti and Phakellia ventilabrum collected at the same spot at the bottom of the Trondheim fjord (Norway). Phylogenetic analyses of sponge-associated actinomycetes based on the 16S rRNA gene sequences demonstrated the presence of species belonging to the genera Streptomyces, Nocardiopsis, Rhodococcus, Pseudonocardia and Micromonospora. Most isolates required sea water for growth, suggesting them being adapted to the marine environment. Phylogenetic analysis of Streptomyces spp. revealed two isolates that originated from different sponges and had 99.7% identity in their 16S rRNA gene sequences, indicating that they represent very closely related strains. Sequencing, annotation, and analyses of the genomes of these Streptomyces isolates demonstrated that they are sister organisms closely related to terrestrial Streptomyces albus J1074. Unlike S. albus J1074, the two sponge streptomycetes grew and differentiated faster on the medium containing sea water. Comparative genomics revealed several genes presumably responsible for partial marine adaptation of these isolates. Genome mining targeted to secondary metabolite biosynthesis gene clusters identified several of those, which were not present in S. albus J1074, and likely to have been retained from a common ancestor, or acquired from other actinomycetes. Certain genes and gene clusters were shown to be differentially acquired or lost, supporting the hypothesis of divergent evolution of the two Streptomyces species in different sponge hosts.  相似文献   

7.
Crude aqueous methanol extracts obtained from 31 species of various marine organisms (including flora land faunal), were screened for their antifungal activity against food poisoning strains of Aspergillus. Seventeen species exhibited mild (+ =zone of inhibition 1–2 mm) to significant (+++ =zone of inhibition 3–5 mm) activity against one or the other strain under experiment. However, extracts of 12 species were active against all the three strains. Organisms like Salicornia brachiata(obligate halophyte), Sinularia leptocladus(Soft coral), Elysia grandifolia (Mollusks),Gorgonian sp. 2 and Haliclona sp. exhibited significant (inhibition zone of 3–5 mm) antifungal activity against one or the other strains. However,extracts of A. ilicifolius, Amphiroa sp.,Poryphyra sp., Unidentified sponge, Suberites vestigium, Sinularia compressa,Sunularia sp., Sinularia maxima, Subergorgia suberosa, Echinogorgia pseudorassopo and Sabellaria cementifera were mild (inhibition zone of 1–2 mm) to moderate(inhibition zone of 2–3 mm) active against the respective strains. The growth of A. japonicuswas significantly inhibited by the extracts ofS. leptocladus (r = 0.992, p < 0.0001)and E. grandifolia (r = 0.989, p < 0.0001).This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

8.
Sponges (Porifera) currently represent one of the richest sources of natural products and account for almost half of the pharmacologically active compounds of marine origin. However, to date very little is known about the pharmacological potential of the sponges from polar regions. In this work we report on screening of ethanolic extracts from 24 Antarctic marine sponges for different biological activities. The extracts were tested for cytotoxic effects against normal and transformed cell lines, red blood cells, and algae, for modulation of the activities of selected physiologically important enzymes (acetylcholinesterase, butyrylcholinesterase, and α-amylase), and for inhibition of growth of pathogenic and ecologically relevant bacteria and fungi. An extract from Tedania (Tedaniopsis) oxeata was selectively cytotoxic against the cancer cell lines and showed growth inhibition of all of the tested ecologically relevant and potentially pathogenic fungal isolates. The sponge extracts from Isodictya erinacea and Kirkpatrickia variolosa inhibited the activities of the cholinesterase enzymes, while the sponge extracts from Isodictya lankesteri and Inflatella belli reduced the activity of α-amylase. Several sponge extracts inhibited the growth of multiresistant pathogenic bacterial isolates of different origins, including extended-spectrum beta-lactamase and carbapenem-resistant strains, while sponge extracts from K. variolosa and Myxilla (Myxilla) mollis were active against a human methicillin-resistant Staphylococcus aureus strain. We conclude that Antarctic marine sponges represent a valuable source of biologically active compounds with pharmacological potential.  相似文献   

9.
An actinomycetes isolate of Loktak Lake soil, designated as MT7, was characterized and identified as Streptomyces sp. based on fatty acid methyl ester and 16S ribosomal RNA gene analysis. Streptomyces sp. MT7 showed strong and broad spectrum antagonism towards seven out of eight tested wood-rotting fungi. Strain MT7 secretes three vital fungal cell wall lytic enzymes, i.e. chitinase, β-1,3-glucanase, and protease, and siderophores. Extracellularly produced mycolytic enzymes lost their antifungal activity completely after treatment with proteinase K and heat, indicating that the tested antifungal metabolites are heat-sensitive and proteinaceous in nature. Extracellular fluid (ECF) and its organic solvent extract also exhibited potential antagonism towards the tested wood-rotting fungi. Antifungal metabolites were characterized as polyene in nature. Biocontrol traits like co-production of cell wall lytic enzymes and antifungal secondary metabolites including siderophores by Streptomyces sp. MT7 suggests that it could be employed as a potential biocontrol agent against wood-rotting basidiomycetes.  相似文献   

10.
Symbiotic bacteria play vital roles in the survival and health of marine sponges. Sponges harbor rich, diverse and species-specific microbial communities. Symbiotic marine bacteria have increasingly been reported as promising source of bioactive compounds. A culturomics-based study was undertaken to study the diversity of bacteria from marine sponges and their antimicrobial potential. We have collected three sponge samples i.e. Acanthaster carteri, Rhytisma fulvum (soft coral) and Haliclona caerulea from north region (Obhur) of Red Sea, Jeddah Saudi Arabia. Total of 144 bacterial strains were isolated from three marine sponges using culture dependent method. Screening of isolated strains showed only 37 (26%) isolates as antagonists against oomycetes pathogens (P. ultimum and P. capsici). Among 37 antagonistic bacteria, only 19 bacterial strains exhibited antibacterial activity against human pathogens (Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 8739, Enterococcus faecalis ATCC 29212). Four major classes of bacteria i.e γ-Proteobacteria, α-Proteobacteria, Firmicutes and Actinobacteria were recorded from three marine sponges where γ-Proteobacteria was dominant class. One potential bacterial strain Halomonas sp. EA423 was selected for identification of bioactive metabolites using GC and LC-MS analyses. Bioactive compounds Sulfamerazine, Metronidazole-OH and Ibuprofen are detected from culture extract of strain Halomonas sp. EA423. Overall, this study gives insight into composition and diversity of antagonistic bacterial community of marine sponges and coral from Red Sea and presence of active metabolites from potential strain. Our results showed that these diverse and potential bacterial communities further need to be studied to exploit their biotechnological significance.  相似文献   

11.
The aim of this study was to screen Streptomycetes isolates with antimicrobial and antiviral activity, in a search for new metabolites. The isolates were obtained from a composting process, and identified based on morphological characteristics and molecular biological methods. The antimicrobial activity was determined using the double-layer agar method against 53 test organisms (bacteria, yeasts, and filamentous fungi). All isolates were grown in submerged culture, in mineral salts-starch-casein (SC) broth and ISP2 media, and the filtrate cultures were used in the assays for antibacterial and antiviral activity. Bovine Herpes virus (BoHV-I) was used for the antiviral activity. The morphological and molecular characteristics confirmed that all 25 isolates belonged to the genus Streptomyces. In the assay for antimicrobial activity, 80% of the Streptomyces isolates were able to inhibit at least one of the test organisms. Of these, 80% were active against bacteria and 45% against fungi. Eight of the isolates showed a broad spectrum of inhibitory activity; of these, the isolate Streptomyces spp. 1S was able to inhibit 46 of the test organisms, and, most importantly, the 16 Gram-negative strains were inhibited. Of the 25 isolates, 44.4% of the isolates were able to grow and produce bioactive metabolites when grown in submerged culture. Four extracts showed a cytopathic effect in 10 CCID50 MDBK cell, even though no viricidal effect was observed. The results obtained with these isolates indicated good biotechnological potential of these Streptomyces strains.  相似文献   

12.
Twenty-nine actinobacterial strains were isolated from marine sponge Spongia officinalis and screened for antagonistic activity against various bacterial and fungal pathogens. The active antibiotic producer MAPS15 was identified as Streptomyces sp. using 16S rRNA phylogenetic analysis. The critical control factors were selected from Plackett–Burman (PB) factorial design and the bioprocess medium was optimized by central composite design (CCD) for the production of bioactive metabolite from Streptomyces sp. MAPS15. The maximum biomass and active compound production obtained with optimized medium was 6.13 g/L and 62.41 mg/L, respectively. The economical carbon source, paddy straw was applied for the enhanced production of bioactive compound. The purified active fraction was characterized and predicted as pyrrolidone derivative which showed broad spectrum of bioactivity towards indicator organisms. The predicted antimicrobial spectra suggested that the Streptomyces sp. MAPS15 can produce a suite of novel antimicrobial drugs.  相似文献   

13.
A broad spectrum of medicinal plants was used as traditional remedies for various infectious diseases. Fungal infectious diseases have a significant impact on public health. Fungi cause more prevalent infections in immunocompromised individuals mainly patients undergoing transplantation related therapies, and malignant cancer treatments. The present study aimed to investigate the in vitro antifungal effects of the traditional medicinal plants used in India against the fungal pathogens associated with dermal infections. Indian medicinal plants (Acalypha indica, Lawsonia inermis Allium sativum and Citrus limon) extract (acetone/crude) were tested for their antifungal effects against five fungal species isolated from skin scrapings of fungal infected patients were identified as including Alternaria spp., Curvularia spp., Fusarium spp., Trichophyton spp. and Geotrichum spp. using well diffusion test and the broth micro dilution method. All plant extracts have shown to have antifungal efficacy against dermal pathogens. Particularly, Allium sativum extract revealed a strong antifungal effect against all fungal isolates with the minimum fungicidal concentration (MFC) of 50–100 μg/mL. Strong antifungal activity against Curvularia spp., Trichophyton spp., and Geotrichum spp. was also observed for the extracts of Acalypha indica, and Lawsonia inermis with MFCs of 50–800 μg/mL respectively. The extracts of Citrus limon showed an effective antifungal activity against most of the fungal strains tested with the MFCs of 50–800 μg/mL. Our research demonstrated the strong evidence of conventional plants extracts against clinical fungal pathogens with the most promising option of employing natural-drugs for the treatment of skin infections. Furthermore, in-depth analysis of identifying the compounds responsible for the antifungal activity that could offer alternatives way to develop new natural antifungal therapeutics for combating resistant recurrent infections.  相似文献   

14.
Parasitic diseases especially those prevail in tropical and subtropical regions severely threaten the lives of people due to available drugs found to be ineffective as several resistant strains have been emerged. Due to the complexity of the marine environment, researchers considered it as a new field to search for compounds with therapeutic efficacy, marine sponges represents the milestone in the discovery of unique compounds of potent activities against parasitic infections. In the present article, literatures published from 2010 until March 2021 were screened to review antiparasitic potency of bioactive compounds extracted from marine sponges. 45 different genera of sponges have been studied for their antiparasitic activities. The antiparasitic activity of the crude extract or the compounds that have been isolated from marine sponges were assayed in vitro against Plasmodium falciparum, P. berghei, Trypanosoma brucei rhodesiense, T. b. brucei, T. cruzi, Leishmania donovani, L. tropica, L. infantum, L. amazonesis, L. major, L. panamesis, Haemonchus contortus and Schistosoma mansoni. The majority of antiparastic compounds extracted from marine sponges were related to alkaloids and peroxides represent the second important group of antiparasitic compounds extracted from sponges followed by terpenoids. Some substances have been extracted and used as antiparasitic agents to a lesser extent like steroids, amino acids, lipids, polysaccharides and isonitriles. The activities of these isolated compounds against parasites were screened using in vitro techniques. Compounds' potent activity in screened papers was classified in three categories according to IC50: low active or inactive, moderately active and good potent active.  相似文献   

15.
A large-scale screen of some 7,000 presumptive lactic acid bacteria (LAB), isolated from animal, human, or plant origin, identified 1,149 isolates with inhibitory activity against the food-spoilage mould Penicillium expansum. In excess of 500 LAB isolates were subsequently identified to produce a broad spectrum of activity against P. expansum, Penicillium digitatum, Penicillium notatum, Penicillium roqueforti, Rhizopus stolonifer, Fusarium culmorum, Aspergillus fumigatus and Rhodotorula mucilaginosa. Partial 16S rRNA sequencing of 94 broad spectrum isolates revealed that the majority of antifungal producers were strains of Lactobacillus plantarum. The remaining population was composed of Weissella confusa and Pediococcus pentosaceous isolates. Characterization of six selected broad-spectrum antifungal LAB isolates revealed that antifungal activity is maximal at a temperature of 30 °C, a pH of 4.0 and is stable across a variety of salt concentrations. The antifungal compound(s) was shown to be neither proteinaceous nor volatile in nature. P. pentosaceous 54 was shown to have protective properties against P. expansum spoilage when applied in pear, plum and grape models, therefore representing an excellent candidate for food-related applications.  相似文献   

16.
The azole pharmacophore is still considered a viable lead structure for the synthesis of more efficacious and broad spectrum antimicrobial agents. Potential antibacterial and antifungal activities are encountered with some tetrazoles. Therefore, this study presents the synthesis and antimicrobial evaluation of a new series of substituted tetrazoles that are structurally related to the famous antimicrobial azole pharmacophore. A detailed discussion of the structural elucidation of some of the newly synthesized compounds is also described. Antimicrobial evaluation revealed that twenty compounds were able to display variable growth inhibitory effects on the tested Gram positive and Gram negative bacteria with special efficacy against the Gram positive strains. Meanwhile, six compounds exhibited moderate antifungal activity against Candida albicans and Aspergillus fumigatus. Structurally, the antibacterial activity was encountered with tetrazoles containing a phenyl substituent, while the obtained antifungal activity was confined to the benzyl variants. Compounds 16, 18, 24 and 27 were proved to be the most active antibacterial members within this study with a considerable broad spectrum against all the Gram positive and negative strains tested. A distinctive anti-Gram positive activity was displayed by compound 18 against Staphylococcus aureus that was equipotent to ampicillin (MIC 6.25 μg/mL).On the other hand, twelve compounds were selected to be screened for their preliminary anticonvulsant activity against subcutaneous metrazole (ScMet) and maximal electroshock (MES) induced seizures in mice. The results revealed that five compounds namely; 3, 5, 13, 21, and 24 were able to display noticeable anticonvulsant activity in both tests at 100 mg/kg dose level. Compounds 5 and 21 were proved to be the most active anticonvulsant members in this study with special high activity in the ScMet assay (% protection: 100% and 80%, respectively).  相似文献   

17.
The incidence of invasive fungal infections has dramatically increased for several decades. In order to discover novel antifungal agents with broad spectrum and anti-Aspergillus efficacy, a series of novel triazole derivatives containing 1,2,3-benzotriazin-4-one was designed and synthesized. Most of the compounds exhibited stronger in vitro antifungal activities against tested fungi than fluconazole. Moreover, 6m showed comparable antifungal activity against seven pathogenic strains as voriconazole and albaconazole, especially against Aspergillus fumigatus (MIC = 0.25 μg/ml), and displayed moderate antifungal activity against fluconazole-resistant strains of Candida albicans. A clear SAR study indicated that compounds with groups at the 7-position resulted in novel antifungal triazoles with more effectiveness and a broader-spectrum.  相似文献   

18.
Of 1448 actinomycete strains isolated from different types of soils 46% exhibited an antibiotic activity. Strains exhibiting a narrow antibiotic spectrum were more usual than those exhibiting a broad spectrum. An antifungal effect was the most common property. Strains exhibiting a considerable activity against pathogenic, phytopathogenic and dermatophytic microorganisms were found among isolated cultures. Fifty-three antagonistic actinomycetes were classified in 29 species.Actinomyces candidus, Actinomyces flaveolus, Actinomyces flavoviridis andActinomyces griseovariabilis were the most common. The antibiotic spectrum of individual strains belonging to the same species was qualitatively different in most cases.  相似文献   

19.
The focal intent of this study was to find out an alternative strategy for the antibiotic usage against bacterial infections. The quorum sensing inhibitory (QSI) activity of marine sponges collected from Palk Bay, India was evaluated against acyl homoserine lactone (AHL) mediated violacein production in Chromobacterium violaceum (ATCC 12472), CV026 and virulence gene expressions in clinical isolate Serratia marcescens PS1. Out of 29 marine sponges tested, the methanol extracts of Aphrocallistes bocagei (TS 8), Haliclona (Gellius) megastoma (TS 25) and Clathria atrasanguinea (TS 27) inhibited the AHL mediated violacein production in C. violaceum (ATCC 12472) and CV026. Further, these sponge extracts inhibited the AHL dependent prodigiosin pigment, virulence enzymes such as protease, hemolysin production and biofilm formation in S. marcescens PS1. However, these sponge extracts were not inhibitory to bacterial growth, which reveals the fact that the QSI activity of these extracts was not related to static or killing effects on bacteria. Based on the obtained results, it is envisaged that the marine sponges could pave the way to prevent quorum sensing (QS) mediated bacterial infections.  相似文献   

20.
Three novel series of dihydrotriazine derivatives bearing 1,3-diaryl pyrazole moieties were designed, synthesized and evaluated in terms of their antibacterial and antifungal activities. Most of the synthesized compounds showed potent inhibition of several Gram-positive bacterial strains (including multidrug-resistant clinical isolates) and Gram-negative bacterial strains with minimum inhibitory concentration values in the range of 1–64?µg/mL. Compounds 4b and 4c presented the most potent inhibitory activity against Gram-positive bacteria (S. aureus 4220, MRSA 3167, QRSA 3519) and Gram-negative bacteria (E. coli 1924), with minimum inhibitory concentration values of 1 or 2?µg/mL. Compared with previous studies, these compounds exhibited a broad spectrum of inhibitory activity. The cytotoxic activity of the compounds 4a, 4b, 4c and 11n were assessed in L02 cells. In vitro enzyme study implied that compound 4c exerted its antibacterial activity through DHFR inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号