共查询到20条相似文献,搜索用时 0 毫秒
1.
To determine which amino acids in TEM-1 beta-lactamase are important for its structure and function, random libraries were previously constructed which systematically randomized the 263 codons of the mature enzyme. A comprehensive screening of these libraries identified several TEM-1 beta-lactamase core positions, including F66 and L76, which are strictly required for wild-type levels of hydrolytic activity. An examination of positions 66 and 76 in the class A beta-lactamase gene family shows that a phenylalanine at position 66 is strongly conserved while position 76 varies considerably among other beta-lactamases. It is possible that position 76 varies in the gene family because beta-lactamase mutants with non-conservative substitutions at position 76 retain partial function. In contrast, position 66 may remain unchanged in the gene family because non-conservative substitutions at this location are detrimental for enzyme structure and function. By determining the beta-lactam resistance levels of the 38 possible mutants at positions 66 and 76 in the TEM-1 enzyme, it was confirmed that position 76 is indeed more tolerant of non-conservative substitutions. An analysis of the Protein Data Bank files for three class A beta-lactamases indicates that volume constraints at position 66 are at least partly responsible for the low tolerance of substitutions at this position. 相似文献
2.
Conservative substitutions in the hydrophobic core of Rhodobacter sphaeroides thioredoxin produce distinct functional effects.
下载免费PDF全文

K. Assemat P. M. Alzari J. Clment-Mtral 《Protein science : a publication of the Protein Society》1995,4(12):2510-2516
The internal residue Phe 25 in Rhodobacter sphaeroides thioredoxin was changed to five amino acids (Ala, Val, Leu, Ile, Tyr) by site-directed mutagenesis, and the mutant proteins were characterized in vitro and in vivo using the mutant trxA genes in an Escherichia coli TrxA- background. The substitution F25A severely impaired the functional properties of the enzyme. Strains expressing all other mutations can grow on methionine sulfoxide with growth efficiencies of 45-60% that of the wild type at 37 degrees, and essentially identical at 42 degrees. At both temperatures, however, strains harboring the substitutions F25V and F25Y had lower growth rates and formed smaller colonies. In another in vivo assay, only the wild type and the F25I substitution allowed growth of phage T3/7 at 37 degrees, demonstrating that subtle modifications of the protein interior at position 25 Ile/Leu or Phe/Tyr) can produce significant biological effects. All F25 mutants were good substrates for E. coli thioredoxin reductase. Although turnover rates and apparent Km values were significantly lower for all mutants compared to the wild type, catalytic efficiency of thioredoxin reductase was similar for all substrates. Determination of the free energy of unfolding showed that the aliphatic substitutions (Val, Leu, Ile) significantly destabilized the protein, whereas the F25Y substitution did not affect protein stability. Thus, thermodynamic stability of R. sphaeroides thioredoxin variants is not correlated with the distinct functional effects observed both in vivo and in vitro. 相似文献
3.
Deleterious interactions among genes cause reductions in fitness of interpopulation hybrids (hybrid breakdown). Identifying genes involved in hybrid breakdown has proven difficult, and few studies have addressed the molecular basis of this widespread phenomenon. Because proper function of the mitochondrial electron transport system (ETS) requires a coadapted set of nuclear and mitochondrial gene products, ETS genes present an attractive system for studying the evolution of coadapted gene complexes within isolated populations and the loss of fitness in interpopulation hybrids. Here we show the effects of single amino acid substitutions in cytochrome c (CYC) on its functional interaction with another ETS protein, cytochrome c oxidase (COX) in the intertidal copepod Tigriopus californicus. The individual and pairwise consequences of three naturally occurring amino acid substitutions in CYC are examined by site-directed mutagenesis and found to differentially effect the rates of CYC oxidation by COX variants from different source populations. In one case, we show that interpopulation hybrid breakdown in COX activity can be attributed to a single naturally occurring amino acid substitution in CYC. 相似文献
4.
Illarionov B Kemter K Eberhardt S Richter G Cushman M Bacher A 《The Journal of biological chemistry》2001,276(15):11524-11530
Conserved amino acid residues of riboflavin synthase from Escherichia coli were modified by site-directed mutagenesis. Replacement or deletion of phenylalanine 2 afforded catalytically inactive proteins. S41A and H102Q mutants had substantially reduced reaction velocities. Replacements of various other conserved polar residues had little impact on catalytic activity. (19)F NMR protein perturbation experiments using a fluorinated intermediate analog suggest that the N-terminal sequence motif MFTG is part of one of the substrate-binding sites of the protein. 相似文献
5.
6.
7.
Highly tolerated amino acid substitutions increase the fidelity of Escherichia coli DNA polymerase I
Fidelity of DNA synthesis, catalyzed by DNA polymerases, is critical for the maintenance of the integrity of the genome. Mutant polymerases with elevated accuracy (antimutators) have been observed, but these mainly involve increased exonuclease proofreading or large decreases in polymerase activity. We have determined the tolerance of DNA polymerase for amino acid substitutions in the active site and in different segments of E. coli DNA polymerase I and have determined the effects of these substitutions on the fidelity of DNA synthesis. We established a DNA polymerase I mutant library, with random substitutions throughout the polymerase domain. This random library was first selected for activity. The essentiality of DNA polymerases and their sequence and structural conservation suggests that few amino acid substitutions would be tolerated. However, we report that two-thirds of single base substitutions were tolerated without loss of activity, and plasticity often occurs at evolutionarily conserved regions. We screened 408 members of the active library for alterations in fidelity of DNA synthesis in Escherichia coli expressing the mutant polymerases and carrying a second plasmid containing a beta-lactamase reporter. Mutation frequencies varied from 1/1000- to 1000-fold greater compared with wild type. Mutations that produced an antimutator phenotype were distributed throughout the polymerase domain, with 12% clustered in the M-helix. We confirmed that a single mutation in this segment results in increased base discrimination. Thus, this work identifies the M-helix as a determinant of fidelity and suggests that polymerases can tolerate many substitutions that alter fidelity without incurring major changes in activity. 相似文献
8.
9.
Ofiteru A Bucurenci N Alexov E Bertrand T Briozzo P Munier-Lehmann H Gilles AM 《The FEBS journal》2007,274(13):3363-3373
Bacterial CMP kinases are specific for CMP and dCMP, whereas the related eukaryotic NMP kinase phosphorylates CMP and UMP with similar efficiency. To explain these differences in structural terms, we investigated the contribution of four key amino acids interacting with the pyrimidine ring of CMP (Ser36, Asp132, Arg110 and Arg188) to the stability, catalysis and substrate specificity of Escherichia coli CMP kinase. In contrast to eukaryotic UMP/CMP kinases, which interact with the nucleobase via one or two water molecules, bacterial CMP kinase has a narrower NMP-binding pocket and a hydrogen-bonding network involving the pyrimidine moiety specific for the cytosine nucleobase. The side chains of Arg110 and Ser36 cannot establish hydrogen bonds with UMP, and their substitution by hydrophobic amino acids simultaneously affects the K(m) of CMP/dCMP and the k(cat) value. Substitution of Ser for Asp132 results in a moderate decrease in stability without significant changes in K(m) value for CMP and dCMP. Replacement of Arg188 with Met does not affect enzyme stability but dramatically decreases the k(cat)/K(m) ratio compared with wild-type enzyme. This effect might be explained by opening of the enzyme/nucleotide complex, so that the sugar no longer interacts with Asp185. The reaction rate for different modified CMP kinases with ATP as a variable substrate indicated that none of changes induced by these amino acid substitutions was 'propagated' to the ATP subsite. This 'modular' behavior of E. coli CMP kinase is unique in comparison with other NMP kinases. 相似文献
10.
11.
Unnatural amino acid packing mutants of Escherichia coli thioredoxin produced by combined mutagenesis/chemical modification techniques.
下载免费PDF全文

We have produced several mutants of Escherichia coli thioredoxin (Trx) using a combined mutagenesis/chemical modification technique. The protein C32S, C35S, L78C Trx was produced using standard mutagenesis procedures. After unfolding the protein with guanidine hydrochloride (GdmCl), the normally buried cysteine residue was modified with a series of straight chain aliphatic thiosulfonates, which produced cysteine disulfides to methane, ethane, 1-n-propane, 1-n-butane, and 1-n-pentane thiols. These mutants all show native-like CD spectra and the ability to activate T7 gene 5 protein DNA polymerase activity. In addition, all mutants show normal unfolding transitions in GdmCl solutions. However, the midpoint of the transition, [GdmCl]1/2, and the free energy of unfolding at zero denaturant concentration, delta G(H2O), give inverse orders of stability. This effect is due to changes in m, the dependence of delta G0 unfolding on the GdmCl concentration. The method described here may be used to produce unnatural amino acids in the hydrophobic cores of proteins. 相似文献
12.
Approaches to predicting effects of single amino acid substitutions on the function of a protein 总被引:4,自引:0,他引:4
The relative activities of 313 mutants of the gene V protein of bacteriophage f1, assayed in vivo, have been used to evaluate two approaches to predicting the effects of single amino acid substitutions on the function of a protein. First, we tested methods that only depend on the properties of the wild-type and substituting amino acids. None of the properties or measures of the functional equivalence of amino acids we tested, including the frequency of exchange of amino acids among homologous proteins as well as changes in side-chain size, hydrophobicity, and charge, were found to be more than weakly correlated with the activities of mutants. The principal reason for this poor correlation was found to be that the effect of a particular substitution varies considerably from site to site. We then tested an approach using the activities of several mutants with substitutions at a site to predict the activity of another mutant, and we find that this is a relatively good indicator of whether the other mutant at that site will be functional. A predictive scheme was developed that combines the weak information from the models depending on the properties of the wild-type and substituting amino acids with the stronger information from the tolerance of a site to substitution. Although this scheme requires no knowledge of the structure of a mutant protein, it is useful in predicting the activities of mutants. 相似文献
13.
T Rose P Glaser W K Surewicz H H Mantsch J Reinstein K Le Blay A M Gilles O Barzu 《The Journal of biological chemistry》1991,266(35):23654-23659
All known nucleoside monophosphate kinases contain an invariant sequence Asp-Gly-Phe(Tyr)-Pro-Arg. In order to understand better the structural and functional role of individual amino acid residues belonging to the above sequence, three mutants of Escherichia coli adenylate kinase (D84H, G85V, and F86L) were produced by site-directed mutagenesis. Circular dichroism spectra revealed that the secondary structure dichroism spectra revealed that the secondary structure of all three mutant proteins is very similar to that of the wild-type enzyme. However, each of the substitutions resulted in a decreased thermodynamic stability of the protein, as indicated by differential scanning calorimetry measurements and equilibrium unfolding experiments in guanidine HCl. The destabilizing effect was most pronounced for the G85V mutant, in which case the denaturation temperature was decreased by as much as 11 degrees C. The catalytic activity of the three mutants represented less than 1% of that of the wild-type enzyme. Furthermore, for the D84H-modified form of adenylate kinase, the impaired binding of nucleotide substrates was accompanied by a markedly decreased affinity for magnesium ion. These observations support the notion that Asp84 is directly involved in binding of nucleotide substrates and that this binding is mediated by interaction of the aspartic acid residue with divalent cation. The two remaining residues probed in this study, Gly85 and Phe86, belong to a beta-turn which appears to play a major role in stabilizing the three-dimensional structure of adenylate kinase. 相似文献
14.
Escherichia coli endo IV is a bifunctional DNA repair protein, i.e., possessing both apurinic/apyrimidinic (AP) endonuclease and 3'-diesterase activities. The former activity cleaves AP sites, whereas the latter one removes a variety of 3'-blocking groups present at single-strand breaks in damaged DNA. However, the precise reaction mechanism by which endo IV cleaves DNA lesions is unknown. To probe this mechanism, we have identified eight amino acid substitutions that alter endo IV function in vivo. Seven of these mutant proteins are variably expressed in E. coli and, when purified, show a 10-60-fold reduction in both AP endonuclease and 3'-diesterase activities. The most severe defect was observed with the one remaining mutant (E145G) that showed normal protein expression. This mutant has lost the ability to bind double-stranded DNA and showed a dramatic 150-fold reduction in enzymatic activities. We conclude that the AP endonuclease and the 3'-diesterase activities of endo IV are associated with a single active site, that is perhaps remote from the DNA binding domain. 相似文献
15.
The repression and derepression of leucine, isoleucine, and valine transport in Escherichia coli K-12 was examined by using strains auxotrophic for leucine, isoleucine, valine, and methionine. In experiments designed to limit each of these amino acids separately, we demonstrate that leucine limitation alone derepressed the leucine-binding protein, the high-affinity branched-chain amino acid transport system (LIV-I), and the membrane-bound, low-affinity system (LIV-II). This regulation did not seem to involve inactivation of transport components, but represented an increase in the differential rate of synthesis of transport components relative to total cellular proteins. The apparent regulation of transport by isoleucine, valine, and methionine reported elsewhere was shown to require an intact leucine, biosynthetic operon and to result from changes in the level of leucine biosynthetic enzymes. A functional leucyl-transfer ribonucleic acid synthetase was also required for repression of transport. Transport regulation was shown to be essentially independent of ilvA or its gene product, threonine deaminase. The central role of leucine or its derivatives in cellular metabolism in general is discussed. 相似文献
16.
The amino acid sequence of thiogalactoside transacetylase, a dimer, has been determined. The monomer contains 202 amino acid residues in a single polypeptide chain and has a molecular weight of 22,671. The analysis was carried out by treatment of the carboxymethylated protein with cyanogen bromide and with trypsin. All seven cyanogen bromide peptides were isolated in pure form and were ordered by peptides isolated from tryptic digests. The sequence analysis was aided by determination of the DNA sequence of the lacA gene. The amino terminus of the protein is heterogenous because the initiator methionine is only partially cleaved. Another rather unusual feature of this cytoplasmic protein is a very hydrophobic segment in the center portion of the chain. Comparison of the amino acid sequence of thiogalactoside transacetylase to those of the lac repressor, beta-galactosidase, and lactose permease did not reveal any marked similarities. Therefore, there is no obvious evolutionary relatedness among proteins of the Lactose Operon. 相似文献
17.
The effects of amino acid substitutions upon the behavior of poly(Leu)-rich alpha-helices inserted into model membrane vesicles were investigated. One or two consecutive Leu residues in the hydrophobic core of the helix were substituted with A, F, G, S, D, K, H, P, GG, SS, PG, PP, KK, or DD residues. A Trp placed at the center of the sequence allowed assessment of peptide behavior via fluorescence emission lambda(max) and dual quenching analysis of Trp depth [Caputo, G. A., and London, E. (2003) Biochemistry 42, 3265-3274]. In vesicles composed of dioleoylphosphatidylcholine (DOPC), all of the peptides with single substitutions adopted a transmembrane (TM) state. Experiments were also performed in thicker bilayers composed of dierucoylphosphatidylcholine (DEuPC). In DEuPC vesicles TM states were destabilized by mismatch between helix length and bilayer thickness. Nevertheless, in DEuPC vesicles TM states were still prevalent for peptides with single substitutions, although less so for peptides with P, K, H, or D substitutions. In contrast to single substitutions, certain consecutive double substitutions strongly interfered with formation of TM states. In both DOPC and DEuPC vesicles DD and KK substitutions abolished the normal TM state, but GG and SS substitutions had little effect. In even wider bilayers, a SS substitution reduced the formation of a TM state. A peptide with a PP substitution maintained the TM state in DOPC vesicles, but in DEuPC vesicles the level of formation of the TM state was significantly reduced. Upon disruption of normal TM insertion peptides moved close to the bilayer surface, with the exception of the KK-substituted peptide in DOPC vesicles, which formed a truncated TM segment. These studies begin to provide a detailed relationship between sequence and the stability of TM insertion and show that the influence of insertion-destabilizing residues upon hydrophobic helices can be strongly modulated by properties such as mismatch. For certain helix-forming hydrophobic sequences, sensitivity to lipid structure may be sufficient to induce large conformational changes in vivo. 相似文献
18.
We have studied the mechanisms by which amino acid starvation of Escherichia coli induces resistance against the lytic and bactericidal effects of penicillin. Starvation of E. coli strain W7 of the amino acids lysine or methionine resulted in the rapid development of resistance to autolytic cell wall degradation, which may be effectively triggered in growing bacteria by a number of chemical or physical treatments. The mechanism of this effect in the amino acid-starved cells involved the production of a murein relatively resistant to the hydrolytic action of crude murein hydrolase extracts prepared from normally growing E. coli. Resistance to the autolysins was not due to the covalently linked lipoprotein. Resistance to murein hydrolase developed most rapidly and most extensively in the portion of cell wall synthesized after the onset of amino acid starvation. Lysozymes digests of the autolysin-resistant murein synthesized during the first 10 min of lysine starvation yielded (in addition to the characteristic degradation products) a high-molecular-weight material that was absent from the lysozyme-digests of control cell wall preparations. It is proposed that inhibition of protein synthesis causes a rapid modification of murein structure at the cell wall growth zone in such a manner that attachment of murein hydrolase molecules is inhibited. The mechanism may involve some aspects of the relaxed control system since protection against penicillin-induced lysis developed much slower in amino acid-starved relaxed controlled (relA) cells than in isogenic stringently controlled (relA+) bacteria. 相似文献
19.
A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants 总被引:3,自引:0,他引:3
A key enzyme in the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the primary target of the broad-spectrum herbicide glyphosate. Identification of new aroA genes coding for EPSPS with a high level of glyphosate tolerance is essential for the development of glyphosate-tolerant crops. In the present study, the glyphosate tolerance of five bacterial aroA genes was evaluated in the E. coli aroA-defective strain ER2799 and in transgenic tobacco plants. All five aroA genes could complement the aroA-defective strain ER2799, and AM79 aroA showed the highest glyphosate tolerance. Although glyphosate treatment inhibited the growth of both WT and transgenic tobacco plants, transgenic plants expressing AM79 aroA tolerated higher concentration of glyphosate and had a higher fresh weight and survival rate than plants expressing other aroA genes. When treated with high concentration of glyphosate, lower shikimate content was detected in the leaves of transgenic plants expressing AM79 aroA than transgenic plants expressing other aroA genes. These results suggest that AM79 aroA could be a good candidate for the development of transgenic glyphosate-tolerant crops. 相似文献
20.
N-Ethylmaleimide (MalNEt) binds covalently and without specificity to accessible sulfhydryl residues in proteins. In some cases specificity has been imposed on this reaction by manipulating reaction conditions, yielding information concerning both enzyme mechanism and the identity of specific proteins (for example C.F. Fox and E.P. Kennedy (1965) Proc. Natl. Acad. Sci. u.s. 54, 891-899) and R.E. McCarty and J. Fagan (1973) Biochemistry 12, 1503-1507). We have examined the effects of MalNEt on the active accumulation of nine amino acids by Escherichia coli strains ML 308-225 and DL 54. Whole cells have been used in order that transport systems both dependent on and independent of periplasmic binding proteins could be studied under various conditions of energy supply for transport. Our results suggest that the systems transporting ornithine, phenylalanine and proline are those most likely to undergo inactivation by direct reaction of MalNEt with the transport apparatus, rather than merely via side effects such as interruption of their energy supply. The inhibition of proline transport is specifically enhanced by the presence of proline, competitive inhibitors of proline transport, or carbonylcyanide p-trifluoromethyoxyphenylhydrazone during MalNEt treatment. The other eight systems tested showed no analogous effects. 相似文献