首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the mechanism of low levels of full length and truncated apoB in individuals heterozygous for apoB truncation, a non-sense mutation was introduced in one of the three alleles of apob gene of HepG2 cells by homologous recombination. Despite very low levels of apoB-82 (1-2%) in the media, a prominent N-terminal apoB protein of 85 kDa (apoB-15) was secreted that fractionated at d > 1.065 in density gradient ultracentrifugation. The mechanism of production of this short protein was studied by 35S-methionine pulse-chase experiment. Oleate prevented presecretory degradation of apoB-100 in the cell and resulted in increased secretion of newly synthesized apoB-100 with decreases in the apoB-15, suggesting that rescue of pre-secretary intracellular degradation of apoB restricted the production and secretion of apoB-15. Further investigation on the degradation of transmembrane forms of apoB, in the presence and absence of a cysteine protease inhibitor, N-acetyl-leucyl-leucyl-norleucinal (ALLN), showed appearance of detectable levels of newly synthesized apoB-82 in the cell and the media together with increased apoB-100 secretion, and reduction in the secretion of apoB-15. Compared to ER membrane, the levels of apoB were higher in the luminal content, and presence of both oleate and ALLN had additive effect on apoB secretion. These results suggest that the presence of improper folding of apoB during translocation led to the cleavage of both apoB-100 and apoB-82 by ALLN-sensitive protease and generation of 85 kDa N-terminal fragment of apoB.  相似文献   

2.
3.
4.
Nonphysiological truncations of apolipoprotein (apo) B-100 cause familial hypobetalipoproteinemia (FHBL) in humans and mice. An elucidation of the mechanisms underlying the FHBL phenotypes may provide valuable information on the metabolism of apo B-containing lipoproteins and the structure-function relationship of apo B. To generate a faithful mouse model of human FHBL, a subtle mutation was introduced into the mouse apo B gene by targeting embryonic stem cells using homologous recombination followed by removal of the selection marker gene by Cre-loxP-mediated site-specific recombination. The engineered mice bear a premature stop codon at residue 1767 and a 42-base pair loxP inserted into intron 24 of the apo B gene, thus closely resembling the apo B-38.9-producing mutation in humans. Apo B-38.9 was the sole apo B protein in homozygote (apob(38.9/38.9)) plasma. In heterozygotes (apob(+/)(38. 9)), apo B-100 and apo B-48 were reduced by 75 and 40%, respectively, and apo B-38.9 represented 20% of total circulating apo B. Hepatic apo B-38.9 mRNA levels were reduced by 40%. In cultured apob(+/)(38. 9) hepatocytes, apo B-100 was produced in trace quantities, and the synthesis rate of apo B-38.9 relative to apo B-48 was reduced by 40%. However, almost equimolar amounts of apo B-38.9 and apo B-48 were secreted into the media. Pulse-chase studies revealed that apo B-38. 9 was secreted at a faster rate and more efficiently than apoB-48. Nevertheless, both apob(+/)(38.9) and apob(38.9/38.9) mice had reduced hepatic triglyceride secretion rates and fatty livers. Thus, low mRNA levels or defective secretion of apo B-38.9 may not be responsible for the FHBL phenotypes caused by the apo B-38.9 mutation. Rather, a reduced capacity of apo B-38.9 for triglyceride transport may account for the fatty livers in these mice.  相似文献   

5.
6.
Apolipoprotein (apo) B-100, an essential protein for the assembly and secretion of very low density lipoproteins depends on lipid binding (lipidation) for its secretion. Seven of its 8 disulfides are clustered within the N-terminal 21%. The role of these disulfides in the secretion of lipidated or unlipidated truncated forms of apoB was studied in C127 cells expressing apoB-17, apoB-29, or apoB-41. These cells do not express microsomal triglyceride transfer protein yet secrete apoB-41 on triacylglycerol-rich lipoproteins while apoB-29 and apoB-17 are secreted with little or no lipid, respectively. Dithiothreitol utilized in pulse-chase studies prevented the cotranslational formation of disulfides and when added posttranslationally reduced native disulfides. As a result, the secretion of reduced apoB forms was blocked and they were retained in the cells. Reduced apoB polypeptides were rescued following removal of dithiothreitol, as they underwent post-translational disulfide bonding, attained their mature form, and were subsequently secreted. Together the data suggest that in C127 cells the formation of native disulfides is critical for the folding and secretion of apoB independent of its length, its requirement for lipidation or microsomal triglyceride transfer protein expression. Therefore, these cells provide an appropriate model to study the folding of apoB in great detail.  相似文献   

7.
Studies of truncated apoB peptides in human subjects with familial hypobetalipoproteinemia, as well as of puromycin-generated spectra of nascent apoB peptides in rat and hamster liver, suggest that a minimum size is required for N-terminal fragments of apoB to be efficiently assembled into full-sized VLDL. We report here results of experiments undertaken to examine this phenomenon in greater detail by expressing individual carboxyl-truncated human apoB constructs in McArdle cells. Thus, apoB-29, -32, -37, -42, -47, -53, -70 and full length apoB-100 were transiently expressed in rat McA-RH7777 hepatoma cells, or human apoB-31 and apoB-53 were stably expressed in the same cells, and the secreted VLDL particles were characterized by kinetic gradient ultracentrifugal flotation. Calibration with rat plasma VLDL subfractions showed that about 90 and 50%, respectively, of lipoprotein particles containing endogenous rat B-100 and B-48 floated between fractions 2;-8 of the 11-fraction gradient. This corresponds to the normal VLDL diameter range of about 47 to 28 nm, with the remaining half of rat B-48 recovered as HDL particles in the 1.1 g/ml range. In contrast, regardless of their size, only 2;-5% of any of the truncated human apoB peptides expressed in these cells was recovered in the VLDL region of the gradient. The remaining 95+% of the lipoproteins were found as high density particles; as previously found in other systems the densities of the latter were inversely related to their peptide chain-length. Furthermore, transiently expressed full-length human apoB-100 was inefficiently secreted as VLDL by these cells, with the remainder appearing as LDL-sized particles. Thus, although we showed that McA-RH7777 cells secreted endogenous rat apoB as normal-sized VLDL, we found them unsuitable for our original purpose of using human apoB fragments to further define effects of apoB size on VLDL assembly. These cells appeared unable to efficiently use any size of human apoB for that process. Pulse-labeled untransfected McA-RH7777 cells chased in the presence of puromycin did, however, show a sharp decline in VLDL assembly efficiency for endogenous nascent rat apoB peptides shorter than B-48, similar to that originally found in normal rat liver.  相似文献   

8.
9.
10.
The ATPase associated with various cellular activities (AAA-ATPase) p97 (p97) has been implicated in the retrotranslocation of target proteins for delivery to the cytosolic proteasome during endoplasmic reticulum-associated degradation (ERAD). Apolipoprotein B-100 (apoB-100) is an ERAD substrate in liver cells, including the human hepatoma, HepG2. We studied the potential role of p97 in the ERAD of apoB-100 in HepG2 cells using cell permeabilization, coimmunoprecipitation, and gene silencing. Degradation was abolished when HepG2 cytosol was removed by digitonin permeabilization, and treatment of intact cells with the proteasome inhibitor MG132 caused accumulation of ubiquitinated apoB protein in the cytosol. Cross-linking of intact cells with the thiol-cleavable agent dithiobis(succinimidylpropionate) (DSP), as well as nondenaturing immunoprecipitation, demonstrated an interaction between p97 and intracellular apoB. Small interfering ribonucleic acid (siRNA)-mediated reduction of p97 protein increased the intracellular levels of newly synthesized apoB-100, predominantly because of a decrease in the turnover of newly synthesized apoB-100 protein. However, although the posttranslational degradation of newly synthesized apoB-100 was delayed by p97 knockdown, secretion of apoB-100 was not affected. Knockdown of p97 also impaired the release of apoB-100 and polyubiquitinated apoB into the cytosol. In summary, our results suggest that retrotranslocation and proteasomal degradation of apoB-100 can be dissociated in HepG2 cells, and that the AAA-ATPase p97 is involved in the removal of full-length apoB from the biosynthetic pathway to the cytosolic proteasome.  相似文献   

11.
The aim of this study was to investigate the direct effects of growth hormone (GH) on production and secretion of apolipoprotein B (apoB)-containing lipoproteins from hepatocytes. Bovine GH (5-500 ng/ml) was given for 1 or 3 days to rat hepatocytes cultured on laminin-rich matrigel in serum-free medium. The effects of GH were compared with those of 3 nM insulin and 500 microM oleic acid. GH increased the editing of apoB mRNA, and the proportion of newly synthesized apoB-48 (of total apoB) in the cells and secreted into the medium changed in parallel. GH increased total secretion of apoB-48 (+30%) and apoB-48 in very low density lipoproteins (VLDL) more than twofold. Total apoB-100 secretion decreased 63%, but apoB-100-VLDL secretion was unaffected by GH. Pulse-chase studies indicated that GH increased intracellular early degradation of apoB-100 but not apoB-48. GH had no effect on apoB mRNA or LDL receptor mRNA levels. The triglyceride synthesis, the mass of triglycerides in the cells, and the VLDL fraction of the medium increased after GH incubation. Three days of insulin incubation had effects similar to those of GH. Combined incubation with oleic acid and GH had additive effects on apoB mRNA editing and apoB-48-VLDL secretion. In summary, GH has direct effects on production and secretion of apoB-containing lipoproteins, which may add to the effects of hyperinsulinemia and increased flux of fatty acids to the liver during GH treatment in vivo.  相似文献   

12.
Familial hypobetalipoproteinemia, a syndrome associated with low plasma cholesterol levels, can be caused by apoB gene mutations. We identified a healthy 42-year-old man whose total plasma cholesterol level was 80 mg/dl. His plasma very low density lipoprotein (VLDL) contained a unique truncated apoB species, apoB-83, in addition to the normal B apolipoproteins, apoB-100 and apoB-48. Virtually no apoB-83 was detectable in his low density lipoprotein (LDL). From the subject's kindred, we identified nine other hypocholesterolemic subjects whose VLDL contained apoB-83. A tendency for cholelithiasis was noted in the apoB-83 heterozygotes, particularly in the older individuals. From the apparent size of apoB-83 on SDS-polyacrylamide gels and its reactivity with apoB-specific monoclonal antibodies, we estimated that it would contain approximately 3700-3800 amino acids. DNA sequencing of apoB genomic clones from two affected individuals revealed that apoB-83 was caused by a C----A transversion in exon 26 of the apoB gene (apoB cDNA nucleotide 11458). This mutation converts Ser-3750 (TCA) into a premature stop codon (TAA) and creates a unique MseI restriction endonuclease site. Thus, a single nucleotide transversion in the apoB gene results in a unique truncated apoB species, apoB-83, and the clinical syndrome of familial hypobetalipoproteinemia.  相似文献   

13.
In vitro studies have shown that the binding site for microsomal triglyceride transfer protein (MTP) is within the first 17% of apoB (apoB-17). Expression of apoB-48 in McArdle cells decreases endogenous lipoprotein production; however, overexpression of human apoB in transgenic mice does not decrease endogenous mouse apoB expression. To assess this inconsistency, adenoviruses expressing human apoB-17 (AdB17) or apoB-17-beta (which contains apoB-17 plus a small lipid-binding beta-sheet region of apoB, AdB-17beta) were produced. Hepatoma cells were infected with AdB17 or AdB17-beta with AdLacZ, an adenovirus expressing beta-galactosidase, as a control. Overexpression of apoB-17 and apoB-17-beta in hepatoma cells to levels 2- to 3-fold greater than that of endogenous apoB did not alter endogenous apoB production. This was also true in the presence of oleic acid and N-acetyl-leucyl-leucyl-norleucinal. High levels of apoB-17 or beta-galactosidase expression reduced apoB-100 production; however, control protein production was also reduced. To assess the effects of apoB-17 expression in vivo, mice of three different strains were injected with AdB17. Two days after injection, plasma apoB-17 was approximately 24 times the amount of endogenous apoB in the C57BL/6 mice, 2 times the apoB-100 in human apoB transgenic mice, and 4 times the apoB-48 in apoE knockout mice. Overexpression of apoB-17 did not decrease apoB-100 or apoB-48 concentrations in mouse plasma as assessed by Western blot analysis. These results demonstrate that although the apoB-17 binds to MTP in vitro, it does not alter endogenous apoB expression in mice or in hepatoma cells.  相似文献   

14.
15.
Apolipoprotein B (apoB)-48 contains a region termed the beta1 domain that is predicted to be composed of extensive amphipathic beta-strands. Analysis of truncated apoB variants revealed that sequences between the carboxyl termini of apoB-37 and apoB-42 governed the secretion efficiency and intracellular stability of apoB. Although apoB-37, apoB-34, and apoB-29 were stable and secreted efficiently, apoB-42 and apoB-100 were secreted poorly and were degraded by an acetyl-leucyl-leucyl-norleucinal (ALLN)-sensitive pathway. Amino acid sequence analysis suggested that a segment between the carboxyl termini of apoB-38 and apoB-42 was 63% homologous to fatty acid binding proteins (FABPs), which contain orthogonal beta-sheets. To test the hypothesis that sequences from the beta1 domain are involved in apoB degradation, fusion proteins were created that contained apoB-29 linked to fragments derived from the beta1 domain of apoB or to liver FABP. Fusion proteins containing the beta1 domain segments apoB-34-42 or apoB-37-42 were degraded rapidly, whereas other fusion proteins were stable and secreted efficiently. Degradation was ALLN-sensitive, and the apoB-34-42 segment increased the association of the apoB protein with the cytosolic surface of the microsomal membrane. Our data suggest that the presence of specific sequences in the beta1 domain of human apoB increases degradation by promoting the cytosolic exposure of the protein, although not all regions of the beta1 domain are functionally equivalent.  相似文献   

16.
17.
18.
Physiological concentrations of oleate stimulate apolipoprotein (apo) B-containing lipoprotein secretion from HepG2 cells without increasing apoB mRNA levels. The purpose of this study was to determine whether oleate acts by increasing translation of apoB mRNA or through posttranslational effects on the apoB protein. To address the mechanism of oleate-stimulated secretion of apoB, a series of carboxyl terminally truncated apoB constructs was made. Each contained the SV40 early promoter, the apoB 5'-untranslated region, and SV40 polyadenylation signals. Any difference in the response to oleate between endogenous apoB and the proteins encoded by the constructs or between the constructs themselves should thus depend on the protein sequence. Stable transformants were established for each of the constructs in the rat hepatoma cell line McArdle-RH7777. The effect of oleate on secretion of the apoB protein products was determined by labeling with [35S]methionine, immunoprecipitation, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Carboxyl-terminal truncation of apoB41 resulted in a loss of the ability of apoB secretion to respond to oleate. Ultracentrifugation of secreted proteins on continuous CsCl gradients from 1.0-1.4 g/ml revealed that this correlated with a decrease in the ability of apoB to be recovered as a buoyant lipoprotein particle. Addition of oleate decreased the densities at which the short forms of apoB secreted as lipoproteins were recovered. Pulse-chase analysis of the secretion of apoB100 and of the truncated proteins revealed that they all underwent rapid posttranslational intracellular degradation. We conclude that oleate has no effect on the translation of apoB mRNA but promotes the secretion of apoB-containing lipoproteins by reducing presecretory degradation of those forms of apoB that can produce buoyant lipoproteins.  相似文献   

19.
20.
Insulin inhibition of apolipoprotein B (apoB) secretion by primary cultures of rat hepatocytes was investigated in pulse-chase experiments using [35S]methionine as label. Radioactivity incorporation into apoBH and apoBL, the higher and lower molecular weight forms, was assessed after immunoprecipitation of detergent-solubilized cells and media and separation of the apoB forms using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Hepatocyte monolayers were incubated for 12-14 h in medium with and without an inhibitory concentration of insulin. Cells were then incubated for 10 min with label, and, after differing periods of chase with unlabeled methionine, cellular medium and media labeled apoB were analyzed; greater than 90% of labeled apoB was present in cells at 10 and 20 min after pulse, and labeled apoB did not appear in the medium until 40 min of chase. Insulin treatment inhibited the incorporation of label into total apoB by 48%, into apoBH by 62%, and into apoBL by 40% relative to other cellular proteins. Insulin treatment favored the more rapid disappearance of labeled cellular apoBH with an intra-cellular retention half-time of 50 min (initial half-life of decay, t1/2 = 25 min) compared with 85 min in control (t1/2 = 60 min). Intracellular retention half-times of labeled apoBL were similar in control and insulin-treated hepatocytes and ranged from 80 to 100 min. After 180 min of chase, 44% of labeled apoBL in control and 32% in insulin-treated hepatocytes remained cell associated. Recovery studies indicated that insulin stimulated the degradation of 45 and 27% of newly synthesized apoBH and apoBL, respectively. When hepatocyte monolayers were continuously labeled with [35S]methionine and then incubated in chase medium with and without insulin, labeled apoBH was secreted rapidly, reaching a plateau by 1 h of chase, whereas labeled apoBL was secreted linearly over 3-5 h of chase. Insulin inhibited the secretion of immunoassayable apoB but not labeled apoB. Results demonstrate that 1) insulin inhibits synthesis of apoB from [35S]methionine, 2) insulin stimulates degradation of freshly translated apoB favoring apoBH over apoBL, and 3) an intracellular pool of apoB, primarily apoBL, exists that is largely unaffected by insulin. Overall, insulin action in primary hepatocyte cultures reduces the secretion of freshly synthesized apoB and favors secretion of preformed apoB enriched in apoBL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号