共查询到13条相似文献,搜索用时 15 毫秒
1.
Takeru Hachiro Takaharu Yamamoto Kenji Nakano Kazuma Tanaka 《The Journal of biological chemistry》2013,288(5):3594-3608
The type 4 P-type ATPases are flippases that generate phospholipid asymmetry in membranes. In budding yeast, heteromeric flippases, including Lem3p-Dnf1p and Lem3p-Dnf2p, translocate phospholipids to the cytoplasmic leaflet of membranes. Here, we report that Lem3p-Dnf1/2p are involved in transport of the tryptophan permease Tat2p to the plasma membrane. The lem3Δ mutant exhibited a tryptophan requirement due to the mislocalization of Tat2p to intracellular membranes. Tat2p was relocalized to the plasma membrane when trans-Golgi network (TGN)-to-endosome transport was inhibited. Inhibition of ubiquitination by mutations in ubiquitination machinery also rerouted Tat2p to the plasma membrane. Lem3p-Dnf1/2p are localized to endosomal/TGN membranes in addition to the plasma membrane. Endocytosis mutants, in which Lem3p-Dnf1/2p are sequestered to the plasma membrane, also exhibited the ubiquitination-dependent missorting of Tat2p. These results suggest that Tat2p is ubiquitinated at the TGN and missorted to the vacuolar pathway in the lem3Δ mutant. The NH2-terminal cytoplasmic region of Tat2p containing ubiquitination acceptor lysines interacted with liposomes containing acidic phospholipids, including phosphatidylserine. This interaction was abrogated by alanine substitution mutations in the basic amino acids downstream of the ubiquitination sites. Interestingly, a mutant Tat2p containing these substitutions was missorted in a ubiquitination-dependent manner. We propose the following model based on these results; Tat2p is not ubiquitinated when the NH2-terminal region is bound to membrane phospholipids, but if it dissociates from the membrane due to a low level of phosphatidylserine caused by perturbation of phospholipid asymmetry in the lem3Δ mutant, Tat2p is ubiquitinated and then transported from the TGN to the vacuole. 相似文献
2.
Chen S Wang J Muthusamy BP Liu K Zare S Andersen RJ Graham TR 《Traffic (Copenhagen, Denmark)》2006,7(11):1503-1517
Drs2p, a P-type adenosine triphosphatase required for a phosphatidylserine (PS) flippase activity in the yeast trans Golgi network (TGN), was first implicated in protein trafficking by a screen for mutations synthetically lethal with arf1 (swa). Here, we show that SWA4 is allelic to CDC50, encoding a membrane protein previously shown to chaperone Drs2p from the endoplasmic reticulum to the Golgi complex. We find that cdc50Delta exhibits the same clathrin-deficient phenotypes as drs2Delta, including delayed transport of carboxypeptidase Y to the vacuole, mislocalization of resident TGN enzymes and the accumulation of aberrant membrane structures. These trafficking defects precede appearance of cell polarity defects in cdc50Delta, suggesting that the latter are a secondary consequence of disrupting Golgi function. Involvement of Drs2p-Cdc50p in PS translocation suggests a role in restricting PS to the cytosolic leaflet of the Golgi and plasma membrane. Annexin V binding and papuamide B hypersensitivity indicate that drs2Delta or cdc50Delta causes a loss of plasma membrane PS asymmetry. However, clathrin and other endocytosis null mutants also exhibit a comparable loss of PS asymmetry, and studies with drs2-ts and clathrin (chc1-ts) conditional mutants suggest that loss of plasma membrane asymmetry is a secondary consequence of disrupting protein trafficking. 相似文献
3.
Spf1p is a P-type ATPase that is mainly localized to the endoplasmic reticulum (ER) in Saccharomyces cerevisiae. The protein is involved in the maintenance of ion homeostasis in the ER. To investigate the intracellular role of Spf1p in more detail, we performed a genetic screen for mutations that lead to synthetic lethality in combination with a disruption of SPF1; the mutations identified have been termed lws (for lethal with spf1) mutations. Mutant alleles of five LWS genes (MDM39, RIC1, LAS21, TUP1 and BTS1) were recovered. The identification of these genes provides clues to the physiological relationships between Spf1p function and the secretory pathway. Among the five genes identified, MDM39 encodes a membrane protein that is similar to the protein CHD5/WRB, which is involved in the pathogenesis of Down syndrome-associated congenital heart disease in humans. We localized Mdm39p to the ER. The mdm39 mutant exhibited defects in glycosylation, cell wall organization and the unfolded protein response. It also showed calcium-related phenotypes and synthetic lethal interactions with deletion mutations in other LWS genes. Our findings imply a homeostatic role for Mdm39p, which may be related to the regulation of calcium ion fluxes in the ER, and is indispensable for mutants that lack Spf1p. 相似文献
4.
Mutational analysis of the putative effector domain of the GTP-binding Ypt1 protein in yeast suggests specific regulation by a novel GAP activity. 总被引:10,自引:6,他引:10 下载免费PDF全文
Ypt1p of Saccharomyces cerevisiae is a ras-related GTP-binding protein that fulfils an essential function in intracellular protein transport between the endoplasmic reticulum (ER) and the Golgi complex. Ypt proteins from yeasts and mammals that share an identical sequence in the region analogous to the ras effector domain are functionally interchangeable. We analyzed the function of the putative effector domain of yeast Ypt1p (amino acids 37-45) using site-directed mutagenesis and gene replacement. Four out of six point mutations leading to single amino acid substitutions (Y37F, S39A, T40S and V43E) did not cause any particular phenotype. ypt1(I41M) mutants were inviable whereas ypt1(D44N) mutant cells were temperature sensitive at 37 degrees C and accumulated core-glycosylated invertase at the nonpermissive temperature. This mutant also accumulated ER and small vesicles both at 25 degrees C and 37 degrees C. From porcine liver we identified and partially purified a GTPase-activating protein (yptGAP) that is similarly active with mouse ypt1p/rab1p and yeast Ypt1p but is inactive with H-ras protein as a substrate. Although none of the yeast ypt1 mutant proteins were significantly impaired in their ability to bind GTP, purified ypt1(D44N)p responded only partially and ypt1(I41M)p did not respond at all, to yptGAP. Thus we suggest that analogous to rasGAP/H-ras p21 interaction in mammalian cells, yptGAP is an intracellular target of Ypt1p, interacting with the effector domain and regulating its GTPase activity, and that this interaction is required for the functioning of yeast Ypt1p in intracellular protein transport. 相似文献
5.
Mutational analysis of the complement receptor type 2 (CR2/CD21)-C3d interaction reveals a putative charged SCR1 binding site for C3d 总被引:4,自引:0,他引:4
Hannan JP Young KA Guthridge JM Asokan R Szakonyi G Chen XS Holers VM 《Journal of molecular biology》2005,346(3):845-858
We have characterized the interaction between the first two short consensus repeats (SCR1-2) of complement receptor type 2 (CR2, CD21) and C3d in solution, by utilising the available crystal structures of free and C3d-bound forms of CR2 to create a series of informative mutations targeting specific areas of the CR2-C3d complex. Wild-type and mutant forms of CR2 were expressed on the surface of K562 erythroleukemia cells and their binding ability assessed using C3dg-biotin tetramers complexed to fluorochrome conjugated streptavidin and measured by flow cytometry. Mutations directed at the SCR2-C3d interface (R83A, R83E, G84Y) were found to strongly disrupt C3dg binding, supporting the conclusion that the SCR2 interface reflected in the crystal structure is correct. Previous epitope and peptide mapping studies have also indicated that the PILN11GR13IS sequence of the first inter-cysteine region of SCR1 is essential for the binding of iC3b. Mutations targeting residues within or in close spatial proximity to this area (N11A, N11E, R13A, R13E, Y16A, S32A, S32E), and a number of other positively charged residues located primarily on a contiguous face of SCR1 (R28A, R28E, R36A, R36E, K41A, K41E, K50A, K50E, K57A, K57E, K67A, K67E), have allowed us to reassess those regions on SCR1 that are essential for CR2-C3d binding. The nature of this interaction and the possibility of a direct SCR1-C3d association are discussed extensively. Finally, a D52N mutant was constructed introducing an N-glycosylation sequence at an area central to the CR2 dimer interface. This mutation was designed to disrupt the CR2-C3d interaction, either directly through steric inhibition, or indirectly through disruption of a physiological dimer. However, no difference in C3dg binding relative to wild-type CR2 could be observed for this mutant, suggesting that the dimer may only be found in the crystal form of CR2. 相似文献
6.
Finnigan GC Cronan GE Park HJ Srinivasan S Quiocho FA Stevens TH 《The Journal of biological chemistry》2012,287(23):19487-19500
Subunit a of the yeast vacuolar-type, proton-translocating ATPase enzyme complex (V-ATPase) is responsible for both proton translocation and subcellular localization of this highly conserved molecular machine. Inclusion of the Vph1p isoform causes the V-ATPase complex to traffic to the vacuolar membrane, whereas incorporation of Stv1p causes continued cycling between the trans-Golgi and endosome. We previously demonstrated that this targeting information is contained within the cytosolic, N-terminal portion of V-ATPase subunit a (Stv1p). To identify residues responsible for sorting of the Golgi isoform of the V-ATPase, a random mutagenesis was performed on the N terminus of Stv1p. Subsequent characterization of mutant alleles led to the identification of a short peptide sequence, W(83)KY, that is necessary for proper Stv1p localization. Based on three-dimensional homology modeling to the Meiothermus ruber subunit I, we propose a structural model of the intact Stv1p-containing V-ATPase demonstrating the accessibility of the W(83)KY sequence to retrograde sorting machinery. Finally, we characterized the sorting signal within the context of a reconstructed Stv1p ancestor (Anc.Stv1). This evolutionary intermediate includes an endogenous W(83)KY sorting motif and is sufficient to compete with sorting of the native yeast Stv1p V-ATPase isoform. These data define a novel sorting signal that is both necessary and sufficient for trafficking of the V-ATPase within the Golgi/endosomal network. 相似文献
7.
The yeast “remodels the structure of chromatin” (RSC) complex is a multi-subunit “switching deficient/sucrose non-fermenting” type ATP-dependent nucleosome remodeler, with human counterparts that are well-established tumor suppressors. Using temperature-inducible degron fusions of all the essential RSC subunits, we set out to map RSC requirement as a function of the mitotic cell cycle. We found that RSC executes essential functions during G1, G2, and mitosis. Remarkably, we observed a doubling of chromosome complements when degron alleles of the RSC subunit SFH1, the yeast hSNF5 tumor suppressor ortholog, and RSC3 were combined. The requirement for simultaneous deregulation of SFH1 and RSC3 to induce these ploidy shifts was eliminated by knockout of the S-phase cyclin CLB5 and by transient depletion of replication origin licensing factor Cdc6p. Further, combination of the degron alleles of SFH1 and RSC3, with deletion alleles of each of the nine Cdc28/Cdk1-associated cyclins, revealed a strong and specific genetic interaction between the S-phase cyclin genes CLB5 and RSC3, indicating a role for Rsc3p in proper S-phase regulation. Taken together, our results implicate RSC in regulation of the G1/S-phase transition and establish a hitherto unanticipated role for RSC-mediated chromatin remodeling in ploidy maintenance. 相似文献
8.
9.
10.
E. Leberer T. Leeuw D. Harcus D. Y. Thomas J. Chenevert I. Herskowitz 《Molecular & general genetics : MGG》1996,252(5):608-621
The pheromone signal in the yeastSaccharomyces cerevisiae is transmitted by the and subunits of the mating response G-protein. TheSTE20 gene, encoding a protein kinase required for pheromone signal transduction, has recently been identified in a genetic screen for high-gene-dosage suppressors of a partly defective G mutation. The same genetic screen identifiedBEM1, which encodes an SH3 domain protein required for polarized morphogenesis in response to pheromone, and a novel gene, designatedMDG1 (multicopy suppressor ofdefectiveG-protein). TheMDG1 gene was independently isolated in a search for multicopy suppressors of abem1 mutation. TheMDG1 gene encodes a predicted hydrophilic protein of 364 amino acids with a molecular weight of 41 kDa that has no homology with known proteins. A fusion of Mdg1p with the green fluorescent protein fromAequorea victoria localizes to the plasma membrane, suggesting that Mdg1p is an extrinsically bound membrane protein. Deletion ofMDG1 causes sterility in cells in which the wild-type G has been replaced by partly defective G derivatives but does not cause any other obvious phenotypes. The mating defect of cells deleted forSTE20 is partially suppressed by multiple copies ofBEM1 andCDC42, which encodes a small GTP-binding protein that binds to Ste20p and is necessary for the development of cell polarity. Elevated levels ofSTE20 andBEM1 are capable of suppressing a temperature-sensitive mutation inCDC42. This complex network of genetic interactions points to a role for Bem1p and Mdg1p in G-protein mediated signal transduction and indicates a functional linkage between components of the pheromone signalling pathway and regulators of cell polarity during yeast mating. 相似文献
11.
Maria Elena Bottazzi Xiaoyun Zhu Ralph M. B?hmer Richard K. Assoian 《The Journal of cell biology》1999,146(6):1255-1264
We have examined the regulation of p21(cip1) by soluble mitogens and cell anchorage as well as the relationship between the expression of p21(cip1) and activation of the ERK subfamily of MAP kinases. We find that p21(cip1) expression in G1 phase can be divided into two discrete phases: an initial induction that requires growth factors and the activation of ERK, and then a subsequent decline that is enhanced by cell anchorage in an ERK-independent manner. In contrast to the induction of cyclin D1, the induction of p21(cip1) is mediated by transient ERK activity. Comparative studies with wild-type and p21(cip1)-null fibroblasts indicate that adhesion-dependent regulation of p21(cip1) is important for proper control of cyclin E-cdk2 activity. These data lead to a model in which mitogens and anchorage act in a parallel fashion to regulate G1 phase expression of p21(cip1). They also show that (a) growth factors and growth factor/extracellular matrix cooperation can have different roles in regulating G1 phase ERK activity and (b) both transient and sustained ERK signals have functionally significant roles in controlling cell cycle progression through G1 phase. 相似文献
12.
Kasper R?jkj?r Andersen Anette Thyssen Jonstrup Lan Bich Van Ditlev Egeskov Brodersen 《RNA (New York, N.Y.)》2009,15(5):850-861
In eukaryotic organisms, initiation of mRNA turnover is controlled by progressive shortening of the poly-A tail, a process involving the mega-Dalton Ccr4-Not complex and its two associated 3′-5′ exonucleases, Ccr4p and Pop2p (Caf1p). RNA degradation by the 3′-5′ DEDDh exonuclease, Pop2p, is governed by the classical two metal ion mechanism traditionally assumed to be dependent on Mg2+ ions bound in the active site. Here, we show biochemically and structurally that fission yeast (Schizosaccharomyces pombe) Pop2p prefers Mn2+ and Zn2+ over Mg2+ at the concentrations of the ions found inside cells and that the identity of the ions in the active site affects the activity of the enzyme. Ion replacement experiments further suggest that mRNA deadenylation could be subtly regulated by local Zn2+ levels in the cell. Finally, we use site-directed mutagenesis to propose a mechanistic model for the basis of the preference for poly-A sequences exhibited by the Pop2p-type deadenylases as well as their distributive enzymatic behavior. 相似文献
13.
G. Girija Lakshmi Sushmita GhoshGabriel P. Jones Roshni ParikhBridgette A. Rawlins Jack C. Vaughn 《Gene》2012
Alternative splicing greatly enhances the diversity of proteins encoded by eukaryotic genomes, and is also important in gene expression control. In contrast to the great depth of knowledge as to molecular mechanisms in the splicing pathway itself, relatively little is known about the regulatory events behind this process. The 5′-UTR and 3′-UTR in pre-mRNAs play a variety of roles in controlling eukaryotic gene expression, including translational modulation, and nearly 4000 of the roughly 14,000 protein coding genes in Drosophila contain introns of unknown functional significance in their 5′-UTR. Here we report the results of an RNA electrophoretic mobility shift analysis of Drosophila rnp-4f 5′-UTR intron 0 splicing regulatory proteins. The pre-mRNA potential regulatory element consists of an evolutionarily-conserved 177-nt stem-loop arising from pairing of intron 0 with part of adjacent exon 2. Incubation of in vitro transcribed probe with embryo protein extract is shown to result in two shifted RNA–protein bands, and protein extract from a dADAR null mutant fly line results in only one shifted band. A mutated stem-loop in which the conserved exon 2 primary sequence is changed but secondary structure maintained by introducing compensatory base changes results in diminished band shifts. To test the hypothesis that dADAR plays a role in intron splicing regulation in vivo, levels of unspliced rnp-4f mRNA in dADAR mutant were compared to wild-type via real-time qRT-PCR. The results show that during embryogenesis unspliced rnp-4f mRNA levels fall by up to 85% in the mutant, in support of the hypothesis. Taken together, these results demonstrate a novel role for dADAR protein in rnp-4f 5′-UTR alternative intron splicing regulation which is consistent with a previously proposed model. 相似文献