首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Roseobacter strain 27-4 has been isolated from a turbot larval rearing unit and is capable of reducing mortality in turbot egg yolk sac larvae. Here, we demonstrate that the supernatant of Roseobacter 27-4 is lethal to the larval pathogens Vibrio anguillarum and Vibrio splendidus in a buffer system and inhibited their growth in marine broth. Liquid chromatography (LC) with both UV spectral detection and high-resolution mass spectrometry (HR-MS) identified the known antibacterial compound thiotropocin or its closely related precursor tropodithietic acid in the bioactive fractions. Antibacterial activity correlated with the appearance of a brownish pigment and was only formed in marine broth under static growth conditions. A thick biofilm of multicellular star-shaped aggregated cells formed at the air-liquid interface under static growth conditions. Here, the bioactive compound was the base peak in the LC-UV chromatograms of the extracts where it constituted 15% of the total peak area. Aerated conditions results in 10-fold-higher cell yield, however, cultures were nonpigmented, did not produce antibacterial activity, and grew as single cells. Production of antibacterial compounds may be quorum regulated, and we identified the acylated homoserine lactone (3-hydroxy-decanoyl homoserine lactone) from cultures of Roseobacter 27-4 using LC-HR-MS. The signal molecule was primarily detected in stagnant cultures. Roseobacter 27-4 grew between 10 and 30°C but died rapidly at 37°C. Also, the antibacterial compounds was sensitive to heat and was inactivated at 37°C in less than 2 days and at 25°C in 8 days. Using Roseobacter 27-4 as a probiotic culture will require that is be established in stagnant or adhered conditions and, due to the temperature sensitivity of the active compound, constant production must be ensured.  相似文献   

2.
Bacteria inhibitory to fish larval pathogenic bacteria were isolated from two turbot larva rearing farms over a 1-year period. Samples were taken from the rearing site, e.g., tank walls, water, and feed for larvae, and bacteria with antagonistic activity against Vibrio anguillarum were isolated using a replica plating assay. Approximately 19,000 colonies were replica plated from marine agar plates, and 341 strains were isolated from colonies causing clearing zones in a layer of V. anguillarum. When tested in a well diffusion agar assay, 173 strains retained the antibacterial activity against V. anguillarum and Vibrio splendidus. Biochemical tests identified 132 strains as Roseobacter spp. and 31 as Vibrionaceae strains. Partial sequencing of the 16S rRNA gene of three strains confirmed the identification as Roseobacter gallaeciensis. Roseobacter spp. were especially isolated in the spring and early summer months. Subtyping of the 132 Roseobacter spp. strains by randomly amplified polymorphic DNA with two primers revealed that the strains formed a very homogeneous group. Hence, it appears that the same subtype was present at both fish farms and persisted during the 1-year survey. This indicates either a common, regular source of the subtype or the possibility that a particular subtype has established itself in some areas of the fish farm. Thirty-one antagonists were identified as Vibrio spp., and 18 of these were V. anguillarum but not serotype O1 or O2. Roseobacter spp. strains were, in particular, isolated from the larval tank walls, and it may be possible to establish an antagonistic, beneficial microflora in the rearing environment of turbot larvae and thereby limit survival of pathogenic bacteria.  相似文献   

3.
The purpose of the present study was to isolate marine culturable bacteria with antibacterial activity and hence a potential biotechnological use. Seawater samples (244) and 309 swab samples from biotic or abiotic surfaces were collected on a global Danish marine research expedition (Galathea 3). Total cell counts at the seawater surface were 5 × 105 to 106 cells/ml, of which 0.1–0.2% were culturable on dilute marine agar (20°C). Three percent of the colonies cultured from seawater inhibited Vibrio anguillarum, whereas a significantly higher proportion (13%) of colonies from inert or biotic surfaces was inhibitory. It was not possible to relate a specific kind of eukaryotic surface or a specific geographic location to a general high occurrence of antagonistic bacteria. Five hundred and nineteen strains representing all samples and geographic locations were identified on the basis of partial 16S rRNA gene sequence homology and belonged to three major groups: Vibrionaceae (309 strains), Pseudoalteromonas spp. (128 strains), and the Roseobacter clade (29 strains). Of the latter, 25 strains were identified as Ruegeria mobilis or pelagia. When re-testing against V. anguillarum, only 409 (79%) retained some level of inhibitory activity. Many strains, especially Pseudoalteromonas spp. and Ruegeria spp., also inhibited Staphylococcus aureus. The most pronounced antibacterial strains were pigmented Pseudoalteromonas strains and Ruegeria spp. The inhibitory, pigmented Pseudoalteromonas were predominantly isolated in warmer waters from swabs of live or inert surfaces. Ruegeria strains were isolated from all ocean areas except for Arctic and Antarctic waters and inhibitory activity caused by production of tropodithietic acid.  相似文献   

4.
Bacterial communities associated with marine algae are often dominated by members of the Roseobacter clade, and in the present study, we describe Roseobacter phenotypes that may provide this group of bacteria with selective advantages when colonizing this niche. Nine of 14 members of the Roseobacter clade, of which half were isolated from cultures of the dinoflagellate Pfiesteria piscicida, produced antibacterial compounds. Many non-Roseobacter marine bacteria were inhibited by sterile filtered supernatants of Silicibacter sp. TM1040 and Phaeobacter (formerly Roseobacter) strain 27-4, which had the highest production of antibacterial compound. In contrast, Roseobacter strains were susceptible only when exposed to concentrated compound. The production of antibacterial compound was influenced by the growth conditions, as production was most pronounced when bacteria were grown in liquid medium under static conditions. Under these conditions, Silicibacter sp. TM1040 cells attached to one another, forming rosettes, as has previously been reported for Phaeobacter 27-4. A spontaneous Phaeobacter 27-4 mutant unable to form rosettes was also defective in biofilm formation and the production of antibacterial compound, indicating a possible link between these phenotypes. Rosette formation was observed in 8 of 14 Roseobacter clade strains examined and was very pronounced under static growth in 5 of these strains. Attachment to surfaces and biofilm formation at the air-liquid interface by these five strains was greatly facilitated by growth conditions that favored rosette formation, and rosette-forming strains were 13 to 30 times more efficient in attaching to glass compared to strains under conditions where rosette formation was not pronounced. We hypothesize that the ability to produce antibacterial compounds that principally inhibit non-Roseobacter species, combined with an enhancement in biofilm formation, may give members of the Roseobacter clade a selective advantage and help to explain the dominance of members of this clade in association with marine algal microbiota.  相似文献   

5.
The purpose of the present study was to investigate the inhibition of Vibrio by Roseobacter in a combined liquid-surface system. Exposure of Vibrio anguillarum to surface-attached roseobacters (107 CFU/cm2) resulted in significant reduction or complete killing of the pathogen inoculated at 102 to 104 CFU/ml. The effect was likely associated with the production of tropodithietic acid (TDA), as a TDA-negative mutant did not affect survival or growth of V. anguillarum.Antagonistic interactions among marine bacteria are well documented, and secretion of antagonistic compounds is common among bacteria that colonize particles or surfaces (8, 13, 16, 21, 31). These marine bacteria may be interesting as sources for new antimicrobial drugs or as probiotic bacteria for aquaculture.Aquaculture is a rapidly growing sector, but outbreaks of bacterial diseases are a limiting factor and pose a threat, especially to young fish and invertebrates that cannot be vaccinated. Because regular or prophylactic administration of antibiotics must be avoided, probiotic bacteria are considered an alternative (9, 18, 34, 38, 39, 40). Several microorganisms have been able to reduce bacterial diseases in challenge trials with fish or fish larvae (14, 24, 25, 27, 33, 37, 39, 40). One example is Phaeobacter strain 27-4 (17), which inhibits Vibrio anguillarum and reduces mortality in turbot larvae (27). The antagonism of Phaeobacter 27-4 and the closely related Phaeobacter inhibens is due mainly to the sulfur-containing tropolone derivative tropodithietic acid (TDA) (2, 5), which is also produced by other Phaeobacter strains and Ruegeria mobilis (28). Phaeobacter and Ruegeria strains or their DNA has been commonly found in marine larva-rearing sites (6, 17, 28).Phaeobacter and Ruegeria (Alphaproteobacteria, Roseobacter clade) are efficient surface colonizers (7, 11, 31, 36). They are abundant in coastal and eutrophic zones and are often associated with algae (3, 7, 41). Surface-attached Phaeobacter bacteria may play an important role in determining the species composition of an emerging biofilm, as even low densities of attached Phaeobacter strain SK2.10 bacteria can prevent other marine organisms from colonizing solid surfaces (30, 32).In continuation of the previous research on roseobacters as aquaculture probiotics, the purpose of this study was to determine the antagonistic potential of Phaeobacter and Ruegeria against Vibrio anguillarum in liquid systems that mimic a larva-rearing environment. Since production of TDA in liquid marine broth appears to be highest when roseobacters form an air-liquid biofilm (5), we addressed whether they could be applied as biofilms on solid surfaces.  相似文献   

6.
The rearing environment of first-feeding turbot larvae, usually with high larvae densities and organic matter concentrations, may promote the growth of opportunistic pathogenic Vibrionaceae bacteria, compromising the survival of the larvae. The aim of this study was to assess the effectiveness of the biofilm-forming probiotic Phaeobacter 27-4 strain grown on a ceramic biofilter (probiofilter) in preventing Vibrio anguillarum infections in turbot larvae. In seawater with added microalgae and maintained under turbot larvae rearing conditions, the probiofilter reduced the total Vibrionaceae count and the concentration of V. anguillarum, which was undetectable after 144 h by real-time PCR. The probiofilter also improved the survival of larvae challenged with V. anguillarum, showing an accumulated mortality similar to that of uninfected larvae (35–40 %) and significantly (p?<?0.05) lower than that of infected larvae with no probiofilter (76 %) due to a decrease in the pathogen concentration and in total Vibrionaceae. Furthermore, the probiofilter improved seawater quality by decreasing turbidity. Phaeobacter 27-4 released from the probiofilters was able to survive in the seawater for at least 11 days. The bacterial diversity in the larvae, analysed by denaturing gradient gel electrophoresis, was low, as in the live prey (rotifers), and remained unchanged in the presence of V. anguillarum or the probiofilter; however, the probiofilter reduced the bacterial carrying capacity of the seawater in the tanks. Phaeobacter-grown biofilters can constantly inoculate probiotics into rearing tanks and are therefore potentially useful for bacterial control in both open and recirculating industrial units.  相似文献   

7.
Quorum sensing (QS) regulates Phaeobacter gallaeciensis antagonism in broth systems; however, we demonstrate here that QS is not important for antagonism in algal cultures. QS mutants reduced Vibrio anguillarum to the same extent as the wild type. Consequently, a combination of probiotic Phaeobacter and QS inhibitors is a feasible strategy for aquaculture disease control.  相似文献   

8.
The bioavailability and utilization of porphyrin-bound iron, specifically heme, by marine microorganisms have rarely been examined. This study used Ruegeria sp. strain TrichCH4B as a model organism to study heme acquisition by a member of the Roseobacter clade. Analogs of known heme transporter proteins were found within the Ruegeria sp. TrichCH4B genome. The identified heme uptake and utilization system appears to be functional, as the heme genes were upregulated under iron stress, the bacterium could grow on ferric-porphyrin complexes as the sole iron source, and internalization of 55 Fe from ferric protoporphyrin IX was observed. The potential ability to utilize heme in the Roseobacter clade appears to be common, as half of the isolates in the RoseoBase database were found to have a complete heme uptake system. A degenerate primer set was designed and successfully used to identify the putative heme oxygenase gene (hmus) in the roseobacter heme uptake system from diverse nonenriched marine environments. This study found that members of the Roseobacter clade are capable of utilizing heme as an iron source and that this capability may be present in all types of marine environments. The results of this study add a new perspective to the current picture of iron cycling in marine systems, whereby relatively refractory intracellular pools of heme-bound iron may be taken up quickly and directly reincorporated into living bacteria without previous degradation or the necessity of a siderophore intermediate.  相似文献   

9.
Sharifah EN  Eguchi M 《PloS one》2011,6(10):e26756

Background

Phytoplankton cultures are widely used in aquaculture for a variety of applications, especially as feed for fish larvae. Phytoplankton cultures are usually grown in outdoor tanks using natural seawater and contain probiotic or potentially pathogenic bacteria. Some Roseobacter clade isolates suppress growth of the fish pathogen Vibrio anguillarum. However, most published information concerns interactions between probiotic and pathogenic bacteria, and little information is available regarding the importance of phytoplankton in these interactions. The objectives of this study, therefore, were to identify probiotic Roseobacter clade members in phytoplankton cultures used for rearing fish larvae and to investigate their inhibitory activity towards bacterial fish pathogens in the presence of the phytoplankton Nannochloropsis oculata.

Methodology/Principal Findings

The fish pathogen V. anguillarum, was challenged with 6 Roseobacter clade isolates (Sulfitobacter sp. (2 strains), Thalassobius sp., Stappia sp., Rhodobacter sp., and Antarctobacter sp.) from phytoplankton cultures under 3 different nutritional conditions. In an organic nutrient-rich medium (VNSS), 6 Roseobacter clade isolates, as well as V. anguillarum, grew well (109 CFU/ml), even when cocultured. In contrast, in a phytoplankton culture medium (ESM) based on artificial seawater, coculture with the 6 isolates decreased the viability of V. anguillarum by approximately more than 10-fold. Excreted substances in media conditioned by growth of the phytoplankton N. oculata (NCF medium) resulted in the complete eradication of V. anguillarum when cocultured with the roseobacters. Autoclaved NCF had the same inhibitory effect. Furthermore, Sulfitobacter sp. much more efficiently incorporated 14C- photosynthetic metabolites (14C-EPM) excreted by N. oculata than did V. anguillarum.

Conclusion/Significance

Cocultures of a phytoplankton species and Roseobacter clade members exhibited a greater antibacterial effect against an important fish pathogen (V. anguillarum) than roseobacters alone. Thus, cooperation of N. oculata, and perhaps other phytoplankton species, with certain roseobacters might provide a powerful tool for eliminating fish pathogens from fish-rearing tanks.  相似文献   

10.
Metagenomic analyses of surface seawater reveal that genes for sulfur oxidation are widespread in bacterioplankton communities. However, little is known about the metabolic processes used to exploit the energy potentially gained from inorganic sulfur oxidation in oxic seawater. We therefore studied the sox gene system containing Roseobacter clade isolate Phaeobacter sp. strain MED193 in acetate minimal medium with and without thiosulfate. The addition of thiosulfate enhanced the bacterial growth yields up to 40% in this strain. Concomitantly, soxB and soxY gene expression increased about 8-fold with thiosulfate and remained 11-fold higher than that in controls through stationary phase. At stationary phase, thiosulfate stimulated protein synthesis and anaplerotic CO2 fixation rates up to 5- and 35-fold, respectively. Several genes involved in anaplerotic CO2 fixation (i.e., pyruvate carboxylase, propionyl coenzyme A [CoA], and crotonyl-CoA carboxylase) were highly expressed during active growth, coinciding with high CO2 fixation rates. The high expression of key genes in the ethylmalonyl-CoA pathway suggests that this is an important pathway for the utilization of two-carbon compounds in Phaeobacter sp. MED193. Overall, our findings imply that Roseobacter clade bacteria carrying sox genes can use their lithotrophic potential to gain additional energy from sulfur oxidation for both increasing their growth capacity and improving their long-term survival.  相似文献   

11.
A Gram-negative, strictly aerobic, non-flagellated and rod-shaped bacterial strain, designated MA-E2-3T, was isolated from an ascidian (Halocynthia roretzi) collected from the South Sea, South Korea. Strain MA-E2-3T was found to grow optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0–3.0 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain MA-E2-3T fell within the clade comprising Ruegeria species, clustering consistently with the type strain of Ruegeria halocynthiae, with which it exhibited 98.2 % sequence similarity. Sequence similarities to the type strains of the other recognized Ruegeria species were 94.7–97.7 %. Strain MA-E2-3T was found to contain Q-10 as the predominant ubiquinone and C18:1 ω7c as the predominant fatty acid. The major polar lipids of strain MA-E2-3T were identified as phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid. The DNA G+C content of strain MA-E2-3T was determined to be 58.0 mol%. Mean DNA–DNA relatedness values between strain MA-E2-3T and the type strains of four phylogenetically closely related Ruegeria species were in the range of 13–23 %. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain MA-E2-3T is separated from other Ruegeria species. On the basis of the data presented, strain MA-E2-3T (=KCTC 32450T = CECT 8411T) represents a novel species of the genus Ruegeria, for which the name Ruegeria meonggei sp. nov. is proposed.  相似文献   

12.
We have previously reported that some strains belonging to the marine Actinobacteria class, the Pseudoalteromonas genus, the Roseobacter clade, and the Photobacteriaceae and Vibrionaceae families produce both antibacterial and antivirulence compounds, and these organisms are interesting from an applied point of view as fish probiotics or as a source of pharmaceutical compounds. The application of either organisms or compounds requires that they do not cause any side effects, such as toxicity in eukaryotic organisms. The purpose of this study was to determine whether these bacteria or their compounds have any toxic side effects in the eukaryotic organisms Artemia sp. and Caenorhabditis elegans. Arthrobacter davidanieli WX-11, Pseudoalteromonas luteoviolacea S4060, P. piscicida S2049, P. rubra S2471, Photobacterium halotolerans S2753, and Vibrio coralliilyticus S2052 were lethal to either or both model eukaryotes. The toxicity of P. luteoviolacea S4060 could be related to the production of the antibacterial compound pentabromopseudilin, while the adverse effect observed in the presence of P. halotolerans S2753 and V. coralliilyticus S2052 could not be explained by the production of holomycin nor andrimid, the respective antibiotic compounds in these organisms. In contrast, the tropodithietic acid (TDA)-producing bacteria Phaeobacter inhibens DSM17395 and Ruegeria mobilis F1926 and TDA itself had no adverse effect on the target organisms. These results reaffirm TDA-producing Roseobacter bacteria as a promising group to be used as probiotics in aquaculture, whereas Actinobacteria, Pseudoalteromonas, Photobacteriaceae, and Vibrionaceae should be used with caution.  相似文献   

13.
Phaeobacter gallaeciensis, a member of the abundant marine Roseobacter clade, is known to be an effective colonizer of biotic and abiotic marine surfaces. Production of the antibiotic tropodithietic acid (TDA) makes P. gallaeciensis a strong antagonist of many bacteria, including fish and mollusc pathogens. In addition to TDA, several other secondary metabolites are produced, allowing the mutualistic bacterium to also act as an opportunistic pathogen. Here we provide the manually annotated genome sequences of the P. gallaeciensis strains DSM 17395 and 2.10, isolated at the Atlantic coast of north western Spain and near Sydney, Australia, respectively. Despite their isolation sites from the two different hemispheres, the genome comparison demonstrated a surprisingly high level of synteny (only 3% nucleotide dissimilarity and 88% and 93% shared genes). Minor differences in the genomes result from horizontal gene transfer and phage infection. Comparison of the P. gallaeciensis genomes with those of other roseobacters revealed unique genomic traits, including the production of iron-scavenging siderophores. Experiments supported the predicted capacity of both strains to grow on various algal osmolytes. Transposon mutagenesis was used to expand the current knowledge on the TDA biosynthesis pathway in strain DSM 17395. This first comparative genomic analysis of finished genomes of two closely related strains belonging to one species of the Roseobacter clade revealed features that provide competitive advantages and facilitate surface attachment and interaction with eukaryotic hosts.  相似文献   

14.
Aims:  To develop a SYBR Green quantitative real-time PCR protocol enabling detection and quantification of a fish probiotic and two turbot pathogenic Vibrio spp. in microcosms.
Methods and Results:  Phaeobacter 27-4, Vibrio anguillarum 90-11-287 and Vibrio splendidus DMC-1 were quantified as pure and mixed cultures and in presence of microalgae ( Isochrysis galbana ), rotifers ( Brachionus plicatilis ), Artemia nauplii or turbot ( Psetta maxima ) larvae by real-time PCR based on primers directed at genetic loci coding for antagonistic and virulence-related functions respectively. The optimized protocol was used to study bioencapsulation and maintenance of the probiont and pathogens in rotifers and for the detection and quantification of Phaeobacter and V. anguillarum in turbot larvae fed rotifers loaded with the different bacteria in a challenge trial.
Conclusions:  Our real-time PCR protocol is reproducible and specific. The method requires separate standard curve for each host organism and can be used to detect and quantify probiotic Phaeobacter and pathogenic Vibrio bioencapsulated in rotifers and in turbot larvae.
Significance and Impact of the Study:  Our method allows monitoring and quantification of a turbot larvae probiotic bacteria and turbot pathogenic vibrios in in vivo trials and will be useful tools for detecting the bacteria in industrial rearing units.  相似文献   

15.
A Gram-negative, motile and rod-shaped bacterial strain, G-M8T, which was isolated from seashore sand around a seaweed farm at Geoje island in South Korea, was characterized taxonomically. It grew optimally at 30–37 °C, at pH 7.0–8.0 and in presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain G-M8T joined the cluster comprising the type strains of Ruegeria atlantica and Ruegeria lacuscaerulensis, showing 97.5 % sequence similarity, by a bootstrap resampling value of 85.8 %. It exhibited 16S rRNA gene sequence similarity values of 95.4–96.7 % to the type strains of the other Ruegeria species. Strain G-M8T exhibited the highest gyrB sequence similarity value (88.5 %) to the type strain of R. lacuscaerulensis. Strain G-M8T contained Q-10 as the predominant ubiquinone and C18:1 ω7c as the predominant fatty acid. The polar lipid profile of strain G-M8T was similar to that of R. atlantica KCTC 12424T. The DNA G+C content of strain G-M8T was 64.6 mol% and its mean DNA–DNA relatedness values with R. atlantica KCTC 12424T and R. lacuscaerulensis KCTC 2953T were 18 ± 5.3 and 10 ± 3.6 %, respectively. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain G-M8T is distinguished from other Ruegeria species. On the basis of the data presented, strain G-M8T (=KCTC 23960T = CCUG 62412T) represents a novel species of the genus Ruegeria, for which the name Ruegeria arenilitoris sp. nov. is proposed.  相似文献   

16.
Aims: The aim of the present work was to characterize the heterotrophic bacterial community of a marine recirculating aquaculture system (RAS). Methods and Results: An experimental RAS was sampled for the rearing water (RW) and inside the biofilter. Samples were analysed for bacterial abundances, community structure and composition by using a combination of culture‐dependent and ‐independent techniques. The most represented species detected among biofilter clones was Pseudomonas stutzeri, while Ruegeria spp. and Roseobacter spp. were more abundant among isolates. In comparison, the genera Roseobacter and Ruegeria were well represented in both the biofilter and the RW samples. A variety of possible bacterial pathogens (e.g. Vibrio spp., Erwinia spp. and Coxiella spp.) were also identified in this study. Conclusions: Results revealed that the bacterial community in the RW was quite different to that associated with the biofilter. Moreover, data obtained suggest that the whole bacterial community can be involved in maintaining an effective and a stable rearing environment (shelter effect). Significance and Impact of the Study: Improving the reliability and the sustainability of RAS depends on the correct management of the bacterial populations inside it. This study furnishes more accurate information on the bacterial populations and better clarifies the existing relationships between the bacterial flora in the RW and that associated with the biofilter.  相似文献   

17.
The fish probiotic bacterium Roseobacter strain 27-4 grows only as rosettes and produces its antibacterial compound under static growth conditions. It forms three-dimensional biofilms when precultured under static conditions. We quantified attachment of Roseobacter strain 27-4 using a direct real-time PCR method and demonstrated that the bacteria attached more efficiently to surfaces during static growth than under aerated conditions.  相似文献   

18.
Four strains (M15∅_3, M17T, M49 and R37T) were isolated from Mediterranean seawater at Malvarrosa beach, Valencia, Spain. Together with an older preserved isolate (strain 2OM6) from cultured oysters at Vinaroz, Castellón, Spain, the strains were thoroughly characterized in a polyphasic study and were placed phylogenetically within the Roseobacter clade in the family Rhodobacteraceae. Highest 16S rRNA sequence similarities of the five strains to the types of any established species corresponded to Tropicibacter multivorans (95.8–96.4%), Phaeobacter inhibens (95.9–96.3%) and Phaeobacter gallaeciensis (95.9–96.2%). On the other hand, whole genome (ANI) and protein fingerprinting (MALDI-TOF) data proved: (i) non clonality among the strains, and (ii) the existence of two genospecies, one consisting of strains M15∅_3, M17T, M49 and 2OM6 and another one consisting of strain R37T. Phenotypic traits determined allow differentiating both genospecies from each other and from closely related taxa. In view of all data collected we propose to accommodate these isolates in two species as members of the genus Tropicibacter, Tropicibacter mediterraneus sp. nov. (type strain M17T = CECT 7615T = KCTC 23058T) and Tropicibacter litoreus sp. nov. (type strain R37T = CECT 7639T = KCTC 23353T).  相似文献   

19.
The Roseobacter group and SAR11 clade constitute high proportions of the marine bacterioplankton, but only scarce information exists on the abundance of distinct populations of either lineage. Therefore, we quantified the abundance of the largest cluster of the Roseobacter group, the RCA (Roseobacter clade affiliated) cluster together with the SAR11 clade by quantitative PCR in the southern and eastern North Sea. The RCA cluster constituted up to 15 and 21% of total bacterial 16S ribosomal RNA (rRNA) genes in September 2005 and May 2006, respectively. At a few stations, the RCA cluster exceeded the SAR11 clade, whereas at most stations, SAR11 constituted higher fractions with maxima of 37%. In most samples, only one RCA ribotype was detected. RCA abundance was positively correlated with phaeopigments, chlorophyll, dissolved and particulate organic carbon (POC), turnover rates of dissolved free amino acids (DFAAs), temperature, and negatively correlated with salinity. The SAR11 clade was only correlated with POC (negatively, May) and with DFAA turnover rates (positively, September). An abundant RCA strain, ‘Candidatus Planktomarina temperata'', was isolated from the southern North Sea. This strain has an identical 16S rRNA gene sequence to the dominant RCA ribotype. Detection of the pufM gene, coding for a subunit of the reaction center of bacteriochlorophyll a, indicates the potential of the isolate for aerobic anoxygenic photosynthesis. Our study shows that a distinct population of the RCA cluster constitutes an abundant bacterioplankton group in a neritic sea of the temperate zone and indicates that this population has an important role during decaying phytoplankton blooms.  相似文献   

20.
A marine strain (BS107), identified as a Roseobacter species, was antagonistic to Vibrio species on agar plates. Results suggested that the inhibitory effect was displayed only in the presence of another bacterium. Quantification of the antibacterial activity showed that 48-hour-coculture supernatants from BS107 and another bacterial strain (V. anguillarum 408) reached the highest titers of bacterial inhibition. The antibacterial substance was also liberated when supernatants from V. anguillarum 408 were added to pure cultures of the inhibition-productive bacterium. The presence of a proteinaceous molecule may induce BS107 to display the inhibitory effect. The antibacterial substance was sensitive to trypsin (8000 U/ml) and stable at 100°C. Cell extracts of the isolate BS107 (106 cells/ml) significantly enhanced scallop larval survival, thus being beneficial to the rearing process. Received December 8, 1997; accepted July 15, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号