首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The lipopolysaccharides (LPS) of Proteus penneri 28 and Proteus vulgaris O31 (PrK 55/57) were degraded with dilute acetic acid and structurally identical high-molecular-mass O-polysaccharides were isolated by gel-permeation chromatography. Sugar analysis and nuclear magnetic resonance (NMR) spectroscopic studies showed that both polysaccharides contain D-GlcNAc, 2-acetamido-2,6-dideoxy-L-glucose (L-2-acetamido-2,6-dideoxyglucose (N-acetylquinovosamine)) and 2-acetamido-3-O-[(S)-1-carboxyethyl]-2-deoxy-D-glucose (N-acetylisomuramic acid) and have the following structure: [carbohydrate structure: see text] where (S)-1-carboxyethyl [a residue of (S)-lactic acid] (S-Lac) is an ether-linked residue of (S)-lactic acid. The O-polysaccharide studied is structurally similar to that of P. penneri 26, which differs only in the absence of S-Lac from the GlcNAc residue. Based on the O-polysaccharide structures and serological data of the LPS, it was suggested classifying these strains in one Proteus serogroup, O31, as two subgroups: O(31a), 31b for P. penneri 28 and P. vulgaris PrK 55/57 and O31a for P. penneri 26. A serological relatedness of the LPS of Proteus O(31a), 31b and P. penneri 62 was revealed and substantiated by sharing epitope O31b, which is associated with N-acetylisomuramic acid. It was suggested that a cross-reactivity of P. penneri 28 O-antiserum with the LPS of several other P. penneri strains is due to a common epitope(s) on the LPS core.  相似文献   

2.
A neutral O-specific polysaccharide (O-antigen) was isolated from the lipopolysaccharide (LPS) of the bacterium Proteus penneri 71. On the basis of sugar analysis and 1H- and 13C-NMR spectroscopic studies, including two-dimensional COSY, 13C,1H heteronuclear COSY and ROESY, the following structure of the trisaccharide repeating unit of the polysaccharide was established: -->3)-beta-D-GlcpNAc-(1-->4)-beta-D-GlcpNAc-(1-->3)-alpha-D-Galp-(1-- > The polysaccharide has the same carbohydrate backbone as the O-specific polysaccharide of P. penneri 19 and both are similar to that of P. penneri 62 studied by us previously. A cross-reactivity of anti-P. penneri 71, 19 and 62 O-antisera with 11 P. penneri strains was revealed and substantiated at the level of the O-antigen structures. These strains could be divided into three subgroups within a new proposed Proteus O64 serogroup containing P. penneri strains only.  相似文献   

3.
An alkali-treated lipopolysaccharide of Proteus penneri strain 60 was studied by chemical analyses and 1H, 13C and 31P NMR spectroscopy, and the following structure of the linear pentasaccharide-phosphate repeating unit of the O-polysaccharide was established: 6)-alpha-D-Galp-(1-->3)-alpha-L-FucpNAc-(1-->3)-alpha-D-GlcpNAc-(1-->3)-beta-D-Quip4NAc-(1-->6)-alpha-D-Glcp-1-P-(O--> Rabbit polyclonal O-antiserum against P. penneri 60 reacted with both core and O-polysaccharide moieties of the homologous LPS. Based on the unique O-polysaccharide structure and serological data, we propose to classify P. penneri 60 into a new, separate Proteus serogroup O70. A weak cross-reactivity of P. penneri 60 O-antiserum with the lipopolysaccharide of Proteus vulgaris O8, O15 and O19 was observed and discussed in view of the chemical structures of the O-polysaccharides.  相似文献   

4.
An acidic O-specific polysaccharide was obtained by mild acid degradation of the Proteus penneri 8 lipopolysaccharide and found to contain D-glucose, D-galacturonic acid, 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-galactose, 2-acetamido-2,6-dideoxy-L-galactose (L-FucNAc) and 2-aminoethyl phosphate (PEtn) in the ratios 2 : 1 : 1 : 1 : 1 : 1. 1H and 13C NMR spectroscopy was applied to the intact and dephosphorylated polysaccharides, and the following structure of the hexasaccharide repeating unit was established: The O-specific polysaccharide has a unique structure, and, accordingly, we propose for P. penneri 8 a new Proteus O67 serogroup, in which this strain is at present the single representative. The nature of epitopes on LPS of P. penneri 34, P. mirabilis O16, P. mirabilis O23 and P. vulgaris O22, which cross-react with O-antiserum against P. penneri 8, is discussed.  相似文献   

5.
O-specific polysaccharides (O-antigens) of the lipopolysaccharides (LPS) of Proteus penneri strains 1 and 4 were studied using sugar analysis, (1)H and (13)C NMR spectroscopy, including 2D COSY, H-detected (1)H,(13)C HMQC, and rotating-frame NOE spectroscopy (ROESY). The following structures of the tetrasaccharide (strain 1) and pentasaccharide (strain 4) repeating units of the polysaccharides were established: [reaction: see text]. In the polysaccharide of P. penneri strain 4, glycosylation with the lateral Glc residue (75%) and O-acetylation of the lateral GalNAc residue (55%) are nonstoichiometric. This polysaccharide contains also other, minor O-acetyl groups, whose positions were not determined. The structural similarity of the O-specific polysaccharides was consistent with the close serological relatedness of the LPS, which was demonstrated by immunochemical studies with O-antisera against P. penneri 1 and 4. Based on these data, it was proposed to classify P. penneri strains 1 and 4 into a new Proteus serogroup, O72, as two subgroups, O72a and O72a,b, respectively. Serological cross-reactivity of P. penneri 1 O-antiserum with the LPS of P. penneri 40 and 41 was substantiated by the presence of an epitope(s) on the LPS core region shared by all P. penneri strains studied.  相似文献   

6.
Lipopolysaccharide of Proteus penneri strain 63 was degraded by mild acid to give a high molecular mass O-specific polysaccharide that was isolated by gel-permeation chromatography. Sugar and methylation analyses and NMR spectroscopic studies, including two-dimensional 1H, 1H COSY, TOCSY rotating-frame NOE spectroscopy, H-detected 1H,13C and 1H,31P heteronuclear multiple-quantum coherence (HMQC), and 1H, 13C HMQC-TOCSY experiments, demonstrated the following structure of the polysaccharide: where FucNAc is 2-acetamido-2,6-dideoxygalactose and PEtn is 2-aminoethyl phosphate. The polysaccharide studied shares some structural features, such as the presence of D-GlcNAc6PEtn and an alpha-L-FucNAc-(1-->3)-D-GlcNAc disaccharide, with other Proteus O-specific polysaccharides. A marked cross-reactivity of P. penneri 63 O-antiserum with P. vulgaris O12 was observed and substantiated by a structural similarity of the O-specific polysaccharides of the two strains. In spite of this, the polysaccharide of P. penneri 63 has the unique structure among Proteus O-antigens, and therefore a new, separate serogroup, O68, is proposed for this strain.  相似文献   

7.
The acidic O-specific polysaccharide chain (O-antigen) of the lipopolysaccharide (LPS) of Proteus mirabilis strain D52 was studied using chemical analyses along with 1H-NMR and 13C-NMR spectroscopy, including 2D COSY, TOCSY, ROESY, H-detected 1H,13C and 1H,31P HMQC experiments. The polysaccharide was found to contain D-ribitol 5-phosphate (D-Rib-ol-5-P) and ethanolamine phosphate (Etn-P) and has the following structure: D-Rib-ol-5-P (3) approximately 75% EtnP(6)-->2)-beta-D-Galp-(1-->3)-alpha-D-GlcpNAc-(1-->3)-beta-D-Glcp-(1-->3)-beta-D-GlcpNAc-(1-->). This structure is identical with that of the O-polysaccharide of P. mirabilis O33 strain 59/57, and, hence, P. mirabilis D52 belongs to the same Proteus serogroup O33. Serological studies with O-antiserum against P. mirabilis D52 confirmed this but showed that the LPS species of P. mirabilis 59/57 and D52 are not identical, having different epitopes in the core region. A serological cross-reactivity of P. mirabilis D52 O-antiserum was observed with LPS of two other Proteus strains, P. mirabilis O16 and P. penneri 103, which have structurally different O-polysaccharides. The role of charged groups, Rib-ol-5-P and Etn-P in the immunospecificity is discussed.  相似文献   

8.
The O-specific polysaccharide of the lipopolysaccharide of Proteus penneri strain 103 was studied using 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, NOESY, H-detected 1H,(13)C HMQC, 1H, 31P HMQC, and HMBC experiments. It was found that the polysaccharide is built up of oligosaccharide-ribitol phosphate repeating units and thus resembles ribitol teichoic acids of Gram-positive bacteria. The following structure of the polysaccharide was established:where Etn and Rib-ol are ethanolamine and ribitol, respectively. This structure is unique among the known structures of Proteus O-antigens and, therefore, we propose classification of the strain studied into a new Proteus serogroup, O73. The molecular basis for cross-reactivity between O-antiserum against P. penneri 103 and O-antigens of P. mirabilis O33 and D52 is discussed.  相似文献   

9.
The O-specific polysaccharide of the lipopolysaccharide of Proteus penneri strain 75 consists of tetrasaccharide-ribitol phosphate repeating units and resembles ribitol teichoic acids of Gram-positive bacteria. The following structure of the polysaccharide was elucidated by chemical methods and 1H and 13C NMR spectroscopy: [structure in text] where Rib-ol is ribitol. Serological studies with polyclonal antisera showed that the same structure of the O-polysaccharide occurred in two strains: P. penneri 75 and 128. A similar structure has been established earlier for the O-polysaccharide of P. penneri 103 [Drzewiecka, D., et al., Carbohydr. Res. 337 (2002) 1535-1540]. On the basis of complex serological investigations with use of two polyclonal P. penneri 75 and 103 O-antisera, five strains could be classified into Proteus O73 serogroup: P. penneri 48, 75, 90, 103 and 128, two of which (P. penneri 75 and 128) should be subdivided into subgroup 73a, 73b and three others (P. penneri 48, 90 and 103) into subgroup 73a, 73c. Epitopes responsible for the cross-reactivity of P. penneri O73 strains and a related strain of P. mirabilis O20 were tentatively defined.  相似文献   

10.
A phosphorylated O-specific polysaccharide (O-antigen) was obtained by mild acid degradation of Proteus vulgaris O12 lipopolysaccharide and studied by sugar and methylation analyses, 1H-, 13C- and 31P-NMR spectroscopy, including two-dimensional COSY, TOCSY, NOESY, H-detected 1H, 13C and 1H, 31P heteronuclear multiple-quantum coherence experiments. It was found that the polysaccharide consists of pentasaccharide repeating units connected via a glycerol phosphate group, and has the following structure: where FucNAc is 2-acetamido-2,6-dideoxygalactose and the degree of O-acetylation at position 4 of GalNAc is approximately 25%. Immunochemical studies with P. vulgaris O12 O-antiserum suggested that the lipopolysaccharide studied shares common epitopes with the lipopolysaccharide core of P. vulgaris O8 and with the O-antigens of P. penneri strains 8 and 63.  相似文献   

11.
The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus mirabilis TG 332 strain. The following structure of the O-polysaccharide was determined by chemical methods along with NMR spectroscopy, including 2D COSY, TOCSY, ROESY and 1H, 13C HMQC experiments: [see equation in text]. The O-polysaccharide studied has a unique structure among Proteus O-antigens. Accordingly, P. mirabilis TG 332 is serologically separate, and we propose to classify this strain into a new Proteus serogroup, O50. The nature of minor epitopes that provide a cross-reactivity of P. mirabilis TG 332 O-antiserum with the LPS of P. mirabilis O30 and Proteus penneri 34 (O60) is discussed.  相似文献   

12.
Analysis of the core part of the LPS from several strains of Proteus revealed that P. penneri strains 2, 11, 19, 107, and P. vulgaris serotypes 04 and 08 have the same structure with a new type of linkage between monosaccharidesan open-chain acetal--that was previously determined for P. vulgaris OX2 and P. penneri 17. The LPS from P. penneri strain 40 contains the same structure substituted with one additional monosaccharide: [molecular structure: see text] where (1S)-GalaNAc1 is a residue of N-acetyl-D-galactosamine in the open-chain form. It is connected as a cyclic acetal to positions 4 and 6 of the galactosamine residue having a free amino group. All other sugars are in the pyranose form.  相似文献   

13.
O-Specific polysaccharide was obtained by mild acid degradation of Proteus penneri strain 16 lipopolysaccharide and found to contain D-glucose, D-glucuronic acid, 2-acetamido-2-deoxy-D-glucose, and 3,6-dideoxy-3-[(R)-3-hydroxybutyramido]- D-galactose in the ratio of 2:1:1:1 as well as a small proportion of O-acetyl groups. On the basis of one-dimensional 1H-NMR13C-NMR and NOE spectroscopy, two-dimensional homonuclear-shift-correlated spectroscopy with one-step and two-step relayed coherence transfer and heteronuclear 1H/13C NMR shift-correlated spectroscopy, it was concluded that the O-specific polysaccharide of P. penneri strain 16 has the following structure: (formula; see text) This structure was confirmed by methylation analysis and structural analysis of a linear tetrasaccharide fragment prepared by cleavage of the polysaccharide with anhydrous hydrogen fluoride followed by conversion of the alpha-tetrosyl fluoride obtained in to the corresponding free oligosaccharide and alditol. O-Acetyl groups were tentatively located at position 3 of the glucuronic acid residue and at position 4 of the 6-substituted glucose residue, the degree of acetylation being less than 20% of the total. Cross-reactions of P. penneri strain 16 anti-(O-specific polysaccharide) antiserum with lipopolysaccharides from several other Proteus strains and the role of 3,6-dideoxy-3-(R)-3-hydroxybutyramido-D-galactose in the serological specificity of P. penneri strain 16 are discussed.  相似文献   

14.
The O-chain polysaccharide of the lipopolysaccharide (LPS) of a previously nonclassified strain of Proteus mirabilis termed G1 was studied by sugar analysis and 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, rotating-frame NOE (ROESY), H-detected 1H,13C HMQC, and heteronuclear multiple-bond correlation (HMBC) experiments. The following structure of the polysaccharide was established: [carbohydrate structure: see text] where D-GalA6(L-Lys) stands for N(alpha)-(D-galacturonoyl)-L-lysine. The structure of the O-polysaccharide of P. mirabilis G1 is similar, but not identical, to that of P. mirabilis S1959 and OXK belonging to serogroup O3. Immunochemical studies with P. mirabilis G1 and S1959 anti-(O-polysaccharide) sera revealed close LPS-based serological relatedness of P. mirabilis G1 and S1959, and therefore it was suggested to classify P. mirabilis G1 in serogroup O3 as a subgroup. P. mirabilis G1 and S1959 anti-(O-polysaccharide) sera also cross-reacted with LPS of P. mirabilis strains from two other serogroups containing D-GalA6(L-Lys) in the O-polysaccharide or in the core region.  相似文献   

15.
The O-polysaccharide of the lipopolysaccharide (LPS) of Proteus vulgaris TG 155 was found to contain 2-acetamido-2,6-dideoxy-L-mannose (N-acetyl-L-rhamnosamine, L-RhaNAc), a monosaccharide that occurs rarely in Nature. The following structure of the O-polysaccharide was established by NMR spectroscopy, including 2D COSY, TOCSY, ROESY and 1H,13C HSQC experiments, along with chemical methods: [carbohydrate structure in text] Rabbit polyclonal O-antiserum against P. vulgaris TG 155 reacted with both core and O-polysaccharide moieties of the homologous LPS but showed no cross-reactivity with other LPS from the complete set of serologically different Proteus strains. Based on the unique O-polysaccharide structure and the serological data, we propose classifying P. vulgaris TG 155 into a new, separate Proteus O-serogroup, O55.  相似文献   

16.
Mild acid degradation of the lipopolysaccharide (LPS) of Proteus mirabilis O20 resulted in depolymerisation of the O-polysaccharide to give a repeating-unit pentasaccharide. A polysaccharide was obtained by O-deacylation of the LPS followed by nitrous acid deamination. The derived pentasaccharide and polysaccharide were studied by NMR spectroscopy, including 2D 1H,1H COSY, TOCSY, ROESY, 1H,13C HMQC and HMQC-TOSCY experiments, along with chemical methods, and the following structure of the repeating unit of the O-polysaccharide was established: [Carbohydrate structure: see text]. As opposite to most other P. mirabilis O-polysaccharides studied, that of P. mirabilis O20 is neutral. A week serological cross-reactivity was observed between anti-P. mirabilis O20 serum and LPS of a number of Proteus serogroups with known O-polysaccharide structure. The ability of LPS of P. mirabilis O20 to activate the serine protease cascade was tested in Limulus amoebocyte lysate and in human blood plasma and compared with that of P. mirabilis O14a,14c having an acidic O-polysaccharide. The LPS of P. mirabilis O20 was found to be less active in both assays than the LPS of P. mirabilis O14a,14c and, therefore, the structurally variable O-polysaccharide may influenced the biological activity of the conserved lipid A moiety of the LPS.  相似文献   

17.
A phosphorylated, choline-containing polysaccharide was obtained by O-deacylation of the lipopolysaccharide (LPS) of Proteus mirabilis O18 by treatment with aqueous 12% ammonia, whereas hydrolysis with dilute acetic acid resulted in depolymerisation of the polysaccharide chain by the glycosyl phosphate linkage. Treatment of the O-deacylated LPS with aqueous 48% hydrofluoric acid cleaved the glycosyl phosphate group but, unexpectedly, did not affect the choline phosphate group. The polysaccharide and the derived oligosaccharides were studied by NMR spectroscopy, including 2D 1H,1H COSY, TOCSY, ROESY, 1H,13C HMQC and HMQC-TOSCY experiments, along with chemical methods, and the following structure of the pentasaccharide phosphate repeating unit was established: [carbohydrate structure in text] Where ChoP=Phosphocoline Immunochemical studies of the LPS, O-deacylated LPS and partially dephosphorylated pentasaccharide using rabbit polyclonal anti-P. mirabilis O18 serum showed the importance of the glycosyl phosphate group in manifesting the serological specificity of the O18-antigen.  相似文献   

18.
The following structure of the O-polysaccharide (O-antigen) of the lipopolysaccharide of Proteus mirabilis O-9 was determined by NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, ROESY, and 1H,(13)C HMQC experiments, along with chemical methods: [chemical structure: see text] where the degree of O-acetylation is approximately 70%. Immunochemical studies using rabbit polyclonal anti-Proteus mirabilis O-9 serum showed the importance of the O-acetyl groups in manifesting the serological specificity of the O-9 antigen. Anti-P. mirabilis O-9 cross-reacted with the lipopolysaccharides (LPS) of P. vulgaris O-25 and Proteus penneri 14, which could be accounted for by a structural similarity of their O-polysaccharides.  相似文献   

19.
An acidic branched O-polysaccharide was isolated by mild acid degradation of the lipopolysaccharide (LPS) of Proteus genomospecies 4 and studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, ROESY and H-detected 1H, 13C HSQC experiments. The following structure of the pentasaccharide repeating unit of the O-polysaccharide was established, which is unique among Proteus polysaccharide structures: [structure: see text] where Qui3NAc stands for 3-acetamido-3,6-dideoxyglucose. Based on the O-polysaccharide structure and serological data, we propose classifying Proteus genomospecies 4 into a new, separate Proteus serogroup, O56. A weak cross-reactivity of Proteus genomospecies 4 antiserum with LPS of Providencia stuartii O18 and Proteus vulgaris OX2 was observed and is discussed in view of a similarity of the O-polysaccharide structures. Structural and serological investigations showed that Proteus genomospecies 5 and 6 should be classified into the existing Proteus serogroups O8 and O69, respectively.  相似文献   

20.
Abstract In DOC-PAGE, lipopolysaccharide (LPS) of Proteus mirabilis R14/1959 (Rb-type) mutant showed a ladder-like migration pattern indicating the presence of a high molecular weight polysaccharide chain. The isolated polysaccharide, called T-antigen because of similarity with the T1 chain of Salmonella friedenau LPS, contained d -glucose, d -galacturonic acid ( d -GalA), and d -GlcNAc in molar ratios 2:1:1 and was structurally different from the O-antigen of the parental S-strain P. mirabilis S1959 but identical to the O-antigen of another S-strain Proteus penneri 42. The importance of a d -GalA( l -Lys)-containing epitope, most likely present in the core region of LPS, and of GalA present in the T-antigen chain in manifesting the serological specificity of P. mirabilis R14/1959 were revealed using rabbit polyclonal homologous and heterologous R- and O-specific antisera and the appropriate antigens, including synthetic antigens which represent partial structures of various Proteus LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号