首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 134 毫秒
1.
Murphy EJ  Owada Y  Kitanaka N  Kondo H  Glatz JF 《Biochemistry》2005,44(16):6350-6360
Heart fatty acid binding protein (H-FABP) is expressed in neurons, but its role in brain fatty acid incorporation and metabolism is poorly defined. We examined the effect of H-FABP gene ablation on brain incorporation of arachidonic ([1-(14)C]20:4n-6) or palmitic ([1-(14)C]16:0) acid in vivo. Analysis of brain mRNA confirmed gene ablation and demonstrated no compensatory changes in the levels of other FABP mRNA in the gene-ablated mice. In brains from H-FABP gene-ablated mice, the incorporation coefficient for [1-(14)C]20:4n-6 was reduced 24%, while that for [1-(14)C]16:0 was unaffected. Within the organic and aqueous fractions, significantly more [1-(14)C]20:4n-6 was distributed into the aqueous fraction, suggesting a disruption in the metabolic targeting of 20:4n-6 in these mice. There was less incorporation of [1-(14)C]20:4n-6 into total phospholipids and a marked reduction (51%) in the level of incorporation into the choline glycerophospholipids (ChoGpl). Because FABP can influence steady-state lipid mass, brain individual lipid masses were measured. The brain total phospholipid mass was reduced 17% by gene ablation, ascribed to a 27% and 32% reduction in the masses of ChoGpl and sphingomyelin, respectively. Plasmalogen subclass masses were also reduced, suggesting that H-FABP may augment brain plasmalogen synthesis. In gene-ablated mice, the phosphatidylinositol 20:4n-6 level was reduced 25%, while the proportion of total n-6 fatty acids was reduced in the major phospholipid classes. Thus, these results demonstrate for the first time that H-FABP expression influences brain 20:4n-6 uptake and trafficking as well as steady-state brain lipid levels.  相似文献   

2.
Various murine macrophage populations synthesize and secrete large amounts of arachidonic acid (20:4n-6) derived eicosanoids (cyclo-oxygenase and lipoxygenase products). These metabolites are known to possess a wide variety of functions with regard to the initiation and regulation of inflammation and tumorigenesis. Because the dietary intake of 20:4n-6 is usually low, tissues are largely dependent upon dietary linoleic acid (18:2n-6) as an initial unsaturated precursor for the biosynthesis of 20:4n-6. The purpose of these experiments was to determine whether resident or responsive murine macrophages possess desaturase and elongase activities capable of in vitro conversion of 18:2n-6 into 20:4n-6. Peritoneal exudate macrophages were purified by adherence and incubated in serum-free medium containing fatty acid-free BSA with [1-14C] 18:2n-6. Approximately 90 to 98% of the [14C]18:2n-6 at 4 and 16 h was recovered in phosphatidylcholine and phosphatidylethanolamine. The metabolism of [14C]18:2n-6 was determined after transesterification and separation of the 14C-fatty acid methyl esters by argentation TLC, reverse phase HPLC, and electron impact gas chromatography/mass spectrometry. Resident and responsive macrophages lacked the capacity to transform [14C]18:2n-6 into 20:4n-6. In addition, prelabeled macrophages incubated with soluble, calcium ionophore A23187 or phorbol myristate, or particulate, zymosan, membrane perturbing agents also lacked delta 6 desaturase activity. All macrophages tested were capable of elongating [14C]18:2n-6 into [14C]20:2n-6. These observations suggest that 20:4n-6, present in macrophage phospholipids, is biosynthesized elsewhere and transported to the macrophage for esterification into the phospholipids. In addition, these findings demonstrate that elongase activity is present in both the resident and responsive peritoneal macrophage.  相似文献   

3.
The partitioning between peroxisomal and mitochondrial beta-oxidation of [1-14C]eicosapentaenoic acid (20:5(n-3] and [1-14C]arachidonic acid (20:4(n-6)) was studied. In hepatocytes from fasted rats approximately 70% of the fatty acid substrate was oxidized with oleic, linoleic, eicosapentaenoic and docosahexaenoic (22:6(n-3)) acid, even more with adrenic (22:4(n-6)) and less with arachidonic acid. When the mitochondrial oxidation was suppressed by fructose refeeding and by (+)-decanoylcarnitine, the fatty acid oxidation in per cent of that in cells from fasted rats was with 18:1(n-9) 7%, 18:2(n-6) 8%, 20:4(n-6) 12%, 20:5(n-3) 20%, 22:4(n-6) 57% and for 22:6(n-3) 29%. The fraction of 14C recovered in palmitate and other newly synthesized fatty acids after fructose refeeding decreased in the order 22:4(n-6) greater than 22:6(n-3) greater than 20:5(n-3) greater than 20:4(n-6) and was very small with 18:1(n-9) and 18:2(n-6). In cells from both fed and fructose-refed animals 20:5(n-3) was efficiently elongated to 22:5(n-3) and 22:6(n-3). 20:5(n-3) and 20:4(n-6) were not elongated after fasting. The phospholipid incorporation with [1-14C]20:5(n-3) decreased during prolonged incubations while it remained stable with [1-14C]arachidonic acid. The results suggest that peroxisomes contribute more to the oxidation of 20:5(n-3) than with 20:4(n-6) although both substrates are probably oxidized mainly in the mitochondria.  相似文献   

4.
The study examined the ability of dietary n-3 fatty acids to modify mouse peritoneal macrophage glycerophospholipid molecular species and peptidoleukotriene synthesis. After a 2-week feeding period, fish versus corn oil feeding significantly (P less than 0.01) lowered n-6 polyunsaturated fatty acid (PUFA) mol % levels, i.e., arachidonic acid (20:4n-6) in diacylphosphatidylserine (PtdSer), diacylphosphatidylinositol (PtdIns), diacylglycerophosphoethanolamine (PtdEtn), alkenylacylglycerophosphoethanolamine (PlsEtn), and diacylglycerophosphocholine (PtdCho). A notable exception was alkylacylglycerophosphocholine (PakCho), where only moderate decreases in 16:0-20:4n-6 and 18:0-20:4n-6 species were observed after fish oil supplementation. The predominant n-3 PUFA in macrophage phospholipid subclasses was docosapentaenoic acid (22:5n-3). The major n-3 species were 18:0-22:5n-3 in PtdIns, PtdSer, glycerophosphoethanolamines (EtnGpl) and 16:0-22:5n-3 in PtdCho and PlsEtn. The major n-3-containing species in PakCho were 16:0-20:5n-3 and 18:1-22:6n-3. These findings indicate that n-3 PUFA are differentially incorporated into macrophage phospholipid subclasses after dietary fish oil supplementation, and suggest that phospholipid remodeling enzymes selectively discriminate between substrates based on compatibility of sn-1 covalent linkage and the composition of the sn-1 and sn-2 aliphatic chains. Macrophage peptidoleukotriene synthesis was also strongly influenced after fish oil feeding; the LTC5/LTC4 ratio was significantly higher (P less than 0.01) in fish oil-fed animals than in corn oil-fed animals, 0.85 versus 0.01, respectively. These ratios were subsequently compared to phospholipid molecular species 20:5n-3/20:4n-6 ratios in order to determine potential sources of eicosanoid precursors.  相似文献   

5.
Isolated hepatocytes from Atlantic salmon (Salmo salar), fed diets containing either 100% fish oil or a vegetable oil blend replacing 75% of the fish oil, were incubated with a range of seven (14)C-labelled fatty acids. The fatty acids were [1-(14)C]16:0, [1-(14)C]18:1n-9, 91-(14)C]18:2n-6, [1-(14)C]18:3n-3, [1-(14)C]20:4n-6, [1-(14)C]20:5n-3, and [1-(14)C]22:6n-3. After 2 h of incubation, the hepatocytes and medium were analysed for acid soluble products, incorporation into lipid classes, and hepatocytes for desaturation and elongation. Uptake into hepatocytes was highest with [1-(14)C]18:2n-6 and [1-(14)C]20:5n-3 and lowest with [1-(14)C]16:0. The highest recovery of radioactivity in the cells was found in triacylglycerols. Of the phospholipids, the highest recovery was found in phosphatidylcholine, with [1-(14)C]16:0 and [1-(14)C]22:6n-3 being the most prominent fatty acids. The rates of beta-oxidation were as follows: 20:4n-6>18:2n-6=16:0>18:1n-9>22:6n-3=18:3n-3=20:5n-3. Of the fatty acids taken up by the hepatocytes, [1-(14)C]16:0 and [1-(14)C]18:1n-9 were subsequently exported the most, with the majority of radioactivity recovered in phospholipids and triacylglycerols, respectively. The major products from desaturation and elongation were generally one cycle of elongation of the fatty acids. Diet had a clear effect on the overall lipid metabolism, with replacing 75% of the fish oil with vegetable oil resulting in decreased uptake of all fatty acids and reduced incorporation of fatty acids into cellular lipids, but increased beta-oxidation activity and higher recovery in products of desaturation and elongation of [1-(14)C]18:2n-6 and [1-(14)C]18:3n-3.  相似文献   

6.
Polyunsaturated fatty acid (PUFA) utilization was investigated in skin fibroblasts cultured from a female patient with an inherited abnormality in lipid metabolism. These deficient human skin fibroblasts (DF) converted 85;-95% less [1-14C]linoleic acid (18:2n-6) to arachidonic acid (20:4n-6), 95% less [3-14C]tetracosatetraenoic acid (24:4n-6) to docosapentaenoic acid (22:5n-6), and 95% less [1-14C]-linolenic acid (18:3n-3) and [3-14C]tetracosapentaenoic acid (24:5n-3) to docosahexaenoic acid (22:6n-3) than did normal human skin fibroblasts (NF). The only product formed by the DF cultures from [1-14C]tetradecadienoic acid (14:2n-6) was 18:2n-6. However, they produced 50;-90% as much 20:4n-6 as the NF cultures from [1-14C]hexadecatrienoic acid (16:3n-6), [1-14C]gamma-linolenic acid (18:3n-6), and [1-14C]dihomo-gamma-linolenic acid (20:3n-6), PUFA substrates that contain Delta6 double bonds. DF also contained 80% more 18:2n-6 and 25% less 20:4n-6. These results suggested that DF are deficient in Delta6 desaturation. This was confirmed by Northern blots demonstrating an 81;-94% decrease in Delta6-desaturase mRNA content in the DF cultures, whereas the Delta5-desaturase mRNA content was reduced by only 14%. This is the first inherited abnormality in human PUFA metabolism shown to be associated with a Delta6-desaturase deficiency. Furthermore, the finding that the 18- and 24-carbon substrates are equally affected suggests that a single enzyme carries out both Delta6 desaturation reactions in human PUFA metabolism.  相似文献   

7.
We examined the ability of erucic acid (22:1n-9) to cross the blood-brain barrier (BBB) by infusing [14-14C]22:1n-9 (170 microCi/kg, iv and icv) into awake, male rats. [1-14C]arachidonic acid (20:4n-6) [intravenous (i.v.)] was the positive control. After i.v. infusion, 0.011% of the plasma [14-14C]22:1n-9 was extracted by the brain, compared with 0.055% of the plasma [1-14C]20:4n-6. The [14-14C]22:1n-9 was extensively beta-oxidized (60%), compared with 30% for [1-14C]20:4n-6. Although 20:4n-6 was targeted primarily to phospholipid pools, 22:1n-9 was targeted to cholesteryl esters, triglycerides, and phospholipids. When [14-14C]22:1n-9 was infused directly into the fourth ventricle of the brain [intracerebroventricular (i.c.v.)] for 7 days, 60% of the tracer entered the phospholipid pools, similar to the distribution observed for [1-14C]20:4n-6. This demonstrates plasticity in the ability of the brain to esterify 22:1n-9 in an exposure-dependent manner. In i.v. and i.c.v. infused rats, a significant amount of tracer found in the phospholipid pools underwent sequential rounds of chain shortening and was found as [12-14C]20:1n-9 and [10-14C]oleic acid. These results demonstrate for the first time that intact 22:1n-9 crosses the BBB, is incorporated into specific lipid pools, and is chain-shortened.  相似文献   

8.
The microsomal fraction was used to test the ability of human platelets to metabolize gammalinolenic acid. The microsomal delta 6 and delta 5 fatty acid desaturase activities were measured and the incorporation of [14C]malonyl CoA into prostaglandins was also determined. The results indicate that human platelets have the capacity to elongate gammalinolenic acid (18:3 n-6) to dihomogammalinolenic acid (20:3 n-6) precursor of PGE1. Labeled PGE1 could be detected when human platelets microsomes were incubated with [14C]malonyl CoA in the presence of gammalinolenic acid. The results also show that human platelet microsomes have little delta 6 or delta 5 desaturase enzyme activity.  相似文献   

9.
Cell culture systems have demonstrated a role for cytoplasmic fatty acid-binding proteins (FABP) in lipid metabolism, although a similar function in intact animals is unknown. We addressed this issue using heart fatty acid-binding protein (H-FABP) gene-ablated mice. H-FABP gene ablation reduced total heart fatty acid uptake 40 and 52% for [1-(14)C]16:0 and [1-(14)C]20:4n-6 compared with controls, respectively. Similarly, the amount of fatty acid found in the aqueous fraction was reduced 40 and 52% for [1-(14)C]16:0 and [1-(14)C]20:4n-6, respectively. Less [1-(14)C]16:0 entered the triacylglycerol pool, with significant redistribution of fatty acid between the triacylglycerol pool and the total phospholipid pool. Less [1-(14)C]20:4n-6 entered each lipid pool measured, but these changes did not alter the distribution of tracer among these pools. In gene-ablated mice, significantly more [1-(14)C]16:0 was targeted to choline and ethanolamine glycerophospholipids, whereas more [1-(14)C]20:4n-6 was targeted to the phosphatidylinositol (PtdIns) pool. H-FABP gene ablation significantly increased PtdIns mass 1.4-fold but reduced PtdIns 20:4n-6 mass 30%. Consistent with a reported effect of FABP on plasmalogen mass, ethanolamine plasmalogen mass was reduced 30% in gene-ablated mice. Further, 20:4n-6 mass was reduced in each of the three other major phospholipid classes, suggesting H-FABP has a role in maintaining steady-state 20:4n-6 mass in heart. In summary, H-FABP was important for heart fatty acid uptake and targeting of fatty acids to specific heart lipid pools as well as for maintenance of phospholipid pool mass and acyl chain composition.  相似文献   

10.
Three 14C-labeled 22-carbon polyunsaturated fatty acids, 7,10,13,16-[14C]docosatetraenoic acid (22:4(n-6)), 7,10,13,16,19-[14C]docosapentaenoic acid (22:5(n-3)), and 4,7,10,13,16,19-[14C]docosahexaenoic acid (22:6(n-3)), were compared with [3H]arachidonic acid (20:4(n-6] and [14C]linoleic acid (18:2(n-6)) to characterize their incorporation into the lipids of Ehrlich ascites cells. The relatively rapid incorporation of the labeled 22-carbon acids into phosphatidic acid indicated that substantial amounts of these acids may be incorporated through the de novo pathway of phospholipid synthesis. In marked contrast to 20:4(n-6), the 22-carbon acids were incorporated much less into choline glycerophospholipids (CGP) and inositol glycerophospholipids (IGP). No selective preference was apparent for the (n-3) or (n-6) type of fatty acids. The amounts of the acids incorporated into diacylglycerophosphoethanolamine were in the order of: 22:6(n-3) greater than 20:4(n-6) much greater than 22:5(n-3) greater than or equal to 22:4(n-6) greater than 18:2(n-6), whereas for alkylacylglycerophosphoethanolamine they were in the order of: 22:4(n-6) greater than 22:6(n-3) greater than 22:5(n-3) much greater than 20:4(n-6) greater than 18:2(n-6). Of the mechanisms possibly responsible for the selective entry of 22-carbon acids into ethanolamine glycerophospholipids, the most reasonable explanation was that the cytidine-mediated ethanolamine phosphotransferase may have a unique double selectivity: for hexaenoic species of diacylglycerol and for 22-carbon polyunsaturated fatty acid-containing species of alkylacylglycerol. The relative distribution of fatty acids between newly incorporated and already maintained lipid classes suggested that IGP may function in Ehrlich cells as an intermediate pool for the retention of polyunsaturated fatty acids in glycerolipids.  相似文献   

11.
A combined fatty acid metabolism assay was employed to determine fatty acid uptake and relative utilisation in enterocytes isolated from the pyloric caeca of rainbow trout. In addition, the effect of a diet high in long-chain monoenoic fatty alcohols present as wax esters in oil derived from Calanus finmarchicus, compared to a standard fish oil diet, on caecal enterocyte fatty acid metabolism was investigated. The diets were fed for 8 weeks before caecal enterocytes from each dietary group were isolated and incubated with [1-14C]fatty acids: 16:0, 18:1n-9, 18:2n-6, 18:3n-3, 20:1n-9, 20:4n-6, 20:5n-3, and 22:6n-3. Uptake was measured over 2 h with relative utilisation of different [1-14C]fatty acids calculated as a percentage of uptake. Differences in uptake were observed, with 18:1n-9 and 18:2n-6 showing the highest rates. Esterification into cellular lipids was highest with 16:0 and C18 fatty acids, accounting for over one-third of total uptake, through predominant incorporation in triacylglycerol (TAG). The overall utilisation of fatty acids in phospholipid synthesis was low, but highest with 16:0, the most prevalent fatty acid recovered in intracellular phosphatidylcholine (PC) and phosphatidylinositol (PI), although exported PC exhibited higher proportions of C20/C22 polyunsaturated fatty acids (PUFA). Other than 16:0, incorporation into PC and PI was highest with C20/C22 PUFA and 20:4n-6 respectively. Recovery of labelled 18:1n-9 in exported TAG was 3-fold greater than any other fatty acid which could be due to multiple esterification on the glycerol 'backbone' and/or increased export. Approximately 20-40% of fatty acids taken up were beta-oxidised, and was highest with 20:4n-6. Oxidation of 20:5n-3 and 22:6n-3 was also surprisingly high, although 22:6n-3 oxidation was mainly attributed to retroconversion to 20:5n-3. Metabolic modification of fatty acids by elongation-desaturation was generally low at <10% of [1-14C]fatty acid uptake. Dietary copepod oil had generally little effect on fatty acid metabolism in enterocytes, although it stimulated the elongation and desaturation of 16:0 and elongation of 18:1n-9, with radioactivity recovered in longer n-9 monoenes. The monoenoic fatty acid, 20:1n-9, abundant in copepod oil as the homologous alcohol, was poorly utilised with 80% of uptake remaining unesterified in the enterocyte. However, the fatty acid composition of pyloric caeca was not influenced by dietary copepod oil.  相似文献   

12.
Reports that vegetable oils which contain gamma-linolenic acid (18:3n-6) may exert beneficial effects on cutaneous disorders prompted us to investigate whether epidermis possesses the ability to transform dihomogammalinolenic acid (20:3n-6), the epidermal elongase product of 18:3n-6, into oxidative metabolites with anti-inflammatory potential. Incubations of [1-14C]20:3n-6 with the 105,000 g particulate (microsomal) fraction from guinea pig epidermal homogenate resulted in the formation of the 1-series prostaglandin PGE1. The identity of this product was confirmed by argentation thin-layer chromatography (TLC), reverse phase-HPLC, and conversion with alkali treatment to PGB1. Incubations of [1-14C]20:3n-6 with the 105,000 g supernatant (cytosolic) fraction from guinea pig epidermal homogenate resulted in the formation of the 15-lipoxygenase product 15-hydroxy-8, 11, 13-eicosatrienoic acid (15-OH-20:3n6). The identity of this product was confirmed by normal phase-HPLC and gas chromatography/mass spectrometry (GC/MS). Thus, data from these studies indicate the capacity of enzymes in the microsomal and cytosolic fractions of guinea pig epidermal homogenates to transform 20:3n-6 to the eicosanoids PGE1 and 15-OH 20:3n-6, products which reportedly have anti-inflammatory properties. The in vivo significance of these findings remains to be explored.  相似文献   

13.
We have investigated the effects of a 3-thia fatty acid (TTA) and of temperature on the fatty acid (FA) metabolism of Atlantic salmon (Salmo salar). One experiment investigated the activity of the peroxisomal beta-oxidation enzyme, acyl-CoA oxidase (ACO), and the incorporation of TTA into phospholipid (PL) molecular species. Salmon hepatocytes in culture were incubated either without TTA (control(spades)) or with 0.8 mM TTA (TTA(spades)) in a short term (48 h) temperature study at 5 degrees C and at 12 degrees C. TTA was incorporated into the four PL classes studied: phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylserine (PS). TTA was preferentially esterified with 18:1, 16:1, 20:4 and 22:6 in the PLs. Hepatocytes incubated with TTA had higher ACO activity at 5 degrees C than at 12 degrees C. In a second experiment salmon were fed a diet based on fish meal-fish oil without any TTA added (control) or a fish meal-fish oil diet supplemented with 0.6% TTA for 8 weeks at 12 degrees C and 20 weeks at 5 degrees C. At the end of the feeding trial, hepatocytes from fish acclimated to high or low temperatures were isolated from both dietary groups and incubated with either [1-(14)C]18:1 n-9 or [1-(14)C]20:4 n-3 at 5 degrees C or 12 degrees C. Radiolabelled 18:1 n-9 was mainly esterified into neutral lipids (NL), whereas [1-(14)C]20:4 n-3 was mainly esterified into PL at both temperatures. The rate of elongation of [1-(14)C]18:1 n-9 to 20:1 n-9 was twice as high in hepatocytes from fish fed the control diet than it was in hepatocytes from fish fed the TTA diet, at both temperatures. The amount of [1-(14)C]20:4 n-3 converted to 22:6 n-3 was approximately the same in hepatocytes from the two dietary groups, but there was a tendency to higher production of 22:6 n-3 at the lower temperature. Oxidation of [1-(14)C]18:1 n-9 to acid soluble products (ASP) and CO(2) was approximately 10-fold greater in hepatocytes kept at 5 degrees C than in those kept at 12 degrees C and the main oxidation products formed were acetate, oxaloacetate and malate.  相似文献   

14.
The intracellular localization of the oxidation of [2-14C]adrenic acid (22:4(n-6)) and [1-14C]docosahexaenoic acid (22:6(n-3)) was studied in isolated liver cells. The oxidation of 22:4(n-6) was 2-3-times more rapid than the oxidation of 22:6(n-3), [1-14C]arachidonic acid (20:4(n-6)) or [1-14C]oleic acid (18:1). (+)-Decanoylcarnitine and lactate, both known to inhibit mitochondrial beta-oxidation, reduced the oxidation of 18:1 distinctly more efficiently than with 22:4(n-6) and 22:6(n-3). In liver cells from rats fed a diet containing partially hydrogenated fish oil, the oxidation of 22:6(n-6) and 22:6(n-3) was increased by 30-40% compared with cells from rats fed a standard pellet diet. With 18:1 as substrate, the amount of fatty acid oxidized was very similar in cells from animals fed standard pellets or partially hydrogenated fish oil. Shortened fatty acids were not produced from [5,6,8,9,11,12,14,15-3H]arachidonic acid. In hepatocytes from rats starved and refed 20% fructose, a large fraction of 14C from 22:4 was recovered in 14C-labelled C14-C18 fatty acids. Oxidation of 22:4 thus caused a high specific activity of the extramitochondrial pool of acetyl-CoA. The results suggest that 22:4(n-6) and to some extent 22:6(n-3) are oxidized by peroxisomal beta-oxidation and by this are retroconverted to arachidonic acid and eicosapentaenoic acid.  相似文献   

15.
The incorporation and metabolism of [1-14C]18:3(n-3), [1-14C]20:5(n-3), [1-14C]18:2(n-6), and [1-14C]20:4(n-6) were studied in primary cultures of trout brain astrocytes. There were no significant differences between the amounts of individual fatty acids incorporated into total lipid at 22 degrees C, with greater than 90% of all the fatty acids being incorporated into polar lipid classes. The distributions of 18:2(n-6), 18:3(n-3), and 20:5(n-3) in individual phospholipid classes at 22 degrees C were very similar, with 57-63 and 18-24% being incorporated into phosphatidylcholine and phosphatidylethanolamine, respectively. Approximately equal amounts of 20:4(n-6), approximately 30% of the total, were incorporated into each of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. The metabolism of the (n-3) fatty acids to longer-chain and more unsaturated species was significantly greater than that of (n-6) acids, but delta 4-desaturase activity was very low. A culture temperature of 10 degrees C increased the incorporation of all the fatty acids into total lipid and that of C20 fatty acids into polar lipid. At 10 degrees C, the incorporation of C20 fatty acids into phosphatidylethanolamine and phosphatidylinositol was increased, and the incorporation into phosphatidylcholine and phosphatidylserine was decreased. The distribution of C18 fatty acids was unchanged at the lower temperature, as was the desaturation and elongation of all the polyunsaturated fatty acids incorporated.  相似文献   

16.
The extent of mitochondrial and peroxisomal contribution to beta-oxidation of 18-, 20- and 24-carbon n-3 and n-6 polyunsaturated fatty acids (PUFAs) in intact rat hepatocytes is not fully clear. In this study, we analyzed radiolabeled acid soluble oxidation products by HPLC to identify mitochondrial and peroxisomal oxidation of 24:5n-3, 18- and 20-carbon n-3 and n-6 PUFAs. Mitochondrial fatty acid oxidation produced high levels of ketone bodies, tricarboxylic acid cycle intermediates and CO(2), while peroxisomal beta-oxidation released acetate. Inhibition of mitochondrial fatty acid oxidation with 2-tetradecylglycidic acid (TDGA), high amounts of [14C]acetate from oxidation of 24:5n-3, 18- and 20-carbon PUFAs were observed. In the absence of TDGA, high amounts of [14C]-labeled mitochondrial oxidation products were formed from oxidation of 24:5n-3, 18- and 20-carbon PUFAs. With 18:1n-9, high amounts of mitochondrial oxidation products were formed in the absence of TDGA, and TDGA strongly suppressed the oxidation of this fatty acid. Data of this study indicated that a shift in the partitioning from mitochondrial to peroxisomal oxidation differed for each individual fatty acid and is a specific property of 24:5n-3, 18- and 20-carbon n-3 and n-6 PUFAs.[14C]22:6n-3 was detected with [3-14C]24:5n-3, but not with [1-14C]24:5n-3 as the substrate, while [14C]16:0 was detected with [1-14C]24:5n-3, but not with [3-14C]24:5n-3 as the substrate. Furthermore, the amounts of 14CO(2) were similar when cells were incubated with [3-14C]24:5n-3 versus [1-14C]24:5n-3. These findings indicated that the proportion of 24:5n-3 oxidized in mitochondria was high, and that 24:5n-3 and 24:6n-3 were mostly beta-oxidized only one cycle in peroxisomes.  相似文献   

17.
We studied the long-chain conversion of [U-13C]alpha-linolenic acid (ALA) and linoleic acid (LA) and responses of erythrocyte phospholipid composition to variation in the dietary ratios of 18:3n-3 (ALA) and 18:2n-6 (LA) for 12 weeks in 38 moderately hyperlipidemic men. Diets were enriched with either flaxseed oil (FXO; 17 g/day ALA, n=21) or sunflower oil (SO; 17 g/day LA, n=17). The FXO diet induced increases in phospholipid ALA (>3-fold), 20:5n-3 [eicosapentaenoic acid (EPA), >2-fold], and 22:5n-3 [docosapentaenoic acid (DPA), 50%] but no change in 22:6n-3 [docosahexanoic acid (DHA)], LA, or 20:4n-6 [arachidonic acid (AA)]. The increases in EPA and DPA but not DHA were similar to those in subjects given the SO diet enriched with 3 g of EPA plus DHA from fish oil (n=19). The SO diet induced a small increase in LA but no change in AA. Long-chain conversion of [U-13C]ALA and [U-13C]LA, calculated from peak plasma 13C concentrations after simple modeling for tracer dilution in subsets from the FXO (n=6) and SO (n=5) diets, was similar but low for the two tracers (i.e., AA, 0.2%; EPA, 0.3%; and DPA, 0.02%) and varied directly with precursor concentrations and inversely with concentrations of fatty acids of the alternative series. [13C]DHA formation was very low (<0.01%) with no dietary influences.  相似文献   

18.
Chain elongation of eicosapentaenoic acid in the macrophage   总被引:1,自引:0,他引:1  
In order to elucidate the metabolic fate of eicosapentaenoic acid (20:5 (n-3], a major n-3 fatty acid constituent of fish oil, resident and casein-elicited mouse peritoneal macrophages were incubated with [3H]20:5 (n-3). Comparative experiments with arachidonic acid (20:4 (n-6] were also conducted. After 4, 8 and 18 h incubation, [3H]20:5 (n-3) was extensively elongated into [3H]22:5(n-3) while [3H]20:4(n-6) was only moderately elongated into [3H]22:4(n-6) in both resident and elicited macrophages. No measurable conversion of [3H]22:5(n-3) into [3H]22:6(n-3) (delta 4 desaturation) could be demonstrated. These data demonstrate that the highly active chain elongation of 20:5(n-3) by macrophage elongase, as well as the lack of detectable delta 4 desaturase activity, are responsible for the accumulation of 22:5(n-3) in this cell.  相似文献   

19.
This study was undertaken to determine the mode of transport of the essential (n-3) fatty acids docosahexaenoic acid 22:6(n-3) and linolenic acid 18:3(n-3). Male weanling Sprague-Dawley rats received a mixture of corn oil and [14C]18:3(n-3) or [14C]22:6(n-3) by gavage. At periods of 1 to 4 days after the injection, four rats per time point were killed and samples of blood were taken via heart puncture and the livers and retinas were collected. Blood lipoproteins and plasma proteins were separated by ultracentrifugation and analyzed by HPLC. Lipids were extracted and saponified and the fatty acids were converted to phenacyl esters for separation of individual fatty acids. After 1 and 2 h, radioactivity from 18:3(n-3) and 22:6(n-3) was observed primarily in the chylomicron/very low density lipoprotein fraction. By 4 h, radioactivity in the lipoprotein fraction was greatly decreased, with a small amount of radioactivity associated with albumin in the soluble protein fraction. After 24 h, the total amount of radioactivity associated with lipoprotein was further reduced, with more than half of the remaining label occurring in association with albumin and another unidentified protein. In the liver, 22:6(n-3) was concentrated in triacylglycerols (40.7%) and phospholipids (51.1%), with a maximum specific activity at 4 h. In the rod outer segments (ROS), the specific activity of [14C]22:6(n-3) increased to a maximum at 24 h and maintained a high level even at 4 days. These data suggest that after injection, 18:3(n-3) and 22:6(n-3) are esterified to triglyceride and phospholipid by the intestinal absorptive cells and transported in chylomicrons to the liver. After conversion of 18:3(n-3) to 22:6(n-3) in the liver, the retina accumulates 22:6(n-3) which may be transported from the liver via albumin and another unidentified protein, and is retained by the rod outer segments.  相似文献   

20.
The present study examined the in vitro and in vivo metabolism of 18:2n-6 and 18:3n 6 by kidney and liver in the male adult spontaneously hypertensive (SHR) and normotensive (WKY) rats. In liver and kidney slices incubated for 1 h with either [1-14C]18:2n-6 or [1-14C]18:3n-6 (60 μM), substantial amounts of radioactivity were incorporated into triacylglycerol and phospholipid fractions. Approximately 15% of the radiolabeled 18:2n-6 was converted into 18:3n-6 in liver slices but no conversion was found in kidney slices. When incubated with radiolabeled 18:3n-6, over 40% of the radioactivity was metabolized mainly to 20:4n-6 in liver slices, but evenly to 20:3n-6 and 20:4n-6 in kidney slices. There were no differences between the results from SHR and those from WKY. In WKY rats given an oral bolus of radiolabeled 18:3n-6, most of the radioactivity was recovered in the liver and significantly less in the kidney. In both tissues, the radioactivity was associated initially only with 18:3n-6 and later with its elongation product, 20:3n-6. These findings indicated that the kidney, although unable to metabolize 18:2n-6, could metabolize 18:3n-6 taken up from the circulation. The effectiveness of 18:3n-6, compared to 18:2n-6, as an anti hypertensive agent may result from the provision of a post-Δ6-desaturation metabolite which can be directly converted to blood pressure-regulating eicosanoids in the kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号