首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Predicting the conformational changes in proteins that are relevant for substrate binding is an ongoing challenge in the aim of elucidating the functional states of proteins. The motions that are induced by protein-ligand interactions are governed by the protein global modes. Our measurements indicate that the detected changes in the global backbone motion of the enzyme upon binding reflect a shift from the large-scale collective dominant mode in the unbound state towards a functional twisting deformation that assists in closing the binding cleft. Correlated motion in lysozyme has been implicated in enzyme function in previous studies, but detailed characterization of the internal fluctuations that enable the protein to explore the ensemble of conformations that ultimately foster large-scale conformational change is yet unknown. For this reason, we use THz spectroscopy to investigate the picosecond time scale binding modes and collective structural rearrangements that take place in hen egg white lysozyme (HEWL) when bound by the inhibitor (NAG) 3. These protein thermal motions correspond to fluctuations that have a role in both selecting and sampling from the available protein intrinsic conformations that communicate function. Hence, investigation of these fast, collective modes may provide knowledge about the mechanism leading to the preferred binding process in HEWL-(NAG) 3. Specifically, in this work we find that the picosecond time scale hydrogen-bonding rearrangements taking place in the protein hydration shell with binding modify the packing density within the hydrophobic core on a local level. These localized, intramolecular contact variations within the protein core appear to facilitate the large cooperative movements within the interfacial region separating the α- and β- domain that mediate binding. The THz time-scale fluctuations identified in the protein-ligand system may also reveal a molecular mechanism for substrate recognition.  相似文献   

2.
Rhodnius prolixus Nitrophorin 4 (abbreviated NP4) is an almost pure β-sheet heme protein. Its dynamics is investigated by X-ray structure determination at eight different temperatures from 122 to 304 K and by means of Mössbauer spectroscopy. A comparison of this β-sheet protein with the pure α-helical protein myoglobin (abbreviated Mbmet) is performed. The mean square displacement derived from the Mössbauer spectra increases linearly with temperature below a characteristic temperature T c. It is about 10 K larger than that of myoglobin. Above T c the mean square displacements increase dramatically. The Mössbauer spectra are analyzed by a two state model. The increased mean square displacements are caused by very slow motions occurring on a time scale faster than 140 ns. With respect to these motions NP4 shows the same protein specific modes as Mbmet. There is, however, a difference in the fast vibration regime. The B values found in the X-ray structures vary linearly over the entire temperature range. The mean square displacements in NP4 increase with slopes which are 60% larger than those observed for Mbmet. This indicates that nitrophorin has a larger structural distribution which makes it more flexible than myoglobin.  相似文献   

3.
Enzyme function depends on specific conformational motions. We show that the temperature dependence of enzyme kinetic parameters can provide insight into these functionally relevant motions. While investigating the catalytic properties of IPMDH from Escherichia coli, we found that its catalytic efficiency (kcat/KM,IPM) for the substrate IPM has an unusual temperature dependence, showing a local minimum at ∼35°C. In search of an explanation, we measured the individual constants kcat and KM,IPM as a function of temperature, and found that the van 't Hoff plot of KM,IPM shows sigmoid-like transition in the 20-40°C temperature range. By means of various measurements including hydrogen-deuterium exchange and fluorescence resonance energy transfer, we showed that the conformational fluctuations, including hinge-bending domain motions increase more steeply with temperatures >30°C. The thermodynamic parameters of ligand binding determined by isothermal titration calorimetry as a function of temperature were found to be strongly correlated to the conformational fluctuations of the enzyme. Because the binding of IPM is associated with a hinge-bending domain closure, the more intense hinge-bending fluctuations at higher temperatures increasingly interfere with IPM binding, thereby abruptly increasing its dissociation constant and leading to the observed unusual temperature dependence of the catalytic efficiency.  相似文献   

4.
Antifreeze glycoproteins from the Greenland cod Boreogadus saida were dimethylated at the N-terminus (m*AFGP) and their dynamics and conformational properties were studied in the presence of ice using 13C-NMR and FTIR spectroscopy. 13C-NMR experiments of m*AFGP in D2O, in H2O, and of freeze-dried m*AFGP were performed as a function of temperature. Dynamic parameters (1H T1ρ and TCH) obtained by varying the contact time revealed notable differences in the motional properties of AFGP between the different states. AFGP/ice dynamics was dominated by fast-scale motions (nanosecond to picosecond time scale), suggesting that the relaxation is markedly affected by the protein hydration. The data suggest that AFGP adopts a similar type of three-dimensional fold both in the presence of ice and in the freeze-dried state. FTIR studies of the amide I band did not show a single prevailing secondary structure in the frozen state. The high number of conformers suggests a high flexibility, and possibly reflects the necessity to expose more ice-binding groups. The data suggest that the effect of hydration on the local mobility of AFGP and the lack of significant change in the backbone conformation in the frozen state may play a role in inhibiting the ice crystal growth.  相似文献   

5.
Arylamine N-acetyltransferases (NATs) detoxify arylamines and hydrazine xenobiotics by catalyzing their N-acetylation, which prevents their bioactivation. Here, we reveal how structural dynamics impact NAT protein function. Our data suggest that there are multiple conformations in the catalytic cavity of hamster NAT2 that exchange on the millisecond time scale and enable NATs to accommodate substrates of varying size. The regions spanning N177-L180 and D285-F288, which form unique structures in mammalian NATs, possess inherent motions on the nanosecond time scale. The latter segment becomes more restricted in its motions upon substrate binding according to our NMR XNOE data. This greater rigidity appears to stem from interactions with the substrate. Finally, NAT acetylation has been suggested to protect these enzymes from ubiquitination. Our NMR data on a catalytically active state of hamster NAT2 suggest that structural rearrangements caused by its acetylation might contribute to this protection.  相似文献   

6.
7.
AAA+ proteases are essential players in cellular pathways of protein degradation. Elucidating their conformational behavior is key for understanding their reaction mechanism and, importantly, for elaborating our understanding of mutation-induced protease deficiencies. Here, we study the structural dynamics of the Thermotoga maritima AAA+ hexameric ring metalloprotease FtsH (TmFtsH). Using a single-molecule Förster resonance energy transfer approach to monitor ATPase and protease inter-domain conformational changes in real time, we show that TmFtsH—even in the absence of nucleotide—is a highly dynamic protease undergoing sequential transitions between five states on the second timescale. Addition of ATP does not influence the number of states or change the timescale of domain motions but affects the state occupancy distribution leading to an inter-domain compaction. These findings suggest that thermal energy, but not chemical energy, provides the major driving force for conformational switching, while ATP, through a state reequilibration, introduces directionality into this process. The TmFtsH A359V mutation, a homolog of the human pathogenic A510V mutation of paraplegin (SPG7) causing hereditary spastic paraplegia, does not affect the dynamic behavior of the protease but impairs the ATP-coupled domain compaction and, thus, may account for protease malfunctioning and pathogenesis in hereditary spastic paraplegia.  相似文献   

8.
The functions of proteins depend on the dynamical behavior of their native states on a wide range of timescales. To investigate these dynamics in the case of the small protein Gβ1, we analyzed molecular dynamics simulations with the model-free approach of nuclear magnetic relaxation. We found amplitudes of fast timescale motions (sub-τc, where τc is the rotational correlation time) consistent with S2 obtained from spin relaxation measurements as well as amplitudes of slow timescale motions (supra-τc) in quantitative agreement with S2 order parameters derived from residual dipolar coupling measurements. The slow timescale motions are associated with the large variations of the 3J couplings that follow transitions between different conformational substates. These results provide further characterization of the large structural fluctuations in the native states of proteins that occur on timescales longer than the rotational correlation time.  相似文献   

9.
DnaK is a molecular chaperone that has important roles in protein folding. The hydrolysis of ATP is essential to this activity, and the effects of nucleotides on the structure and function of DnaK have been extensively studied. However, the key residues that govern the conformational motions that define the apo, ATP-bound, and ADP-bound states are not entirely clear. Here, we used molecular dynamics simulations, mutagenesis, and enzymatic assays to explore the molecular basis of this process. Simulations of DnaK''s nucleotide-binding domain (NBD) in the apo, ATP-bound, and ADP/Pi-bound states suggested that each state has a distinct conformation, consistent with available biochemical and structural information. The simulations further suggested that large shearing motions between subdomains I-A and II-A dominated the conversion between these conformations. We found that several evolutionally conserved residues, especially G228 and G229, appeared to function as a hinge for these motions, because they predominantly populated two distinct states depending on whether ATP or ADP/Pi was bound. Consistent with the importance of these “hinge” residues, alanine point mutations caused DnaK to have reduced chaperone activities in vitro and in vivo. Together, these results clarify how sub-domain motions communicate allostery in DnaK.  相似文献   

10.
Protein motions on all timescales faster than molecular tumbling are encoded in the spectral density. The dissection of complex protein dynamics is typically performed using relaxation rates determined at high and ultra-high field. Here we expand this range of the spectral density to low fields through field cycling using the nucleocapsid protein of the SARS coronavirus as a model system. The field-cycling approach enables site-specific measurements of R 1 at low fields with the sensitivity and resolution of a high-field magnet. These data, together with high-field relaxation and heteronuclear NOE, provide evidence for correlated rigid-body motions of the entire β-hairpin, and corresponding motions of adjacent loops with a time constant of 0.8 ns (mesodynamics). MD simulations substantiate these findings and provide direct verification of the time scale and collective nature of these motions.  相似文献   

11.

Background

Many proteins undergo extensive conformational changes as part of their functionality. Tracing these changes is important for understanding the way these proteins function. Traditional biophysics-based conformational search methods require a large number of calculations and are hard to apply to large-scale conformational motions.

Results

In this work we investigate the application of a robotics-inspired method, using backbone and limited side chain representation and a coarse grained energy function to trace large-scale conformational motions. We tested the algorithm on four well known medium to large proteins and we show that even with relatively little information we are able to trace low-energy conformational pathways efficiently. The conformational pathways produced by our methods can be further filtered and refined to produce more useful information on the way proteins function under physiological conditions.

Conclusions

The proposed method effectively captures large-scale conformational changes and produces pathways that are consistent with experimental data and other computational studies. The method represents an important first step towards a larger scale modeling of more complex biological systems.
  相似文献   

12.
Proteins fluctuate between different conformations in solution, and these conformational fluctuations can be important for protein function and allosteric regulation. The chorismate mutase from Saccharomyces cerevisiae (ScCM), a key enzyme in the biosynthesis of aromatic amino acids, is allosterically activated and inhibited by tryptophan and tyrosine, respectively. It was initially proposed that in the absence of effector, ScCM fluctuates between activated R and inhibited T conformations according to the Monod-Wyman-Changeux (MWC) model, although a more complex regulation pattern was later suggested by mutagenesis and kinetic data. Here we used NMR relaxation dispersion experiments to understand the conformational fluctuations on the microsecond-to-millisecond timescale that occur in ScCM. In the absence of allosteric effectors, ScCM did not exclusively exchange between T and R conformations, suggesting that the two-state MWC model is insufficient to explain conformational dynamics. Addition of tyrosine led to the quenching of much of the motion on this timescale, while new motions were identified in the presence of tryptophan. These new motions are consistent with conformational fluctuations into an alternative conformation that may be important for enzyme activity.  相似文献   

13.

Background

Dynamics in haemoglobin from platypus (Ornithorhynchus anatinus), chicken (Gallus gallus domesticus) and saltwater crocodile (Crocodylus porosus) were measured to investigate response of conformational motions on the picosecond time scale to naturally occurring variations in the amino acid sequence of structurally identical proteins.

Methods

Protein dynamics was measured using incoherent quasielastic neutron scattering. The quasielastic broadening was interpreted first with a simple single Lorentzian approach and then by using the Kneller–Volino Brownian dynamics model.

Results

Mean square displacements of conformational motions, diffusion coefficients of internal dynamics and residence times for jump-diffusion between sites and corresponding effective force constants (resilience) and activation energies were determined from the data.

Conclusions

Modifications of the physicochemical properties caused by mutations of the amino acids were found to have a significant impact on protein dynamics. Activation energies of local side chain dynamics were found to be similar between the different proteins being close to the energy, which is required for the rupture of single hydrogen bond in a protein.

General significance

The measured dynamic quantities showed significant and systematic variations between the investigated species, suggesting that they are the signature of an evolutionary adaptation process stimulated by the different physiological environments of the respective protein.  相似文献   

14.
15.
Experimental observations of enzymes under active turnover conditions have brought new insight into the role of protein motions and allosteric networks in catalysis. Many of these studies characterize enzymes under dynamic chemical equilibrium conditions, in which the enzyme is actively catalyzing both the forward and reverse reactions during data acquisition. We have previously analyzed conformational dynamics and allosteric networks of the alpha subunit of tryptophan synthase under such conditions using NMR. We have proposed that this working state represents a four to one ratio of the enzyme bound with the indole‐3‐glycerol phosphate substrate (E:IGP) to the enzyme bound with the products indole and glyceraldehyde‐3‐phosphate (E:indole:G3P). Here, we analyze the inactive D60N variant to deconvolute the contributions of the substrate‐ and products‐bound states to the working state. While the D60N substitution itself induces small structural and dynamic changes, the D60N E:IGP and E:indole:G3P states cannot entirely account for the conformational dynamics and allosteric networks present in the working state. The act of chemical bond breakage and/or formation, or possibly the generation of an intermediate, may alter the structure and dynamics present in the working state. As the enzyme transitions from the substrate‐bound to the products‐bound state, millisecond conformational exchange processes are quenched and new allosteric connections are made between the alpha active site and the surface which interfaces with the beta subunit. The structural ordering of the enzyme and these new allosteric connections may be important in coordinating the channeling of the indole product into the beta subunit.  相似文献   

16.
Abstract

Normal mode analysis, using the elastic network model, has been employed to envision the low frequency normal mode motion trends in the structures of five intermediates and a transition state in the kinetic pathway of E. coli dihydrofolate reductase (DHFR). Five of the reaction pathway analog structures and a crystal structure resembling the transition state, using X-ray analyses determined by Kraut et al., have been adapted as structural models. The motions that poise pathways of the M20 loop transitions from closed to occluded conformations and sub domain rotation to close the substrate cleft, have been predicted and envisioned for the first time by this study. Pathway entries to the movement of the substrate binding cleft helices are also envisioned. These motions play roles in transition structure stabilization and in regulating the release of the product tetrahydrofolate (THF). The motions observed push the ground state conformation of each intermediate towards a higher energy sub state conformation. A set of conserved residues involved in the catalytic reactions and conformational changes, previously studied by kinetic, theoretical and NMR, have been analyzed. The importance of these motions in terms of protein dynamics are revealed and envisioned by the normal mode analysis. Additional residues are proposed as candidates for further study of their potential promotional function.  相似文献   

17.
Dematin is an actin-binding protein abundant in red blood cells and other tissues. It contains a villin-type ‘headpiece’ F-actin-binding domain at its extreme C-terminus. The isolated dematin headpiece domain (DHP) undergoes a significant conformational change upon phosphorylation. The mutation of Ser74 to Glu closely mimics the phosphorylation of DHP. We investigated motions in the backbone of DHP and its mutant DHPS74E using several complementary NMR relaxation techniques: laboratory frame 15N NMR relaxation, which is sensitive primarily to the ps–ns time scale, cross-correlated chemical shift modulation NMR relaxation detecting correlated μs–ms time scale motions of neighboring 13C′ and 15N nuclei, and cross-correlated relaxation of two 15N–1H dipole–dipole interactions detecting slow motions of backbone NH vectors in successive amino acid residues. The results indicate a reduction in mobility upon the mutation in several regions of the protein. The additional salt bridge formed in DHPS74E that links the N- and C-terminal subdomains is likely to be responsible for these changes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background

Internal motions enable proteins to explore a range of conformations, even in the vicinity of native state. The role of conformational fluctuations in the designated function of a protein is widely debated. Emerging evidence suggests that sub-groups within the range of conformations (or sub-states) contain properties that may be functionally relevant. However, low populations in these sub-states and the transient nature of conformational transitions between these sub-states present significant challenges for their identification and characterization.

Methods and Findings

To overcome these challenges we have developed a new computational technique, quasi-anharmonic analysis (QAA). QAA utilizes higher-order statistics of protein motions to identify sub-states in the conformational landscape. Further, the focus on anharmonicity allows identification of conformational fluctuations that enable transitions between sub-states. QAA applied to equilibrium simulations of human ubiquitin and T4 lysozyme reveals functionally relevant sub-states and protein motions involved in molecular recognition. In combination with a reaction pathway sampling method, QAA characterizes conformational sub-states associated with cis/trans peptidyl-prolyl isomerization catalyzed by the enzyme cyclophilin A. In these three proteins, QAA allows identification of conformational sub-states, with critical structural and dynamical features relevant to protein function.

Conclusions

Overall, QAA provides a novel framework to intuitively understand the biophysical basis of conformational diversity and its relevance to protein function.  相似文献   

19.
The protein dynamical transition and its connection with the liquid-glass transition (GT) of hydration water and aqueous solvents are reviewed. The protein solvation shell exhibits a regular glass transition, characterized by steps in the specific heat and the thermal expansion coefficient at the calorimetric glass temperature TG ≈ 170 K. It implies that the time scale of the structural α-relaxation has reached the experimental time window of 1–100 s. The protein dynamical transition, identified from elastic neutron scattering experiments by enhanced amplitudes of molecular motions exceeding the vibrational level [1], probes the α-process on a shorter time scale. The corresponding liquid-glass transition occurs at higher temperatures, typically 240 K. The GT is generally associated with diverging viscosities, the freezing of long-range translational diffusion in the supercooled liquid. Due to mutual hydrogen bonding, both, protein- and solvent relaxational degrees of freedom slow down in paralled near the GT. However, the freezing of protein motions, where surface-coupled rotational and librational degrees of freedom are arrested, is better characterized as a rubber-glass transition. In contrast, internal protein modes such as the rotation of side chains are not affected. Moreover, ligand binding experiments with myoglobin in various glass-forming solvents show, that only ligand entry and exit rates depend on the local viscosity near the protein surface, but protein-internal ligand migration is not coupled to the solvent. The GT leads to structural arrest on a macroscopic scale due to the microscopic cage effect on the scale of the intermolecular distance. Mode coupling theory provides a theoretical framework to understand the microcopic nature of the GT even in complex systems. The role of the α- and β-process in the dynamics of protein hydration water is evaluated. The protein-solvent GT is triggered by hydrogen bond fluctuations, which give rise to fast β-processes. High-frequency neutron scattering spectra indicate increasing hydrogen bond braking above TG.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号