首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular endothelial growth factor (VEGF) mediates angiogenic signaling by activating tyrosine kinase receptors. Endothelial cells treated with VEGF are known to increase reactive oxygen species (ROS) production and activate the MAPK pathway. To identify the target proteins of the VEGF receptor, we treated human umbilical vein endothelial cells (HUVECs) with VEGF or H2O2, and identified and semiquantified tyrosine-phosphorylated proteins, combining 2D-gel electrophoresis, Western analysis using antibody against phospho-tyrosine, and mass spectrometry. We detected 95 proteins that were differentially phosphorylated; some were specifically phosphorylated by VEGF but not by H2O2. 2D-gel electrophoresis revealed that heterogeneous populations of the same protein responded differently to H2O2 and VEGF. Bioinformatic studies examining the nature of the differential phosphorylation in various subpopulations of proteins should provide new insights into VEGF- and H2O2-induced signaling pathways.  相似文献   

2.
3.
4.
Ghrelin, a peptide hormone isolated from the stomach, releases growth hormone and stimulates appetite. Ghrelin is also expressed in pancreas, kidneys, cardiovascular system and in endothelial cells. The precise role of ghrelin in endothelial cell functions remains unknown. We examined the expression of ghrelin and its receptor (GHSR1) mRNAs and proteins in human microvascular endothelial cells (HMVEC) and determined whether ghrelin affects in these cells proliferation, migration and in vitro angiogenesis; and whether MAPK/ERK2 signaling is important for the latter action. We found that ghrelin and GHSR1 are constitutively expressed in HMVEC. Treatment of HMVEC with exogenous ghrelin significantly increased in these cells proliferation, migration, in vitro angiogenesis and ERK2 phosphorylation. MEK/ERK2 inhibitor, PD 98059 abolished ghrelin-induced in vitro angiogenesis. This is the first demonstration that ghrelin and its receptor are expressed in human microvascular endothelial cells and that ghrelin stimulates HMVEC proliferation, migration, and angiogenesis through activation of ERK2 signaling.  相似文献   

5.

Background

Oxidative stress induced by the accumulation of reactive oxygen species (ROS) has a causal role in the development of insulin resistance, whereas ROS themselves function as intracellular second messengers that promote insulin signal transduction. ROS can act both positively and negatively on insulin signaling, but the molecular mechanisms controlling these dual actions of ROS are not fully understood.

Methodology/Principal Findings

Here, we directly treated H4IIEC hepatocytes with hydrogen peroxide (H2O2), a representative membrane-permeable oxidant and the most abundant ROS in cells, to identify the key factors determining whether ROS impair or enhance intracellular insulin signaling. Treatment with high concentrations of H2O2 (25–50 µM) for 3 h reduced insulin-stimulated Akt phosphorylation, and increased the phosphorylation of both JNK and its substrate c-Jun. In contrast, lower concentrations of H2O2 (5–10 µM) enhanced insulin-stimulated phosphorylation of Akt. Moreover, lower concentrations suppressed PTP1B activity, suggesting that JNK and phosphatases such as PTP1B may play roles in determining the thresholds for the diametrical effects of H2O2 on cellular insulin signaling. Pretreatment with antioxidant N-acetyl-L-cysteine (10 mM) canceled the signal-promoting action of low H2O2 (5 µM), and it canceled out further impairment of insulin of insulin signaling induced by high H2O2 (25 µM).

Conclusions/Significance

Our results demonstrate that depending on its concentration, H2O2 can have the positive or negative effect on insulin signal transduction in H4IIEC hepatocytes, suggesting that the concentration of intracellular ROS may be a major factor in determining whether ROS impair or enhance insulin signaling.  相似文献   

6.
Reactive oxygen species (ROS) were established to play an important role in cellular signaling as second messengers by integrating different pathways. Recently, we showed that EGF initiated a rapid tyrosine phosphorylation of both EGF-receptor and STAT factors with simultaneous increase in the intracellular ROS level. Now, we have investigated the effect of intracellular red-ox state on EGF- and H2O2-induced activation of EGF receptor, STAT1 and STAT3. We demonstrated that the pretreatment of A431 cells with antioxidant N-acetyl-L-cysteine (NAC) partly reduced the level of EGF-induced phosphorylation of proteins under investigation. Besides, H2O2-induced activation of EGF receptor, and STAT factors was fully prevented by NAC pretreatment. The inhibition of ROS generation by DPI declined EGF-dependent activation of EGF receptor and STAT factors to basal level. Our results demonstrate the essential role of cellular red-ox status in the modulation of EGF-mediated activation of receptor and STAT factors. We have postulated that EGF-induced ROS generation is a very important initial event promoting physiological activation of EGF receptor and subsequent STAT factor activation.  相似文献   

7.
Reactive oxygen species (ROS) mediate cell damage and have been implicated in the pathogenesis of diseases that involve endothelial injury. Cells possess antioxidant systems, including intracellular antioxidants and ROS scavenging enzymes, that control the redox state and prevent cell damage. In addition to intracellular antioxidants, certain growth factor receptors can be activated under oxidative stress and trigger downstream cell survival signaling cascades. Vascular endothelial growth factor receptor-3 (VEGFR-3) is a primary modulator of lymphatic endothelial proliferation and survival. Here, we provide evidence that activation of VEGFR-3 signaling in response to hydrogen peroxide (H(2)O(2)) promotes endothelial cell survival. Treatment with H(2)O(2) induced the tyrosine phosphorylation of VEGFR-3 and its association with the signaling adaptor proteins Shc, growth factor receptor binding protein 2, Sos, p85, SHP-2, and phospholipase C-gamma. Of note, a hereditary lymphoedema-linked mutant of VEGFR-3 was not phosphorylated by H(2)O(2) treatment. Isoforms of protein kinase C (PKC), alpha and delta, were also tyrosine-phosphorylated after H(2)O(2) stimulation. However, only the delta isoform of PKC was required for H(2)O(2)-induced phosphorylation of VEGFR-3. The tyrosine phosphorylation of VEGFR-3 or isoforms of PKC was completely inhibited by treatment with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, a specific inhibitor for Src family kinases, indicating that Src family kinases are upstream of PKC and VEGFR-3. Furthermore, expression of the wild-type but not the lymphoedema-linked mutant form of VEGFR-3 in porcine artery endothelial cells significantly enhanced the activation of Akt after H(2)O(2) stimulation. Consistent with these biochemical changes, we observed that expression and activation of the wild-type but not the mutant form of VEGFR-3 inhibited H(2)O(2)-induced apoptosis. These studies suggest that VEGFR-3 protects against oxidative damage in endothelial cells, and that patients with hereditary lymphoedema may be susceptible to ROS-induced cell damage.  相似文献   

8.
Endothelial mitochondria, the major site of ATP generation, modulate the intracellular dynamics of reactive oxygen species (ROS), which, in turn, control endothelial function. Adequate oxygen (O(2)) supply is required by endothelial cells (EC). Both hypoxia and hyperoxia may favor the overproduction of ROS leading to oxidative stress, mitochondrial damage and endothelial dysfunction. We investigated the capability and mechanisms of Cellfood? (CF), an antioxidant compound, to modulate O(2) availability and mitochondrial respiratory metabolism and to regulate ROS generated by hypoxia in EC in vitro. Human umbilical vein endothelial cells (HUVEC) and ECV-304 were evaluated for the O(2) consumption using a Clark's electrode. The O(2) consumption rate rose, during the first minutes after CF addition and was associated with increase in mitochondrial oxidative capacity and good cell viability. Similar behaviours were observed when EC were exposed to CF for up to 8 days. The O(2) consumption increased and was accompanied by both intracellular rise of ATP and maintainment of LDH concentration. Hypoxia-induced ROS generation was significantly inhibited by CF, through the up-regulated expression of MnSOD, an anti-oxidant responsible for mitochondrial function preservation. The EC hypoxic response is mediated by the hypoxia master regulator HIF-1alpha whose activation was attenuated by CF, in concomitance with MnSOD up-regulation. Our results suggest a role for CF in improoving respiratory metabolism and in activating anti-oxidant mechanisms in EC, thus preserving endothelial function.  相似文献   

9.
Reactive oxygen species (ROS) have been implicated in both cell signaling and pathology. A major source of ROS in endothelial cells is NADPH oxidase, which generates superoxide (O(2)(.-)) on the extracellular side of the plasma membrane but can result in intracellular signaling. To study possible transmembrane flux of O(2)(.-), pulmonary microvascular endothelial cells were preloaded with the O(2)(.-)-sensitive fluorophore hydroethidine (HE). Application of an extracellular bolus of O(2)(.-) resulted in rapid and concentration-dependent transient HE oxidation that was followed by a progressive and nonreversible increase in nuclear HE fluorescence. These fluorescence changes were inhibited by superoxide dismutase (SOD), the anion channel blocker DIDS, and selective silencing of the chloride channel-3 (ClC-3) by treatment with siRNA. Extracellular O(2)(.-) triggered Ca(2+) release in turn triggered mitochondrial membrane potential alterations that were followed by mitochondrial O(2)(.-) production and cellular apoptosis. These "signaling" effects of O(2)(.-) were prevented by DIDS treatment, by depletion of intracellular Ca(2+) stores with thapsigargin and by chelation of intracellular Ca(2+). This study demonstrates that O(2)(.-) flux across the endothelial cell plasma membrane occurs through ClC-3 channels and induces intracellular Ca(2+) release, which activates mitochondrial O(2)(.-) generation.  相似文献   

10.
Reactive oxygen species (ROS) are not only generated in conditions of cellular stress but are also constitutively produced in most cell types by specific metabolic processes. This research focused on a potential antioxidant Trolox (model compound for alpha-tocopherol), with the aim to establish exact mechanisms of Trolox intracellular oxidation prevention on model organism Saccharomyces cerevisiae. Measuring intracellular oxidation of Trolox-treated yeast cells revealed that Trolox decreased intracellular oxidation during normal metabolism. Trolox treatment decreased cyto- and geno-toxicity of treated yeast cells in MES buffer, lowered intracellular oxidation, decreased intracellular peroxides formation, and increased H(2)O(2) degradation and superoxide quenching yeast extract ability. This study suggests that Trolox treatment provides prevention against intracellular ROS formation. Trolox application as therapeutic agent against intracellular ROS formation would be worth considering. Additionally, results indicate that yeasts are good model organisms for studying intracellular oxidation and oxidative stress. The obtained results on yeast cells might be useful to direct further human-related search for the Trolox evaluation as a human supplement used for protecting cells against intracellular free radical formation.  相似文献   

11.
Reactive oxygen species (ROS) are important for intracellular signaling mechanisms regulating many cellular processes. Manganese superoxide dismutase (MnSOD) may regulate cell growth by changing the level of intracellular ROS. In our study, we investigated the effect of ROS on 7721 human hepatoma cell proliferation. Treatment with H2O2 (1-10 microM) or transfection with antisense MnSOD cDNA constructs significantly increased the cell proliferation. Recently, the mitogen-activated protein kinases (MAPK) and the protein kinase B (PKB) were proposed to be involved in cell growth. Accordingly, we assessed the ability of ROS to activate MAPK and PKB. PKB and extracellular signal-regulated kinase (ERK) were both rapidly and transiently activated by 10 microM H2O2, but the activities of p38 MAPK and JNK were not changed. ROS-induced PKB activation was abrogated by the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002, suggesting that PI3-K is an upstream mediator of PKB activation in 7721 cells. Transfection with sense PKB cDNA promoted c-fos and c-jun expression in 7721 cells, suggesting that ROS may regulate c-fos and c-jun expression via the PKB pathway. Furthermore we found that exogenous H2O2 could stimulate the proliferation of PKB-AS7721 cells transfected with antisense PKB cDNA, which was partly dependent on JNK activation, suggesting that H2O2 stimulated hepatoma cell proliferation via cross-talk between the PI3-K/PKB and the JNK signaling pathways. However, insulin could stimulate 7721 cell proliferation, which is independent of cross-talk between PI3-K/PKB and JNK pathways. In addition, H2O2 did not induce the cross-talk between the PI3-K/PKB and the JNK pathways in normal liver cells. Taken together, we found that ROS regulate hepatoma cell growth via specific signaling pathways (cross-talk between PI3-K/PKB and JNK pathway) which may provide a novel clue to elucidate the mechanism of hepatoma carcinogenesis.  相似文献   

12.
Reactive oxygen species (ROS) are generated as by-products of many cellular processes and can modulate cellular signaling pathways. However, high ROS levels are toxic; thus, intracellular ROS need to be tightly controlled. Therefore, cells use a group of antioxidant molecules and detoxifying enzymes that remove or detoxify reactive species. We found that the level of the antioxidant glutathione is greatly increased in human cytomegalovirus (HCMV)-infected cells due to activation of glutathione synthetic enzymes. In addition, our data suggest that virus-specific mechanisms are used to induce the expression of target antioxidant and detoxifying enzymes critical for the success of the infection. As a result of this virus-induced anti-ROS environment, key signaling kinases, such as the mammalian target of rapamycin (mTOR) kinase in mTOR complex 1 (mTORC1), are protected from inhibition by exogenous hydrogen peroxide (H(2)O(2)). In this regard, we found that phosphorylation of mTOR kinase at serine 2448 (suggested to be activating) was maintained during infection even under ROS stress conditions that inhibited it in uninfected cells. We also show that AMP-dependent kinase (AMPK)-mediated phosphorylation of serine 792 of raptor, the specificity subunit of mTORC1, increases in infected cells after H(2)O(2) treatment. This phosphorylation is normally inhibitory for mTORC1. However, in infected cells this did not result in inhibition of mTORC1 activity, suggesting that inhibitory effects of raptor phosphorylation are circumvented. Overall, our data suggest that HCMV utilizes virus-specific mechanisms to activate a variety of means to protect the cell and mTORC1 from the effects of ROS.  相似文献   

13.
The importance of endothelial contraction in the genesis of inflammatory edema has been reported. ROS are metabolites synthesized in pathological conditions in that a significant intravascular fluid leak occurs, such as ischemia-reperfusion. Present experiments were designed to test the hypothesis that ROS, particularly H2O2, may elicit the contraction of endothelial cells, and to explore the mechanisms involved. Bovine aortic endothelial cells incubated with H2O2 showed a significant reduction in planar cell surface area (PCSA), and a significant increase in myosin light chain phosphorylation (MLCP), with a time- and dose-dependent pattern, without any significant toxicity. This effect of H2O2 was not blocked by sulotroban (TxA2 antagonist) or BN 52021 (PAF antagonist). Lanthanum chloride (calcium channel blocker) and EGTA partially inhibited the increase in MLCP induced by H2O2. H7 and staurosporine, PKC inhibitors, and PKC down-regulation (phorbol myristate acetate treatment, 24 h) also blocked H2O2-dependent endothelial contraction, measured as PCSA or MLCP. H2O2 increased the intracellular calcium concentration, an effect blunted by EGTA and lanthanum chloride. H2O2 also increased the phosphorylation of an 80 kD polypeptide, probably MARCKS, a PKC substrate. In summary, the present results demonstrate the ROS-dependent contraction of endothelial cells, an effect that could explain the intravascular fluid leak observed in some pathophysiological situations. Calcium and PKC may be involved in the development of this contraction.  相似文献   

14.
Endothelial cell oxidative stress and signal transduction   总被引:3,自引:0,他引:3  
  相似文献   

15.
The redox regulator thioredoxin-1 (Trx-1) is required for the redox potential of the cell and exerts important functions in cell growth and apoptosis. Severe oxidative stress has been implicated in the oxidation of proteins and cell death. However, the role of low doses of reactive oxygen species (ROS) is poorly understood. Here, we show that 10 and 50 microM H2O2 and short-term exposure to shear stress significantly increased Trx-1 mRNA and protein levels in endothelial cells. Since it is known that Trx-1 exerts anti-apoptotic functions, we next investigated whether low doses of ROS can inhibit basal and serum-depletion induced endothelial cell apoptosis. Indeed, treatment of endothelial cells with 10 and 50 microM H2O2 significantly reduced apoptosis induction. Reduction of Trx-1 expression using an antisense oligonucleotide approach resulted in the induction of apoptosis and abolished the inhibitory effect of low doses of H2O2. Taken together, our results demonstrate that low doses of ROS act as signaling molecules and exert anti-apoptotic functions in endothelial cells via upregulation of the redox-regulator Trx-1.  相似文献   

16.
17.
Osteoprotegerin (OPG) is a key regulator of osteoclastogenesis during the progression of periodontitis. Recent reports suggest that osteoprotegerin may also prevent arterial calcification and contribute to endothelial cell survival. To determine whether the vascular functions of osteoprotegerin are involved in periodontitis, we examined whether osteoprotegerin contributed to the survival of endothelial cells damaged by Porphyromonas gingivalis cysteine proteinases (gingipains). Gingipain proteinases cleave a broad range of host proteins, and are important virulence factors of P. gingivalis, a major causative bacterium of adult periodontitis. Human microvascular endothelial cells (HMVEC) were exposed to activated gingipain extracts from P. gingivalis 381, with and without pretreatment with osteoprotegerin. Cell viability was quantified by the tetrazolium (WST-8) reduction assay, and apoptosis was examined using Hoechst 33342 nuclear staining. After 16 h of treatment with activated gingipain extracts, HMVEC showed near-complete detachment from the tissue culture dish, and apoptosis was evident by 24 h. Pretreatment of HMVEC with osteoprotegerin reduced the extent of both cellular detachment and apoptotic cell death. Our results indicated that osteoprotegerin pretreatment protected HMVEC against detachment and apoptotic cell death induced by gingipain-active bacterial cell extracts. These results also suggest that osteoprotegerin may function as a survival factor for endothelial cells during periodontitis.  相似文献   

18.
Iron regulatory proteins (IRP1 and 2) function as translational regulators that coordinate the cellular iron metabolism of eukaryotes by binding to the mRNA of target genes such as the transferrin receptor or ferritin. In addition to IRP2, IRP1 serves as sensor of reactive oxygen species (ROS). As iron and oxygen are essential but potentially toxic constituents of most organisms, ROS-mediated modulation of IRP1 activity may be an important regulatory element in dissecting iron homeostasis and oxidative stress. The responses of IRP1 towards reactive oxygen species are compartment-specific and rather complex: H2O2 activates IRP1 via a signaling cascade that leads to upregulation of the transferrin receptor and cellular iron accumulation. Contrary, superoxide inactivates IRP1 by a direct chemical attack being limited to the intracellular compartment. In particular, activation of IRP1 by H2O2 has established a new regulatory link between inflammation and iron metabolism with new clinical implications. This mechanism seems to contribute to the anemia of chronic disease and inflammation-mediated iron accumulation in tissues. In addition, the cytotoxic side effects of redox-cycling anticancer drugs such as doxorubicin may involve H2O2-mediated IRP1 activation. These molecular insights open up new therapeutic strategies for the clinical management of chronic inflammation and drug-mediated cardiotoxicity.  相似文献   

19.
Nitric oxide (.NO) attenuates hydrogen peroxide (H(2)O(2))-mediated injury in porcine pulmonary artery endothelial cells (PAECs) and modulates intracellular levels of cGMP and cAMP. We hypothesized that.NO attenuates H(2)O(2)-induced PAEC monolayer barrier dysfunction through cyclic nucleotide-dependent signaling mechanisms. To examine this hypothesis, cultured PAEC monolayers were treated with H(2)O(2), and barrier function was measured as transmonolayer albumin clearance. H(2)O(2) caused significant PAEC barrier dysfunction that was attenuated by intracellular as well as extracellular.NO generation.NO increased PAEC cGMP and cAMP levels, but treatment with inhibitors of soluble guanylate cyclase or protein kinase G did not abrogate.NO-mediated barrier protection. In contrast, H(2)O(2) decreased protein kinase A activity, and inhibiting protein kinase A abrogated the protective effect of.NO. H(2)O(2)-induced barrier dysfunction was not associated with decreased levels of cGMP or cAMP. 3-Isobutyl-1-methylxanthine and the cGMP analog 8-bromo-cGMP had little effect on H(2)O(2)-mediated endothelial barrier dysfunction, whereas 8-bromo-cAMP plus 3-isobutyl-1-methylxanthine was protective. These results indicate that.NO modulates vascular endothelial barrier function through cAMP-dependent signaling mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号