首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent years have witnessed enormous advances in fluorescence microscopy instrumentation and fluorescent marker development. 4Pi confocal microscopy with two-photon excitation features excellent optical sectioning in the axial direction, with a resolution in the 100 nm range. Here we apply this technique to cellular imaging with EosFP, a photoactivatable autofluorescent protein whose fluorescence emission wavelength can be switched from green (516 nm) to red (581 nm) by irradiation with 400-nm light. We have measured the two-photon excitation spectra and cross sections of the green and the red species as well as the spectral dependence of two-photon conversion. The data reveal that two-photon excitation and photoactivation of the green form of EosFP can be selectively performed by choosing the proper wavelengths. Optical highlighting of small subcellular compartments was shown on HeLa cells expressing EosFP fused to a mitochondrial targeting signal. After three-dimensionally confined two-photon conversion of EosFP within the mitochondrial networks of the cells, the converted regions could be resolved in a 3D reconstruction from a dual-color 4Pi image stack.  相似文献   

2.
The most prominent restrictions of fluorescence microscopy are the limited resolution and the finite signal. Established conventional, confocal, and multiphoton microscopes resolve at best approximately 200nm in the focal plane and only 500nm in depth. Additionally, organic fluorophores and fluorescent proteins are bleached after 10(4)-10(5) excitation cycles. To overcome these restrictions, we synergistically combine the 3- to 7-fold improved axial resolution of 4Pi microscopy with the greatly enhanced photostability of semiconductor quantum dots. Co-localization studies of immunolabeled microtubules and mitochondria demonstrate the feasibility of this approach for routine biological measurements. In particular, we visualize the three-dimensional entanglement of the two networks with unprecedented detail.  相似文献   

3.
To explore whether super-resolution fluorescence microscopy is able to resolve topographic features of single cellular protein complexes, a two-photon 4Pi microscope was used to study the nuclear pore complex (NPC). The microscope had an axial resolution of 110-130 nm and a two-color localization accuracy of 5-10 nm. In immune-labeled HeLa cells, NPCs could be resolved much better by 4Pi than by confocal microscopy. When two epitopes of the NPC, one localized at the tip of the cytoplasmic filaments and the other at the ring of the nuclear basket, were immune-labeled, they could be clearly resolved in single NPCs, with the distance between them determined to be 152 ± 30 nm. In cells expressing a green fluorescent protein construct localized at the NPC center, the distances between the ring of the nuclear filaments and the NPC center was 76 ± 12 (Potorous tridactylus cells) or 91 ± 21 nm (normal rat kidney cells), whereas the distance between the NPC center and the tips of the cytoplasmic filaments was 84 ± 18 nm, all values in good agreement with previous electron or single-molecule fluorescence estimates. We conclude that super-resolution fluorescence microscopy is a powerful method for analyzing single protein complexes and the cellular nanomachinery in general.  相似文献   

4.
The fluorescence microscope, especially its confocal variant, has become a standard tool in cell biology research for delivering 3D-images of intact cells. However, the resolution of any standard optical microscope is at least 3 times poorer along the axis of the lens that in its focal plane. Here, we review principles and applications of an emerging family of fluorescence microscopes, such as 4Pi microscopes, which improve axial resolution by a factor of seven by employing two opposing lenses. Noninvasive axial sections of 80-160 nm thickness deliver more faithful 3D-images of subcellular features, providing a new opportunity to significantly enhance our understanding of cellular structure and function.  相似文献   

5.
Continuous fluorescence microphotolysis (CFM) and fluorescence correlation spectroscopy (FCS) permit measurement of molecular mobility and association reactions in single living cells. CFM and FCS complement each other ideally and can be realized using identical equipment. So far, the spatial resolution of CFM and FCS was restricted by the resolution of the light microscope to the micrometer scale. However, cellular functions generally occur on the nanometer scale. Here, we develop the theoretical and computational framework for CFM and FCS experiments using 4Pi microscopy, which features an axial resolution of ∼100 nm. The framework, taking the actual 4Pi point spread function of the instrument into account, was validated by measurements on model systems, employing 4Pi conditions or normal confocal conditions together with either single- or two-photon excitation. In all cases experimental data could be well fitted by computed curves for expected diffusion coefficients, even when the signal/noise ratio was small due to the small number of fluorophores involved.  相似文献   

6.
Although the addition of just the excitation light field at the focus, or of just the fluorescence field at the detector is sufficient for a three- to fivefold resolution increase in 4Pi-fluorescence microscopy, substantial improvements of its optical properties are achieved by exploiting both effects simultaneously. They encompass not only an additional expansion of the optical bandwidth, but also an amplified transfer of the newly gained spatial frequencies to the image. Here we report on the realization and the imaging properties of this 4Pi microscopy mode of type C that also is the far-field microscope with the hitherto largest aperture. We show that in conjunction with two-photon excitation, the resulting optical transfer function displays a sevenfold improvement of axial three-dimensional resolution over confocal microscopy in aqueous samples, and more importantly, a marked transfer of all frequencies within its inner region of support. The latter is present also without the confocal pinhole. Thus, linear image deconvolution is possible both for confocalized and nonconfocalized live-cell 4Pi imaging. Realized in a state-of-the-art scanning microscope, this approach enables robust three-dimensional imaging of fixed and live cells at approximately 80 nm axial resolution.  相似文献   

7.
A new form of super-resolution fluorescence microscopy has emerged in recent years, based on the high accuracy localization of individual photo-switchable fluorescent labels. Image resolution as high as 20 nm in the lateral dimensions and 50 nm in the axial direction has been attained with this concept, representing an order of magnitude improvement over the diffraction limit. The demonstration of multicolor imaging with molecular specificity, three-dimensional (3D) imaging of cellular structures, and time-resolved imaging of living cells further illustrates the exciting potential of this method for biological imaging at the nanoscopic scale.  相似文献   

8.
Visualization of subcellular structures and their temporal evolution is of utmost importance to understand a vast range of biological processes. Optical microscopy is the method of choice for imaging live cells and tissues; it is minimally invasive, so processes can be observed over extended periods of time without generating artifacts due to intense light irradiation. The use of fluorescence microscopy is advantageous because biomolecules or supramolecular structures of interest can be labeled specifically with fluorophores, so the images reveal information on processes involving only the labeled molecules. The key restriction of optical microscopy is its moderate resolution, which is limited to about half the wavelength of light (~200 nm) due to fundamental physical laws governing wave optics. Consequently, molecular processes taking place at spatial scales between 1 and 100 nm cannot be studied by regular optical microscopy. In recent years, however, a variety of super-resolution fluorescence microscopy techniques have been developed that circumvent the resolution limitation. Here, we present a brief overview of these techniques and their application to cellular biophysics.  相似文献   

9.
We demonstrate three-dimensional (3D) super-resolution imaging of stochastically switched fluorophores distributed across whole cells. By evaluating the higher moments of the diffraction spot provided by a 4Pi detection scheme, single markers can be simultaneously localized with <10 nm precision in three dimensions in a layer of 650 nm thickness at an arbitrarily selected depth in the sample. By splitting the fluorescence light into orthogonal polarization states, our 4Pi setup also facilitates the 3D nanoscopy of multiple fluorophores. Offering a combination of multicolor recording, nanoscale resolution and extended axial depth, our method substantially advances the noninvasive 3D imaging of cells and of other transparent materials.  相似文献   

10.
Insulin production in pancreatic β-cells is critically linked to mitochondrial oxidative phosphorylation. Increased ATP production triggered by blood glucose represents the β-cells' glucose sensor. Type-2 diabetes mellitus results from insulin resistance in peripheral tissues and impaired insulin secretion. Pathology of diabetic β-cells might be reflected by the altered morphology of mitochondrial network. Its characterization is however hampered by the complexity and density of the three-dimensional (3D) mitochondrial tubular networks in these cell types. Conventional confocal microscopy does not provide sufficient axial resolution to reveal the required details; electron tomography reconstruction of these dense networks is still difficult and time consuming. However, mitochondrial network morphology in fixed cells can also be studied by 4Pi microscopy, a laser scanning microscopy technique which provides an ~ 7-fold improved axial resolution (~ 100 nm) over conventional confocal microscopy. Here we present a quantitative study of these networks in insulinoma INS-1E cells and primary β-cells in Langerhans islets. The former were a stably-transfected cell line while the latter were transfected with lentivirus, both expressing mitochondrial matrix targeted redox-sensitive GFP. The mitochondrial networks and their partial disintegration and fragmentation are revealed by carefully created iso-surface plots and their quantitative analysis. We demonstrate that β-cells within the Langerhans islets from diabetic Goto Kakizaki rats exhibited a more disintegrated mitochondrial network compared to those from control Wistar rats and model insulinoma INS-1E cells. Standardization of these patterns may lead to development of morphological diagnostics for Langerhans islets, for the assessment of β-cell condition, before their transplantations.  相似文献   

11.
To investigate the cellular accumulation and intracellular localization of dimercaptosuccinate-coated iron oxide nanoparticles (D-IONPs) in oligodendroglial cells, we have synthesized IONPs that contain the fluorescent dye BODIPY (BP) in their coat (BP-D-IONPs) and have investigated the potential effects of the absence or presence of this dye on the particle uptake by oligodendroglial OLN-93 cells. Fluorescent BP-D-IONPs and non-fluorescent D-IONPs had similar hydrodynamic diameters and ζ-potentials of around 60 nm and ?58 mV, respectively, and showed identical colloidal stability in physiological media with increasing particle size and positivation of the ζ-potential in presence of serum. After exposure of oligodendroglial OLN-93 cells to BP-D-IONPs or D-IONPs in the absence of serum, the specific cellular iron content increased strongly to around 1,800 nmol/mg. This strong iron accumulation was lowered for both types of IONPs by around 50 % on exposure of the cells at 4 °C and by around 90 % on incubation in presence of 10 % serum. The accumulation of both D-IONPs and BP-D-IONPs in the absence of serum was not affected by endocytosis inhibitors, whereas in the presence of serum inhibitors of clathrin-dependent endocytosis lowered the particle accumulation by around 50 %. These data demonstrate that oligodendroglial cells efficiently accumulate IONPs by an endocytotic process which is strongly affected by the temperature and the presence of serum and that BP-D-IONPs are a reliable tool to monitor by fluorescence microscopy the uptake and cellular fate of D-IONPs.  相似文献   

12.
Super-resolution (SR) microscopy has been used to observe structural details beyond the diffraction limit of ~250 nm in a variety of biological and materials systems. By combining this imaging technique with both computer-vision algorithms and topological methods, we reveal and quantify the nanoscale morphology of the primary cilium, a tiny tubular cellular structure (~2–6 μm long and 200–300 nm in diameter). The cilium in mammalian cells protrudes out of the plasma membrane and is important in many signaling processes related to cellular differentiation and disease. After tagging individual ciliary transmembrane proteins, specifically Smoothened, with single fluorescent labels in fixed cells, we use three-dimensional (3D) single-molecule SR microscopy to determine their positions with a precision of 10–25 nm. We gain a dense, pointillistic reconstruction of the surfaces of many cilia, revealing large heterogeneity in membrane shape. A Poisson surface reconstruction algorithm generates a fine surface mesh, allowing us to characterize the presence of deformations by quantifying the surface curvature. Upon impairment of intracellular cargo transport machinery by genetic knockout or small-molecule treatment of cells, our quantitative curvature analysis shows significant morphological differences not visible by conventional fluorescence microscopy techniques. Furthermore, using a complementary SR technique, two-color, two-dimensional stimulated emission depletion microscopy, we find that the cytoskeleton in the cilium, the axoneme, also exhibits abnormal morphology in the mutant cells, similar to our 3D results on the Smoothened-measured ciliary surface. Our work combines 3D SR microscopy and computational tools to quantitatively characterize morphological changes of the primary cilium under different treatments and uses stimulated emission depletion to discover correlated changes in the underlying structure. This approach can be useful for studying other biological or nanoscale structures of interest.  相似文献   

13.
Protein-protein interactions (PPIs) are key molecular events to biology. However, it remains a challenge to visualize PPIs with sufficient resolution and sensitivity in cells because the resolution of conventional light microscopy is diffraction-limited to ~250 nm. By combining bimolecular fluorescence complementation (BiFC) with photoactivated localization microscopy (PALM), PPIs can be visualized in cells with single molecule sensitivity and nanometer spatial resolution. BiFC is a commonly used technique for visualizing PPIs with fluorescence contrast, which involves splitting of a fluorescent protein into two non-fluorescent fragments. PALM is a recent superresolution microscopy technique for imaging biological samples at the nanometer and single molecule scales, which uses phototransformable fluorescent probes such as photoactivatable fluorescent proteins (PA-FPs). BiFC-PALM was demonstrated by splitting PAmCherry1, a PA-FP compatible with PALM, for its monomeric nature, good single molecule brightness, high contrast ratio, and utility for stoichiometry measurements. When split between amino acids 159 and 160, PAmCherry1 can be made into a BiFC probe that reconstitutes efficiently at 37 °C with high specificity to PPIs and low non-specific reconstitution. Ras-Raf interaction is used as an example to show how BiFC-PALM helps to probe interactions at the nanometer scale and with single molecule resolution. Their diffusion can also be tracked in live cells using single molecule tracking (smt-) PALM. In this protocol, factors to consider when designing the fusion proteins for BiFC-PALM are discussed, sample preparation, image acquisition, and data analysis steps are explained, and a few exemplary results are showcased. Providing high spatial resolution, specificity, and sensitivity, BiFC-PALM is a useful tool for studying PPIs in intact biological samples.  相似文献   

14.
Biomembranes with as few as three lipid components can form coexisting liquid-disordered (Ld) and liquid-ordered (Lo) phases. In the coexistence region of Ld and Lo phases, the lipid mixtures 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/chol or brain sphingomyelin (bSM)/DOPC/chol form micron-scale domains that are easily visualized with light microscopy. Although large domains are not observed in the mixtures DSPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/chol and bSM/POPC/chol, lateral heterogeneity is nevertheless detected using techniques with nanometer-scale spatial resolution. We propose a simple and accessible method to measure domain sizes below optical resolution (~200 nm). We measured nanodomain size for the latter two mixtures by combining experimental Förster resonance energy transfer data with a Monte-Carlo-based analysis. We found a domain radius of 7.5?10 nm for DSPC/POPC/chol, similar to values obtained previously by neutron scattering, and ~5 nm for bSM/POPC/chol, slightly smaller than measurable by neutron scattering. These analyses also detect the domain-size transition that is observed by fluorescence microscopy in the four-component lipid mixture bSM/DOPC/POPC/chol. Accurate measurements of fluorescent-probe partition coefficients are especially important for the analysis; therefore, we exploit three different methods to measure the partition coefficient of fluorescent molecules between Ld and Lo phases.  相似文献   

15.
Iron oxide nanoparticles (IONPs) are used for various biomedical and therapeutic approaches. To investigate the uptake and the intracellular trafficking of IONPs in neural cells we have performed nanoparticle pulse-chase experiments to visualize the internalization and the fate of fluorescent IONPs in C6 glioma cells and astrocyte cultures. Already a short exposure to IONPs for 10 min at 4 °C (nanoparticle pulse) allowed binding of substantial amounts of nanoparticles to the cells, while internalization of IONPs into the cell was prevented. The uptake of bound IONPs and the intracellular trafficking was started by increasing the temperature to 37 °C (chase period). While hardly any cellular fluorescence nor any iron staining was detectable directly after the nanoparticle pulse, dotted cellular fluorescence and iron patterns appeared already within a few minutes after start of the chase incubation and became intensified in the perinuclear region during further incubation for up to 90 min. Longer chase incubations resulted in separation of the fluorescent coat from the core of the internalized IONPs. Disruption of actin filaments in C6 cells strongly impaired the internalization of IONPs, whereas destabilization of microtubules traped IONP-containing vesicles to the plasma membrane. In conclusion, nanoparticle pulse-chase experiments allowed to synchronize the cellular uptake of fluorescent IONPs and to identify for C6 cells an actin-dependent early and a microtubule-dependent later process in the intracellular trafficking of fluorescent IONPs.  相似文献   

16.
The aim of the study was to establish a user-friendly approach for single fluorescence particle 3D localization and tracking with nanometre precision in a standard fluorescence microscope using a point spread function (PSF) approach, and to evaluate validity and precision for different analysis methods and optical conditions with particular application to microcirculatory flow dynamics and cell biology. Images of fluorescent particles were obtained with a standard fluorescence microscope equipped with a piezo positioner for the objective. Whole pattern (WP) comparison with a PSF recorded for the specific set-up and measurement of the outermost ring radius (ORR) were used for analysis. Images of fluorescent particles were recorded over a large range (about $7\,\upmu \text{ m }$ ) of vertical positions, with and without distortion by overlapping particles as well as in the presence of cultured endothelial cells. For a vertical range of $6.5\,\upmu \text{ m }$ , the standard deviation (SD) from the predicted value, indicating validity, was 9.3/8.7 nm (WP/ORR) in the vertical and 8.2/11.7 nm in the horizontal direction. The precision, determined by repeated measurements, was 5.1/3.8 nm in the vertical and 2.9/3.7 nm in the horizontal direction. WP was more robust with respect to underexposure or overlapping images. On the surface of cultured endothelial cells, a layer with 2.5 times increased viscosity and a thickness of about $0.8\,\upmu \text{ m }$ was detected. With a validity in the range of 10 nm and a precision down to about 3–5 nm obtained by standard fluorescent microscopy, the PSF approach offers a valuable tool for a variety of experimental investigations of particle localizations, including the assessment of endothelial cell microenvironment.  相似文献   

17.
Spatially modulated illumination fluorescence microscopy can in theory measure the sizes of objects with a diameter ranging between 10 and 200 nm and has allowed accurate size measurement of subresolution fluorescent beads ( approximately 40-100 nm). Biological structures in this size range have so far been measured by electron microscopy. Here, we have labeled sites containing the active, hyperphosphorylated form of RNA polymerase II in the nucleus of HeLa cells by using the antibody H5. The spatially modulated illumination-microscope was compared with confocal laser scanning and electron microscopes and found to be suitable for measuring the size of cellular nanostructures in a biological setting. The hyperphosphorylated form of polymerase II was found in structures with a diameter of approximately 70 nm, well below the 200-nm resolution limit of standard fluorescence microscopes.  相似文献   

18.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.  相似文献   

19.
Mitochondria in numerous cell types, especially in cultured cells, form a reticular network undergoing constant fusion and fission. The three dimensional (3D) morphology of these networks however has not been studied in detail to our knowledge. We have investigated insulinoma INS-1E and hepatocellular carcinoma HEP-G2 cells transfected with mitochondria-addressed GFP. Using 4Pi microscopy, 3D morphology changes responding to decreased oxidative phosphorylation and/or energetic status could be observed in these cells at an unprecedented 100 nm level of detail. In INS-1E cells cultivated at 11 mM glucose, the mitoreticulum appears predominantly as one interconnected mitochondrion with a nearly constant 262+/-26 nm tubule diameter. If cultured at 5 mM glucose, INS-1E cells show 311+/-36 nm tubules coexisting with numerous flat cisternae. Similar interconnected 284+/-38 nm and 417+/-110 nm tubules were found in HEP-G2 cells cultivated at 5 mM and hyperglycaemic 25 mM glucose, respectively. With rotenone inhibiting respiration to approximately 10%, disintegration into several reticula and numerous approximately 300 nm spheres or short tubules was observed. De-energization by uncoupling additionally led to formation of rings and bulky cisternae of 1.4+/-0.4 microm diameter. Rotenone and uncoupler acted synergically in INS-1E cells and increased fusion (ongoing with fission) forming bowl-like shapes. In HEP-G2 cells fission partially ceased with FCCP plus rotenone. Thus we have revealed previously undescribed details for shapes upon mitochondrial disintegration and clearly demonstrate that high resolution 3D microscopy is required for visualization of mitochondrial network. We recommend 4Pi microscopy as a new standard.  相似文献   

20.
Widefield fluorescence microscopy with extended resolution   总被引:1,自引:1,他引:0  
Widefield fluorescence microscopy is seeing dramatic improvements in resolution, reaching today 100 nm in all three dimensions. This gain in resolution is achieved by dispensing with uniform Köhler illumination. Instead, non-uniform excitation light patterns with sinusoidal intensity variations in one, two, or three dimensions are applied combined with powerful image reconstruction techniques. Taking advantage of non-linear fluorophore response to the excitation field, the resolution can be further improved down to several 10 nm. In this review article, we describe the image formation in the microscope and computational reconstruction of the high-resolution dataset when exciting the specimen with a harmonic light pattern conveniently generated by interfering laser beams forming standing waves. We will also discuss extensions to total internal reflection microscopy, non-linear microscopy, and three-dimensional imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号