首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.  相似文献   

2.
Proprioception during voluntary movement   总被引:3,自引:0,他引:3  
In the last decade, a number of laboratories have accumulated data on the firing of single afferent fibres from muscle and skin during movement in awake cats, monkeys and human subjects. While there is general agreement on the firing behaviour of skin afferents and tendon organ (Ib) afferents during movement, there remains a significant divergence of opinion regarding the way in which the response of muscle spindle afferents (Ia and II) to length changes is modified by fusimotor action (e.g., alpha-gamma linkage versus "fusimotor set"). The controversies surrounding the fusimotor system have tended to overshadow the emergence of several important characteristics of proprioceptive behaviour, corroborated in separate laboratories. (i) Mean Ia firing rates during active movements are nearly always higher than at rest. Thus, activation of the fusimotor system is reserved for the control of, or preparation for, movement. In animals, there is now strong evidence that there is usually a tonic component of fusimotor action during rhythmical movements. (ii) During fast, unloaded movements (peak muscle speeds, 0.2 resting lengths/s or more), the firing of both Ia and II afferents usually increases during lengthening and decreases during shortening. Ib afferents fire during even the most rapid active shortening of their parent muscles. (iii) During powerful shortening contractions performed against significant loads, Ia firing is often appreciable, suggesting that there is at least some underlying alpha-gamma coactivation. (iv) During fast imposed muscle stretches, Ia afferents respond with segmented bursts of firing (threshold speed for segmentation, 0.5-1.0 resting length/s). Ib afferents show far less segmentation of discharge under similar circumstances.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Experiments are described which define criteria for identifying fusimotor axons discharging in filaments of the masseter nerve in lightly anaesthetized cats. During reflex movements of the jaw two patterns of discharge were observed in different fusimotor fibres. One type, called "sustained," fired at a fairly constant increased rate. The other, called "modulated," fired at high frequencies during the extrafusal muscle contraction. Evidence from spindle primary and secondary recordings in similar experiments strongly suggests that the "sustained" type were dynamic fusimotor fibres and the "modulated" type were static fusimotor fibres. New spindle recordings in normal unanaesthetized cats indicate that the modulated pattern of static fusimotor discharge also occurs in these conditions. Its effect is to reduce the tendency for spindle afferents to become silent during muscle shortening. A proposal is made that the static fusimotor discharge in cyclic movements may represent a temporal "template" for the intended movement as directed by the central pattern generator.  相似文献   

4.
In unloading condition the degree of activation of the central stepping program was investigated during passive leg movements in healthy subjects, as well as the excitability of spinal motoneurons during passive and voluntary stepping movement. Passive stepping movements with characteristics maximally approximated to those during voluntary stepping were accomplished by experimenter. The comparison of the muscle activity bursts during voluntary and imposed movements was made. In addition to that the influence of artificially created loading onto the foot to the leg movement characteristics was analyzed. Spinal motoneuron excitability was estimated by means of evaluation of amplitude modulation of the soleus H-reflex. The changes of H-reflexes under the fixation of knee or hip joints were also studied. In majority of subjects the passive movements were accompanied by bursts of EMG activity of hip muscles (and sometimes of knee muscles), which timing during step cycle was coincided with burst timing of voluntary step cycle. In many cases the bursts of EMG activity during passive movements exceeded activity in homonymous muscles during voluntary stepping. The foot loading imitation exerted essential influence on distal parts of moving extremity during voluntary as well passive movements, that was expressed in the appearance of movements in the ankle joint and accompanied by emergence and increasing of phasic EMG activity of shank muscles. The excitability of motoneurons during passive movements was greater then during voluntary ones. The changes and modulation of H-reflex throughout the step cycle without restriction of joint mobility and during exclusion of hip joint mobility were similar. The knee joint fixation exerted the greater influence. It is supposed that imposed movements activate the same mechanisms of rhythm generation as a supraspinal commands during voluntary movements. In the conditions of passive movements the presynaptic inhibition depend on afferent influences from moving leg in the most degree then on central commands. It seems that afferent inputs from pressure receptors of foot in the condition of "air-stepping" actively interact with central program of stepping and, irrespective of type of the performing movements (voluntary or passive), form the final pattern activity.  相似文献   

5.
The degree of activation of the central stepping program during passive leg movement was studied in healthy subjects under unloading conditions; the excitability of spinal motoneurons was studied during passive and voluntary stepping movements. Passive stepping movements with characteristics maximally close to those during voluntary stepping were accomplished by the experimenter. The bursts of muscular activity during voluntary and imposed stepping movements were compared. In addition, the influence on the leg movement of artificially created loading onto the foot was studied. The excitability of spinal motoneurons was estimated by the amplitude of modulation of the m. soleus H reflex. Changes in the H reflex (Hoffmann’s reflex) after fixation of the knee and hip joints were also studied. In most subjects, passive movements were accompanied by bursts of electromyographic (EMG) activity in the hip muscles (sometimes in shank muscles); the timing of the EMG burst during the step cycle coincided with the burst’s timing during voluntary stepping. In many cases, the bursts in EMG activity exceeded the activity of homonymous muscles during voluntary stepping. Simulation of foot loading influenced significantly the distal part of the moving extremity during both voluntary and passive movements, which was expressed in the appearance of movements in the ankle joint and an increase in the phasic EMG activity of the shank muscles. The excitability of motoneurons during passive movements was higher than during voluntary movements. Changes and modulation of the H reflex throughout the step cycle were similar without restriction of joint mobility and without hip joint mobility. Fixation of the knee joint was of great importance. It is supposed that imposed movements activate the same mechanisms of rhythm generation as supraspinal commands during voluntary movements. During passive movements, presynaptic inhibition depends mostly on the afferent influences from the moving leg rather than on the central commands. Under the conditions of “air-stepping,” the afferent influences from the foot pressure receptors are likely to interact actively with the central program of stepping and to determine the final activity pattern irrespective of the movement type (voluntary or passive).  相似文献   

6.
Chronic recording techniques in freely walking cats have been used to sample unitary activity from most large myelinated afferent classes. Cutaneous mechanoreceptors are highly sensitive and generate regular activity patterns predictable from their modalities. Knee joint afferents can fire briskly midrange locomotory movements but appear to be influenced by factors other than joint angle. Golgi tendon organs generate activity consistent with sensitivity to active muscle tension. Muscle spindle afferents do not appear to conform to any single functional pattern for all muscles. It is suggested that degree and rate of stretch are sensed by spindles (possibly under dynamic fusimotor bias) in extensor muscles which normally undergo isometric or lengthening contractions whereas rapidly modulated static fusimotor activity is employed to preserve spindle activity during the rapidly shortening contractions of flexor muscles. Both patterns may be represented in different spindles of bifunctional, biarticular muscles such as rectus femoris and sartorius.  相似文献   

7.
The task-dependence of the presynaptic inhibition of the muscle spindle primary afferents in human forearm muscles was studied, focusing in particular on the modulation associated with the co-contraction of antagonist muscles and the activation of cutaneous afferents. The changes known to affect the motoneuron proprioceptive assistance during antagonist muscle co-activation in human leg and arm muscles were compared. The evidence available so far that these changes might reflect changes in the presynaptic inhibition of the muscle spindle afferent is briefly reviewed. The possible reasons for changes in presynaptic inhibition during the antagonist muscle co-contraction are discussed. Some new experiments on the wrist extensor muscles are briefly described. The results showed that the changes in the Ia presynaptic inhibition occurring during the co-contraction of the wrist flexor and extensor muscles while the hand cutaneous receptors were being activated (the subject's hand was clenched around a manipulandum) could be mimicked by contracting the wrist extensor muscles alone while applying extraneous stimulation to the hand cutaneous receptors. It is concluded that besides the possible contribution of inputs generated by the co-contraction of antagonist muscles and by supraspinal pathways, cutaneous inputs may play a major role in modulating the proprioceptive assistance during manipulatory movements.  相似文献   

8.
A three-component model of the muscle is used in which the components change their values when the muscle is stimulated. In particular the elastic components change not only their moduli of elasticity but the unstretched lengths decrease when the muscle is in the active state. When the model is extended to the intrafusal muscle fibres of the mammalian muscle spindle it can reproduce some of the observed responses to mechanical stretch and fusimotor stimulation.  相似文献   

9.
The representation of arm movements in postcentral and parietal cortex   总被引:2,自引:0,他引:2  
Considerable experimental evidence supports the hypothesis that the neocortical processes underlying kinesthetic sensation form a hierarchical series of cells signalling increasingly complex patterns of movement of the body. However, this view has been criticized and the data lack quantitative verification under controlled conditions. These studies have also typically used one-dimensional (reciprocal) movements, even of multiple degree-of-freedom joints such as the wrist or shoulder, and have been restricted to passive movements. This latter limitation is particularly critical, since the response of many muscle receptors is affected by fusimotor activity while that of many articular receptors is sensitive to the level of muscle contractile activity. Both factors introduce significant kinesthetic ambiguity to the signals arising from these receptors during active movement. This ambiguity is evident in the discharge of primary somatosensory cortex proprioceptive cells. Studies in area 5 show that single cells signal shoulder joint movements in the form of broad directional tuning curves. The pattern of activity of the entire population encodes movement direction. The cells appear to encode spatial aspects of movement unambiguously, since their discharge is relatively insensitive to the changes in muscle activity required to produce the same movements under different load conditions. It is not yet certain whether the somesthetic activity in area 5 is a kinesthetic representation that is sequential to and hierarchically superior to that in SI, or whether it is a parallel representation with separate and distinct function.  相似文献   

10.
Repetitive exposures to altered gait and movement following lower-limb amputation (LLA) have been suggested to contribute to observed alterations in passive tissue properties and neuromuscular control in/surrounding the lumbar spine. These alterations, in turn, may affect the synergy between passive and active tissues during trunk movements. Eight males with unilateral LLA and eight non-amputation controls completed quasi-static trunk flexion–extension movements in seven distinct conditions of rotation in the transverse plane: 0° (sagittally-symmetric), ±15°, ±30°, and ±45° (sagittally-asymmetric). Electromyographic (EMG) activity of the bilateral lumbar erector spinae and lumbar kinematics were simultaneously recorded. Peak lumbar flexion and EMG-off angles were determined, along with the difference (“DIFF”) between these two angles and the magnitude of peak normalized EMG activities. Persons with unilateral LLA exhibited altered and asymmetric synergies between active and passive trunk tissues during both sagittally-symmetric and -asymmetric trunk flexion movements. Specifically, decreased and asymmetric passive contributions to trunk movements were compensated with increases in the magnitude and duration of active trunk muscle responses. Such alterations in trunk passive and active neuromuscular responses may result from repetitive exposures to abnormal gait and movement subsequent to LLA, and may increase the risk for LBP in this population.  相似文献   

11.
In monkeys performing a handle-repositioning task involving primarily wrist flexion-extension (F-E) movements after a torque perturbation was delivered to the handle, single units were recorded extracellularly in the contralateral precentral cortex. Precentral neurons were identified by passive somatosensory stimulation, and were classified into five somatotopically organized populations. Based on electromyographic recordings, it was observed that flexors and extensors about the wrist joint were specifically involved in the repositioning of the handle, while many other muscles which act at the wrist and other forelimb joints were involved in the task in a supportive role. In precentral cortex, all neuronal responses observed were temporally correlated to both the sensory stimuli and the motor responses. Visual stimuli, presented simultaneously with torque perturbations, did not affect the early portion of cortical responses to such torque perturbations. In each of the five somatotopically organized neuronal populations, task-related neurons as well as task-unrelated ones were observed. A significantly larger proportion of wrist (F-E) neurons was related to the task, as compared with the other, nonwrist (F-E) populations. The above findings were discussed in the context of a hypothesis for the function of precentral cortex during voluntary limb movement in awake primates. This hypothesis incorporates a relationship between activities of populations of precentral neurons, defined with respect to their responses to peripheral events at or about single joints, and movements about the same joint.  相似文献   

12.
The purpose of this study was to investigate secondary muscle spindle afferents from the triceps-plantaris (GS) and posterior biceps and semitendinosus (PBSt) muscles with respect to their fusimotor reflex control from different types of peripheral nerves and receptors. The activity of single secondary muscle spindle afferents was recorded from dissected and cut dorsal root filaments in alpha-chloralose anaesthetized cats. Both single spindle afferents and sets of simultaneously recorded units (2-3) were investigated. The modulation and mean rate of firing of the afferent response to sinusoidal stretching of the GS and PBSts muscle were determined. Control measurements were performed in the absence of any reflex stimulation, while test measurements were made during reflex stimulation. The reflex stimuli consisted of manually performed movements of the contralateral hind limb, muscle stretches, ligament tractions and electrical stimulations of cutaneous afferents. Altogether 21 secondary spindle afferents were investigated and 20 different reflex stimuli were employed. The general responsiveness (i.e. number of significant reflex effects/number of control-test series) was 52.4%, but a considerable variation between different stimuli was found, with the highest (89.9%) for contralateral whole limb extension and the lowest (25.0%) for stretch of the contralateral GS muscle. The size of the response to a given stimulus varied considerably between different afferents, and, in the same afferent, different reflex stimuli produced effects of varying size. Most responses were characterized by an increase in mean rate of discharge combined with a decrease in modulation, indicative of static fusimotor drive (Cussons et al., 1977). Since the secondary muscle spindle afferents are part of a positive feedback loop, projecting back to both static and dynamic fusimotor neurones (Appelberg Et al., 1892 a, 1983 b; Appelberg et al., 1986), it is suggested that the activity in the loop may work like an amplified which, during some circumstances, enhance the effect of other reflex inputs to the system (Johansson et al., 1991 b).  相似文献   

13.
The possibility of muscle activation of passive arm during its cyclic movements, imposed by active movements of contralateral arm or by experimenter was studied, as well as the influence of lower extremities cyclic movements onto arm muscles activity. In addition to that the activity of legs muscles was estimated in dependence on motor task condition for arms. Ten healthy supine subjects carried out opposite movements of arms with and without stepping-like movements of both legs. The experiment included three conditions for arm movements: 1) the active movements of both arms; 2) the active movements of one arm, when other entirely passive arm participated in the movement by force; 3) passive arm movement caused by experimenter. In the condition 2) additional load on active arm was applied (30 N and 60 N). In all three conditions the experiment was carried out with arms movements only or together with legs movements. The capability of passive moving arm muscles activation depended on increasing afferent inflow from muscles of contralateral arm was demonstrated. Emerging electrical activity was modulated in the arms movements cycle and depended on the degree of active arm loading. During combined active movements of arms and legs the reduction of activity in the flexor muscles of shoulder and forearm was observed. Concomitant arms movements increased the magnitude ofelectromiographic bursts during passive stepping-like movements in the most of recorded muscles, and the same increasing was only observed in biceps femoris and tibialis anterior muscles during active legs movement. The increasing of loading of one arm caused essential augmentation of EMG-activity in the majority of recording legs muscles. The data obtained are the additional proof of existence of functionally significant neuronal interaction both between arms and between upper and lower extremities, which is evidently depend on the intraspinal neuronal connections.  相似文献   

14.
The purpose of this study was to examine whether fatigue of postural muscles might influence the coordination between segmental posture and movement. Seven healthy adults performed series of fifteen fast wrist flexions and extensions while being instructed to keep a dominant upper limb posture as constant as possible. These series of voluntary movements were performed before and after a fatiguing submaximal isometric elbow flexion, and also with or without the help of an elbow support. Surface EMG from muscles Delto?deus anterior, Biceps brachii, Triceps brachii, Flexor carpi ulnaris, Extensor carpi radialis were recorded simultaneously with wrist, elbow and shoulder accelerations and wrist and elbow displacements. Fatigue was evidenced by a shift of the elbow and shoulder muscles EMG spectra towards low frequencies. Kinematics of wrist movements and corresponding activations of wrist prime-movers, as well as the background of postural muscle activation before wrist movement were not modified. There were only slight changes in timing of postural muscle activations. These data indicate that postural fatigue induced by a low-level isometric contraction has no effect on voluntary movement and requires no dramatic adaptation in postural control.  相似文献   

15.
The purpose of the present study was to investigate the combined effects of muscle history, activation and stretching velocity on short latency stretch response (SLR). Stretches (70, 120 and 200 deg s-1) were elicited to both passive and active (10-25% MVC) triceps surae muscle with constant (ISO), lengthened (LEN) or shortened (SHO) muscle length. Under the passive SHO pre-condition both SLR amplitude and reflex torque (RT) decreased where as latency increased compared with the passive ISO pre-condition. Such observations were absent in active trials. Stretches applied to a lengthening passive muscle (LEN) resulted in smaller SLR amplitude and RT compared with passive ISO. In active muscle the stretch response increased with stretching velocity in ISO and SHO. However, in LEN there was large interindividual variability and no velocity dependent increase in SLR amplitude was observed. Smaller amplitude and longer latency of passive SLR in SHO could result from increased slack in the intrafusal fibres, which may be compensated by fusimotor activation during the active condition. The mechanism behind the smaller amplitude in passive LEN and the lack of velocity dependence in active LEN may be related to changes in motoneuron pool excitability or changes in the spindle sensitivity to stretch.  相似文献   

16.
Experiments were performed in forty-five cats anaesthetized with alpha-chloralose. The aim of the study was to investigate a sample of primary muscle spindle afferents from triceps muscle with respect to their fusimotor reflex control from ipsi- as well as contralateral hind limb. Primary muscle spindle afferents of the triceps surae muscle were recorded from the mean rate of firing and the modulation of the afferent response to sinusoidal stretching of the triceps surae muscle was determined. Test measurements were made during tonic stretch of the ipsilateral PBSt, contralateral PBSt, contralateral triceps muscle or during extension of the intact contralateral hind limb. Control measurements were made with ipsi- and contralateral PBSt as well as contralateral triceps muscles relaxed and with contralateral hind limb in resting position. The occurrence and types of fusimotor effects were assessed by comparing test to control responses. The main finding of the present investigation was the great variability in type and size of the fusimotor effects evoked by different ipsi- and contralateral reflex stimuli. Both ipsi- and contralateral stimulations gave rise to predominantly dynamic, predominantly static or mixed static and dynamic fusimotor reflexes. In the same preparation, a given reflex stimulus often caused different reflex responses in different triceps surae primary spindle afferents. In the same afferent unit, different reflex stimuli usually produced fusimotor effects which differed from each other in type and/or size. In general, contralateral whole limb extension and stretch of contralateral PBSt muscles were more potent as reflex stimuli than stretch of the ipsilateral PBSt muscle. Stretch of the contralateral triceps surae muscle was, but for a few afferent units, ineffective as reflexogenic stimulus. It is concluded that the individualized receptive profiles of the primary muscle spindle afferents, which have been postulated in earlier investigations where the effects of different stimuli have been investigated on different cell populations, still seems to hold good when the stimuli are tested on the same units. The individuality of the receptive profiles of gamma-motoneurones is discussed in relation to different motor control hypotheses.  相似文献   

17.
In this study we tested the hypothesis that during steady contractions of human wrist extensors or flexors, the torque-angle relationship during movements imposed about the wrist is predicted by the classical isometric muscle length-tension curve, with ascending, descending and ascending limbs. Angle-torque relationships were measured during steady muscle activation (10% of maximal voluntary contraction: MVC), elicited either by electrical stimulation or voluntary regulation of the electromyogram (EMG). Flexion-extension movements of constant speed (+/-10 degrees /s) were imposed on the subjects' hands with a servo actuator, either through the full physiological range of motion +/-50 degrees, or through +/-10 degrees. During extensor contractions, angle-torque curves in +/-50 degrees movements had ascending, descending and ascending limbs, as in isometric contractions. However, in +/-10 degrees movements, torque always increased with increasing muscle length and decreased with decreasing length, even over angles corresponding to the descending limb of isometric curves. For flexor activation, angle-torque curves had similar properties, though descending limbs were less obvious or absent. During imposed movements, hysteresis was observed in the angle-torque curves. This was attributed to non-linearities of the active muscles. Hysteresis reached a maximum at intermediate wrist angles and declined at maximal muscle length, contradicting the recent hypothesis that sarcomere non-uniformity is responsible for the hysteresis. We conclude that the classical isometric length-tension curve, with its prominent descending limb, does not predict angle-torque curves of human wrist muscles in continuous movements. A more appropriate model is one in which stiffness about the wrist is always positive and hysteresis is a significant factor.  相似文献   

18.
Unit response in the superior colliculus and underlying structures has been examined in the choralose-anaesthetized cat following passive movement of an occluded eye. One group of units was sensitive to small saccadic movements, responded regardless of the initial postion of the eye, and in most instances responded to movements in opposit directions. A second numerically smaller group also responded when they eye was moved at saccadic velocity but only when the eye passed a fixed point. Such units with fixed positional thresholds were found following movements in both nasal and temporal directions as well as to both upward and downward movement. Both types of unit response were found after transection of the optic nerve and were also recorded when individual extraocular muscles were subjected to controlled stretch. It is assumed that most unit activity seen after passive movement of the occluded eye is due to activity in extraocular muscle receptors. In the deep layers of the superior colliculus responses to small eye movements were found to be due to the activation of very low threshold receptors sensitive to vibration in the facial area.  相似文献   

19.
The effect of pH and the calcium ions of the surrounding medium on the receptor potential and unit activity of the isolated frog muscle spindle was investigated. With a decrease in pH of the medium the amplitude and duration of the hyperpolarization phase of the receptor potential increased and the amplitude of its depolarization phase decreased. The frequencies of the spontaneous and evoked activity were reversibly reduced under these conditions. A change in pH of the surrounding medium toward the alkaline side led to a decrease in the amplitude and duration of the hyperpolarization phase of the receptor potential. The firing rate initially increased and then decreased to 30–50% of normal. An increase in the calcium concentration in an alkaline medium led to an increase, but in an acid and normal medium to a decrease, in firing rate. The observed changes in electrical activity of the muscle spindle in solutions can be explained by changes in the velocity of active (electrogenic) and passive transport of sodium and calcium ions.  相似文献   

20.
It is well known that proprioception is composed of the senses of movement and position. Whereas tests of position sense are quite commonly used, tests of the acuity in perception of movement velocity are scarce. In the present study we examined some novel tests for assessing the sense of limb movement velocity, involving replication and discrimination of single-joint movement velocity. Specifically, we investigated: (1) whether replication of limb movement velocity is more accurate following active criterion movements as compared to passive; (2) whether antagonist muscle contraction during passive limb movement enhances velocity discrimination; (3) how criterion movement velocity influences response accuracy; (4) the relationship between movement velocity and movement extent during velocity replication; and (5) whether subjects really base discrimination of velocities on perceived velocity. Sixteen healthy subjects participated in four tests (I-IV). For each test, horizontal abductions were performed about the right glenohumeral joint from the sagittal plane. The subjects were required to actively replicate the velocity of either an active (Test I) or passive (Test II) criterion movement, or judge whether a passive/semipassive (passive during antagonist muscle contraction) movement was faster or slower than a previous passive/semipassive criterion movement (Test III/IV). The results revealed higher response accuracy for Test I compared to Test II and for slower movements compared to faster, but no difference in response accuracy between Test III and IV. For velocity discrimination, the analysis revealed that the subjects based their judgment on the difference between criterion and comparison velocity rather than time or extent cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号