首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the role of germline-specific chromosomal determinants of development in the mouse. Studies were carried out using aggregation chimaeras between androgenetic----fertilized embryos and compared with similar parthenogenetic----fertilized chimaeras. Several adult chimaeras were found with parthenogenetic cells but none were found with androgenetic cells. Analysis of chimaeras at mid-gestation showed that parthenogenetic cells were detected in the embryo and yolk sac but that androgenetic cells were found only in the trophoblast and yolk sac and not in the embryo. The contribution of parthenogenetic cells to the embryo and yolk sac was increased by aggregating 2-cell parthenogenetic and 4-cell fertilized embryos but the contribution of parthenogenetic cells in extraembryonic tissues remained negligible even after aggregation of 4-cell parthenogenetic and 2-cell fertilized embryos. Furthermore, parthenogenetic cells were primarily found in the yolk sac mesoderm and not in the yolk sac endoderm. These results suggest that maternal chromosomes in parthenogenetic cells permit their participation in the primitive ectoderm lineage but these cells are presumably eliminated by selective pressure or autonomous cell lethality from the primitive endoderm and trophectoderm lineages. Conversely paternal chromosomes in androgenetic cells confer opposite properties since the embryonic cells can be detected in the trophoblast and the yolk sac but not in the embryos, presumably because they are eliminated from the primitive ectoderm lineage. The spatial distribution of cells with different parental chromosomes may occur partly because of differential expression of some genes, such as proto-oncogenes, and partly due to their ability to respond to a variety of diffusible growth factors.  相似文献   

2.
Peri-implantation mouse embryos and extraembryonic membranes were examined immunohistochemically for the expression of the cell-cell adhesion molecule (cell-CAM) 120/80. Cell-CAM 120/80 was seen along the lateral borders of all cells in the blastocyst but became undetectable on trophoblastic giant cells, some mononuclear trophoblastic cells and parietal yolk sac cells when blastocysts were cultured in vitro. In postimplantation embryos in vivo, all parts of the early egg-cylinder reacted with the antibody to cell-CAM 120/80 except for the cells of the parietal endoderm and the primary trophoblastic giant cells. In the late stage egg-cylinder, no cell-CAM 120/80 was seen on the cells of the primitive mesoderm or on the primordial germ cells. The germ cells in genital ridges and fetal gonads remained cell-CAM 120/80-negative throughout the fetal stages of development. In the extraembryonic membranes, the visceral yolk sac, amnion, and the cells of the placental labyrinth were cell-CAM 120/80-positive, whereas, the parietal yolk sac cells and the spongiotrophoblast cells were negative. These data show that cell-CAM 120/80 is found on cells arranged into epithelial layers in the early embryo and extraembryonic tissues, but is not expressed in the dissociated cells differentiating from these epithelia. Thus, the expression of cell-CAM 120/80 appears to be developmentally regulated.  相似文献   

3.
Cell lineages of the primitive endoderm and the visceral endoderm of mouse embryos were examined by culturing whole embryos in vitro. The primitive endoderm and visceral endoderm cells could be labelled by incubation of embryos in a medium containing horse radish peroxidase (HRP). HRP localization was chased throughout the culture period. The results show that the visceral endoderm derives from the primitive endoderm, and the visceral endoderm forms only the extra-embryonic endoderm (yolk sac endoderm) of the conceptus. The definitive endoderm which is probably derived from the head process, newly appears on the ventral surface of the embryo.  相似文献   

4.
T C Wu  Y J Wan  I Damjanov 《Histochemistry》1983,77(2):233-241
Fluorescein isothiocyanate labelled type I lectin from Bandeiraea simplicifolia (BSA-I) known for its specific binding to alpha-D-galactopyranosyl and 2-acetamido-2-deoxy-D-galactose groups, has been used to map the distribution of the lectin specific binding sites in the genital organs of female and male mice. In non-pregnant female mice, strong lectin reactivity was restricted to the epithelium of the distal oviduct, the cervix and vagina. In pregnant mice strong BSA-I reactivity was also noted in the epithelium of uterine glands from the time of implantation on day 5 onward. In the testis BSA-I bound selectively to sperm but did not react with other cells in the seminiferous tubules. In the proximal caput epididymis BSA-I reacted with the epithelial cells, the underlying basement membranes and the intraluminal sperm. The intraluminal contents of the seminal vesicles reacted strongly with the lectin. Our data thus show a widespread but selective distribution of BSA-I lectin binding sites in the male and female genital organs and altered lectin binding in the uterus during pregnancy.  相似文献   

5.
A 100,000-Da glucose-regulated surface protein (100K-GRP) has previously been isolated from the cell surface and culture medium of human fibroblasts. A rabbit antiserum directed against this protein reacts with the cell surface of both human and murine cultured cells and with a broad spectrum of mammalian tissues. It is shown, via indirect immunofluorescence, that this protein is also present on cells of the developing mouse embryo and can be detected as early as the 4-cell stage. The 8-cell embryo and morula show positive surface labeling; the inner cell masses of both the pre- and postimplantation blastocysts are also positive but the trophectoderm is not. At the 6-day egg cylinder stage, the embryonic and extra-embryonic ectoderm label intensely with the antiserum and visceral endoderm shows faint labeling. No labeling can be detected on parietal endoderm or on the trophoblastic giant cells invading the uterine decidua. However, the internal cells of the ectoplacental cone exhibit bright fluorescence. The same pattern is observed on 7- to 8.5-day embryos, except that at this stage no label is associated with the visceral endoderm. In addition, mesodermal cells emerging from the primitive streak are also labeled.  相似文献   

6.
Summary Fluorescein isothiocyanate labelled type I lectin from Bandeiraea simplicifolia (BSA-I) known for its specific binding to -d-galactopyranosyl and 2-acetamido-2-deoxy-d-galactose groups, has been used to map the distribution of the lectin specific binding sites in the genital organs of female and male mice. In non-pregnant female mice, strong lectin reactivity was restricted to the epithelium of the distal oviduct, the cervix and vagina. In pregnant mice strong BSA-I reactivity was also noted in the epithelium of uterine glands from the time of implantation on day 5 onward. In the testis BSA-I bound selectively to sperm but did not react with other cells in the seminiferous tubules. In the proximal caput epididymis BSA-I reacted with the epithelial cells, the underlying basement membranes and the intraluminal sperm. The intraluminal contents of the seminal vesicles reacted strongly with the lectin. Our data thus show a widespread but selective distribution of BSA-I lectin binding sites in the male and female genital organs and altered lectin binding in the uterus during pregnancy.  相似文献   

7.
Investigation of the developmental fates of cells in the endodermal layer of the early bud stage mouse embryo revealed a regionalized pattern of distribution of the progenitor cells of the yolk sac endoderm and the embryonic gut. By tracing the site of origin of cells that are allocated to specific regions of the embryonic gut, it was found that by late gastrulation, the respective endodermal progenitors are already spatially organized in anticipation of the prospective mediolateral and anterior-posterior destinations. The fate-mapping data further showed that the endoderm in the embryonic compartment of the early bud stage gastrula still contains cells that will colonize the anterior and lateral parts of the extraembryonic yolk sac. In the Lhx1(Lim1)-null mutant embryo, the progenitors of the embryonic gut are confined to the posterior part of the endoderm. In particular, the prospective anterior endoderm was sequestered to a much smaller distal domain, suggesting that there may be fewer progenitor cells for the anterior gut that is poorly formed in the mutant embryo. The deficiency of gut endoderm is not caused by any restriction in endodermal potency of the mutant epiblast cells but more likely the inadequate allocation of the definitive endoderm. The inefficient movement of the anterior endoderm, and the abnormal differentiation highlighted by the lack of Sox17 and Foxa2 expression, may underpin the malformation of the head of Lhx1 mutant embryos.  相似文献   

8.
Isolation of endo A cDNA from mouse 8-cell stage embryos   总被引:1,自引:0,他引:1  
To analyse the species of genes expressed in a cleavage stage mouse embryo, we have constructed a cDNA library containing 3.0 x 10(5) independent clones from about 2 x 10(3) embryos at the 8-cell stage of development. Endo A cDNA prepared from parietal yolk sac endoderm like PYS-2 cells was used to screen the library. Southern blot analyses using the endo A sequence as a probe and restriction mapping analyses revealed that four independent recombinants had been inserted endo A sequence. Sequencing data of these clones showed that endo A mRNA present in the 8-cell stage embryo is identical to that of parietal yolk sac endoderm cells.  相似文献   

9.
In mice, the yolk sac appears to play a crucial role in nourishing the developing embryo, especially during embryonic days (E) 7;-10. Lipoprotein synthesis and secretion may be essential for this function: embryos lacking apolipoprotein (apo) B or microsomal triglyceride transfer protein (MTP), both of which participate in the assembly of triglyceride-rich lipoproteins, are apparently defective in their ability to export lipoproteins from yolk sac endoderm cells and die during mid-gestation. We therefore analyzed the embryonic expression of apoB, MTP, and alpha-tocopherol transfer protein (alpha-TTP), which have been associated with the assembly and secretion of apoB-containing lipoproteins in the adult liver, at different developmental time points. MTP expression or activity was found in the yolk sac and fetal liver, and low levels of activity were detected in E18.5 placentas. alpha-TTP mRNA and protein were detectable in the fetal liver, but not in the yolk sac or placenta. Ultrastructural analysis of yolk sac visceral endoderm cells demonstrated nascent VLDL within the luminal spaces of the rough endoplasmic reticulum and Golgi apparatus at E7.5 and E8.5. The particles were reduced in diameter at E13.5 and reduced in number at E18.5;-19.The data support the hypothesis that the yolk sac plays a vital role in providing lipids and lipid-soluble nutrients to embryos during the early phases (E7;-10) of mouse development. secretion in mouse yolk sac during embryonic development.  相似文献   

10.
The fate of the embryonic endoderm (generally called visceral embryonic endoderm) of prestreak and early primitive streak stages of the mouse embryo was studied in vitro by microinjecting horseradish peroxidase into single axial endoderm cells of 6.7-day-old embryos and tracing the labelled descendants either through gastrulation (1 day of culture) or to early somite stages (2 days of culture). Descendants of endoderm cells from the anterior half of the axis were found at the extreme cranial end of the embryo after 1 day and in the visceral yolk sac endoderm after 2 days, i.e. they were displaced anteriorly and anterolaterally. Descendants of cells originating over and near the anterior end of the early primitive streak, i.e. posterior to the distal tip of the egg cylinder, were found after 1 day over the entire embryonic axis and after 2 days in the embryonic endoderm at the anterior intestinal portal, in the foregut, along the trunk and postnodally, as well as anteriorly and posteriorly in the visceral yolk sac. Endoderm covering the posterior half of the early primitive streak contributed to postnodal endoderm after 1 day (at the late streak stage) and mainly to posterior visceral yolk sac endoderm after 2 days. Clonal descendants of axial endoderm were located after 2 days either over the embryo or in the yolk sac; the few exceptions spanned the caudal end of the embryo and the posterior yolk sac. The clonal analysis also showed that the endoderm layer along the posterior half of the axis of prestreak- and early-streak-stage embryos is heterogeneous in its germ layer fate. Whereas the germ layer location of descendants from anterior sites did not differ after 1 day from that expected from the initial controls (approx. 90% exclusively in endoderm), only 62% of the successfully injected posterior sites resulted in labelled cells exclusively in endoderm; the remainder contributed partially or entirely to ectoderm and mesoderm. This loss from the endoderm layer was compensated by posterior-derived cells that remained in endoderm having more surviving descendants (8.4 h population doubling time) than did anterior-derived cells (10.5 h population doubling time). There was no indication of cell death at the prestreak and early streak stages; at least 93% of the cells were proliferating and more than half of the total axial population were in, or had completed, a third cell cycle after 22 h culture.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
12.
13.
E D Adamson  S E Ayers 《Cell》1979,16(4):953-965
The location of type IV (basement membrane)collagen in early post-implantation mouse embryos was examined by immunoperoxidase reactions using a specific immunoglobulin raised against mouse lens capsule collagen. Reaction was positive in the earliest embryos studied--on the fifth day of gestation (the day of detection of the copulation plug is the first day). It was found only in the primitive endoderm adjacent to the blastocoelic cavity. Subsequently in development, strong staining reactions were found in the parietal endoderm, Reichert's membrane and an acellular layer which separates the visceral endoderm of the egg cylinder from the ectoderm. In tenth to eighteenth day visceral yolk sacs, the mesodermal portion was stained, which is consistent with the presence of basement membranes around blood vessels. The endodermal portion of the visceral yolk sac did not react, while small amounts were found in the amnion. By incubation of various embryonic tissues with tritiated amino acids, purification of the biosynthesized secreted collagens and their partial characterization, the differential expression of several collagen genes was detected. Identification of collagen types was made by: reaction with specific antibodies to type I and IV collagens; electrophoretic mobility; sensitivity to reduction and to collagenase; analysis of the proportions of 3-hydroxyproline, 4-hydroxyproline and hydroxylysine; and CNBr peptides. In agreement with the data of Minor et al. (1976a) for the rat, mouse parietal endoderm synthesizes large amounts of type IV collagen. In contrast to their findings, however, the 165,000 molecular weight polypeptide is not converted to one of 100,000 after reduction, alkylation and repepsinization (Dehm and Kefalides, 1978). The endoderm of the visceral yolk sac was shown to be synthesizing primarily type I collagen, while the mesoderm layer of this membrane synthesized both type I and IV collagens. Little or no type IV collagen synthesis was detected in the endoderm of the visceral yolk sac. If it is correct that the visceral endoderm of the early embryo makes a major contribution to the formation of the endoderm portion of the visceral yolk sac, then it is clear that a switch in collagen gene expression must occur as it does so.  相似文献   

14.
The expression of the cell surface-associated glycoprotein fibronectin was studied by indirect immunofluorescence in the early stages of mouse embryogenesis. Fibronectin was not detectable in early preimplantation embryos. Trace amounts of the protein were first found between the cells of the inner cell mass of late blastocysts. In implanted early egg cylinders, fibronectin was deposited between the ectoderm and endoderm of the inner cell mass and in the nascent Reichert's membrane. With development, the visceral and the parietal endoderm cells became positive for the protein, but no fibronectin was detected in ectoderm cells. During segregation of mesoderm from ectoderm, fibronectin appeared in mesoderm cells and as a band between the two germ layers. In the developing amnion and chorion, the protein was localized between the ectodermal and mesodermal cell layers. The results indicate that fibronectin is an early differentiation market for the stage of endoderm formation in the inner cell mass of the mouse blastocyst. It is also a marker of mesoderm appearance and seems to be associated with the accumulating extracellular matrix material in the developing embryo.  相似文献   

15.
Mutant mice deficient in glucose-6-phosphate dehydrogenase were used to induce teratomas. This enzyme is linked to the X chromosome, which can be inactivated in female embryo. The differences in the enzyme activity between yolk sac mesoderm and embryo versus yolk sac endoderm can be detected in female concepti by using appropriate crosses of wild-type and G6PD-deficient mice. Histochemical study showed that the dual cell population was observed in heterozygous embryos and in the embryomas derived from them. The teratomas derived from the corresponding yolk sac, however, were G6PD-positive from wild-type and G6PD-negative from homozygous enzyme-deficient mothers. We conclude that yolk-sac-derived teratomas are of endodermal origin because of the fact that the paternal X chromosome is inactivated in the yolk sac endoderm, whereas in the yolk sac mesoderm, as in the embryo, the inactivation is at random.  相似文献   

16.
Vascular endothelial growth factor A (VEGFA) plays a pivotal role in the first steps of endothelial and haematopoietic development in the yolk sac, as well as in the establishment of the cardiovascular system of the embryo. At the onset of gastrulation, VEGFA is primarily expressed in the yolk sac visceral endoderm and in the yolk sac mesothelium. We report the generation and analysis of a Vegf hypomorphic allele, Vegf(lo). Animals heterozygous for the targeted mutation are viable. Homozygous embryos, however, die at 9.0 dpc because of severe abnormalities in the yolk sac vasculature and deficiencies in the development of the dorsal aortae. We find that providing 'Vegf wild-type' visceral endoderm to the hypomorphic embryos restores normal blood and endothelial differentiation in the yolk sac, but does not rescue the phenotype in the embryo proper. In the opposite situation, however, when Vegf hypomorphic visceral endoderm is provided to a wild-type embryo, the 'Vegf wild-type' yolk sac mesoderm is not sufficient to support proper vessel formation and haematopoietic differentiation in this extra-embryonic membrane. These findings demonstrate that VEGFA expression in the visceral endoderm is absolutely required for the normal expansion and organisation of both the endothelial and haematopoietic lineages in the early sites of vessel and blood formation. However, normal VEGFA expression in the yolk sac mesoderm alone is not sufficient for supporting the proper development of the early vascular and haematopoietic system.  相似文献   

17.
Ulex europaeus agglutinin-I (UEA-I) recognizes the Fuc alpha 1----2 Gal linkage. Receptors for UEA-I were not detected in mouse embryos until the 13th day of embryo-genesis, except for their temporary expression in early trophectoderm cells. In adult mice, UEA-I receptors were detected at various sites, including cells of the digestive tracts, the bronchial epithelium, Hassall's corpuscle of the thymus, and the skin. The fucose-binding protein of Lotus tetragonolobus (FBP) is another lectin that recognizes fucosyl residues. The distribution of FBP receptors was significantly different from that of UEA-I receptors. FBP receptors were first detected in late 8-cell embryos and were expressed in the embryonic ectoderm, visceral endoderm, and trophoblastic giant cells in egg-cylinders. At later stages, the distribution of FBP receptors became restricted to certain parts of the embryo. In the adult, the distribution of FBP receptors was more restricted than that of UEA-I receptors. Particularly in embryos before the 11th day of gestation, the distribution of FBP receptors resembled that of SSEA-1, which is defined by the Gal beta 1----4(Fuc alpha 1----3) GlcNAc linkage. From the specificity of FBP, we inferred that the disappearance of SSEA-1 and FBP receptors during embryogenesis is not the result of alpha 1----2 fucosylation of the terminal galactosyl residue in the determinant. The fact that the expression of two fucose-related cell-surface markers, i.e., UEA-I receptors and SSEA-1 (or FBP receptors), is developmentally regulated in an entirely different fashion is an excellent example illustrating the precise control of differentiation-dependent alterations in cell-surface carbohydrates.  相似文献   

18.
Eight-days-old mouse embryos were transferred to the subcutaneous tissue of the dorsal skin of host mice. A high rate of embryos developed into hemorrhagic (HN) or nonhemorrhagic nodules (NHN). The latter had trophoblastic cells as well as embryoblastic derivatives whereas HN contained almost only trophoblastic cells. At least two kinds of trophoblastic cells were present in NHN: small cells and large cells similar to trophoblastic giant cells. In HN most trophoblastic cells arranged themselves into a network whose meshes contained host blood. Although embryoblastic derivatives such as endoderm and Reichert's membrane were apposed to host connective tissue cells, trophoblastic cells were always surrounded by collagen fibrils or by a layer of an amorphous material.  相似文献   

19.
Rat-mouse hybridoma antibodies were produced against mouse teratocarcinoma F9 or PCC4 aza1 cells, and four clones were established. Both the F11 (IgM) and F20 (IgG2c) antibodies showed a similar specificity, reacting only with nullipotential teratocarcinoma cells. They were also found to agglutinate sheep red blood cells. Solid-phase enzyme-linked immunofluorescence assay showed that, among the neutral glycolipids studied, they only reacted with the Forssman antigen. P2 antibody (IgG2b) reacted with the undifferentiated-type and embryonal endodermtype teratocarcinoma cells. During the preimplantation stage, this antibody did not stain mouse embryos, but it reacted very weakly with the inner cell mass of blastocysts cultured in vitro. In the 5th-day embryo, the embryonic ectoderm as well as the visceral and parietal endoderm were positive, but the extraembryonic ectoderm was not. Mesoderm of the 7.5th-day embryo also reacted with this antibody. However, P2 antigen was not observed in the 16th-day embryo or in adult tissues. F2 antibody (IgG2a), which was reactive with all of the cultured cell lines tested, showed an immunoreaction with mouse embryos throughout the preimplantation stage. However, in the 7.5th-day embryo, the presence of F2 was limited to the cells forming the parietal endoderm. This antigen was present in some epithelial tissues of the 16th-day embryo and adult mouse. Of these antigens, P2 and F2 are probably novel differentiation antigens of the early mouse embryo. Together with the Forssman antigen, these will be important markers for analyzing cell-surface antigens of mouse teratocarcinoma cells as well as embryos.  相似文献   

20.
We have screened neurulation-stage mouse embryos for regional differences in protein distribution, by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The screen has revealed an 83-kD protein (pI 6.8) that is present in embryo regions where neurulation is in progress but not in regions where neurulation is complete. The 83-kD protein is not synthesized in the neurulation-stage embryo or in the yolk sac, but is taken up from the culture serum in vitro and, probably, from the maternal serum in utero. The 83-kD protein has been identified as transferrin on the basis of its electrophoretic migration and recognition on Western blots by an antitransferrin antibody. Culture of embryos in serum containing 125I-transferrin, followed by autoradiography of embryo sections, shows that transferrin is taken up and localized in the gut beneath the closing neural folds at several levels of the body axis in 8.5- and 9.5-day embryos. In situ hybridization studies show that the transferrin receptor mRNA is expressed in all cells of the 9.5-day embryo, including the gut endoderm. These findings are consistent with a role for transferrin in development of the gut and perhaps, indirectly, in completion of neurulation during early mouse embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号