首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Summary The ultrastructure of the incubated intermediate lobe of the rat pituitary and the morphological effect of isoproterenol stimulation on its cells were studied under in vitro conditions. The general structure of isolated neurointermediate lobes maintained for 2–3 h in vitro was well preserved, and the presence of intact nerve terminals establishing synaptic contacts with the glandular cells of the intermediate lobe was confirmed. Removal of the intermediate lobe from central inhibition leads to increased hormonal secretion, which was reflected by large Golgi areas and the appearance of secretory images. However, no obvious degranulation or peripheral migration of the secretory granules after 2–3 h in vitro was seen. The secretory granules varied in electron density; totally electron-lucent granules were regularly observed and exocytotic phenomena were shown. In addition, more extensive invaginations suggesting secretion by compound exocytosis were seen. A three-fold increase in the -endorphin secretion during a 4-min stimulation with 10-6 M isoproterenol did not induce any morphometrically detectable changes in the incubated cells. This indicates that only a minor fraction of the total granule content is mobilized during an acute increase in secretory activity.  相似文献   

2.
In Bufo arenarum the oviduct exhibits conspicuous changes throughout the sexual cycle. In the present study, we analyzed the optical and ultrastructural characteristics of the oviductal pars convoluta mucosa, the portion responsible for jelly secretion, during both the preovulatory and postovulatory periods. Secretory epithelial cells, ciliated cells, basal cells, and glandular cells are described. Secretory epithelial cells are characterized by the presence of secretory granules, the size, shape and electron density of which vary markedly. Their contents are mainly released by exocytosis into the oviductal lumen. Moreover, in the preovulatory period, apocrine, and holocrine secretion processes frequently occur. During the postovulatory period, these cells exhibit a marked diminution of secretory granules. Ciliated cells show a typical ultrastructural organization. Basal cells are distinguished in the lower part of the epithelium by their heterochromatic nuclei and electron‐lucent cytoplasm. These cells, to the best of our knowledge, are reported for the first time in Amphibia. Glandular cells exhibit oval, round, or polyhedric granules, most of them with one or more cores. Our results indicate that the contents of epithelial and glandular secretory cells are partially secreted during the preovulatory period. Additional secretion occurs during the transit of the oocytes. J. Morphol. 239:61–73, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

3.
The paired tubular accessory glands in Haemaphysalis longicornis open at the junction of the cervical and the vestibular parts of vagina via short and narrow ducts. The pseudostratified columnar glandular epithelium covered by the muscle layer consists of both secretory and supporting cells. As feeding proceeds, the secretory cells increase in volume. In ovipositing females, well-developed rough endoplasmic reticulum, the Golgi complex, and membranebound granules that are undergoing exocytosis suggest that the secretory cells are involved in protein synthesis. However, in virgin females that fed 10 days, only small dense granules and no secretion activity were observed. The secretions from the tubular accessory gland may be released into the genital tract during the egg passage through the vagina. However, the supporting cells located between the secretory cells become slender during feeding, cohere to each other at the luminal side, and have a very narrow attachment at the basement membrane. Supporting cells probably help maintain secretory cell shape especially during granular discharge into the lumen. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Summary Previous investigators have reported that albuminous material in the albumin-secreting (tubular gland) cells of the magnum of hen oviduct accumulates in the ergastoplasmic cisternae and is released directly into the glandular lumen without being first concentrated into secretory granules in the Golgi region (Zeigel and Dalton, 1962). Present fine structural studies on the tubular gland cells in oviducts from actively laying wild-type Japanese quail and in an oviduct from an actively laying hen indicate that the Golgi apparatus is directly involved in the formation of secretory granules. At least three types of granules can be observed in the tubular gland cells at various times, and all types seem to be associated initially with the Golgi apparatus.In actively laying quail, the distribution of electron opaque, intermediate, and light granules within the superficial and deep regions of the glandular epithelium varies, depending on the presence of an egg in a particular region of the oviduct. Secretion of the product is merocrine, involving fusion of granule membranes with the plasmalemma of the cell surface.Granules first appear in the tubular gland cells of quail oviducts at about 4 1/2 weeks of age. The granules are of the electron opaque type and probably represent secretion in concentrated storage form. At this age, a few of the tubular gland cells exhibit distended ergastoplasmic cisternae containing material of low electron density. The appearance of these light cells, which occur with greater frequency in oviducts from older quail, probably reflects an increased level of secretory activity initiated by changes in hormonal levels. From 5 weeks of age on, intermediate and light (less concentrated) granules, as well as dark granules, are present.Supported by the National and Medical Research Councils of Canada.  相似文献   

5.
Airway goblet cells secrete mucin onto mucosal surfaces under the regulation of an apical, phospholipase C/Gq-coupled P2Y2 receptor. We tested whether cortical actin filaments negatively regulate exocytosis in goblet cells by forming a barrier between secretory granules and plasma membrane docking sites as postulated for other secretory cells. Immunostaining of human lung tissues and SPOC1 cells (an epithelial, mucin-secreting cell line) revealed an apical distribution of - and -actin in ciliated and goblet cells. In goblet cells, actin appeared as a prominent subplasmalemmal sheet lying between granules and the apical membrane, and it disappeared from SPOC1 cells activated by purinergic agonist. Disruption of actin filaments with latrunculin A stimulated SPOC1 cell mucin secretion under basal and agonist-activated conditions, whereas stabilization with jasplakinolide or overexpression of - or -actin conjugated to yellow fluorescent protein (YFP) inhibited secretion. Myristoylated alanine-rich C kinase substrate, a PKC-activated actin-plasma membrane tethering protein, was phosphorylated after agonist stimulation, suggesting a translocation to the cytosol. Scinderin (or adseverin), a Ca2+-activated actin filament severing and capping protein was cloned from human airway and SPOC1 cells, and synthetic peptides corresponding to its actin-binding domains inhibited mucin secretion. We conclude that actin filaments negatively regulate mucin secretion basally in airway goblet cells and are dynamically remodeled in agonist-stimulated cells to promote exocytosis. lung; mucus; exocytosis  相似文献   

6.
Summary Comparative immunocytochemical experiments with antisera directed against renin and three synthetical peptides (Pro 1, Pro 2 A and Pro 3) covering almost the entire span of human renin prosegment were performed on human kidney tissue. With anti-Pro 1, i.e. the antiserum which recognizes the NH2 terminus of human prorenin, no clear immunolabeling of juxtaglomerular epithelioid cell secretory granules could be obtained. It is therefore concluded that the corresponding portion of human prorenin may be cleaved off in the Golgi complex.After application of anti-Pro 3, the antiserum which recognizes the COOH terminus of the prosegment, only the juvenile secretory granules of epithelioid cells were consistently labeled, whereas, in contrast, some of the intermediate and most of the mature secretory granules were anti-Pro 3-negative. As the immunoreactivity of mature renin increased remarkably from protogranules to mature secretory granules, it is suggested that the cleavage of the COOH terminus of the prosegment, i.e. the activation of renin, takes place in juvenile and intermediate granules during condensation of the enzyme.The immunoreactivity of Pro 2A, corresponding to the middle portion of the prosegment, disappeared in a some-what earlier stage of granulopoiesis than that of Pro 3. It is therefore concluded that the corresponding segmental cleavage, the result of which is a truncated version of intact prorenin, occurs in the protogranules of epithelioid cells.The data presented are consistent with the assumption that the secretion of active renin takes place by the exocytosis of mature secretory granules, while the secretion of inactive renin, which is a truncated version of intact prorenin, is mediated by the exocytosis of juvenile and intermediate granules.These studies were supported by the German Research Foundation within the Forschergruppe Niere/Heidelberg  相似文献   

7.
1. Besides having a role in signal transduction, trimeric G proteins may also be involved in membrane trafficking events. In chromaffin cells, Go has beenfound associated with the membrane of secretory granules. Here we examined the role of Go in regulated exocytosis using pressure microinjection combined with amperometric measurement of catecholamine secretion from individual chromaffin cells.2. Microinjection of GTPS and mastoparan strongly inhibits the amperometric response to either nicotine or high K+.3. The presence of mastoparan in the cell incubation medium had no effect on K+-evoked secretion, suggesting that mastoparan blocks the exocytotic machinery through an intracellular target protein not located just beneath the plasma membrane.4.Microinjection of anti-Go antibodies potentiates by more than 50% the K+-evoked secretion, whereas anti-Gi1/2 antibodies have no effect.5. Thus an inhibitory Go protein, probably associated with secretory granules, controls exocytosis in chromaffin cells. The intracellular proteins controlling organelle-associated G proteins are currently unknown. The neuronal cytosolicprotein GAP-43 stimulates Go in purified chromaffin granule membranes and inhibits exocytosis in permeabilized cells. We show here that microinjection of a synthetic peptide corresponding to the domain of GAP-43 that interacts with Go inhibits secretion. We suggest that GAP-43 or a related cytosolic protein controls the exocytotic priming step in chromaffin cells by stimulating a granule-associated Go protein.  相似文献   

8.
The Harderian gland in Rana esculenta has been studied during the annual cycle at the histological, histochemical and ultrastructural levels. The Harderian gland has an acinar structure and is the only orbital gland in anuran amphibia. It develops at the medial corner of the orbit from the conjunctival epithelium at the premetamorphic stage. In the adult the glandular secretion reaches a maximum during the months of July and August, drops in September and resumes slowly from October onwards. The secretion is seromucoid and the secretory granules are released into the acinar lumen, mainly by exocytosis. Porphyrins were not detected. No sexual dimorphism was observed in the glandular cells. The resumption of secretory activity in October and the enhancement of secretion in May are marked by the appearance of "blue nuclei" (Mallory stain) in a relatively high percentage of glandular cells. This unusual blue colour, using the Mallory stain (by which nuclei stain red), disappears after digestion of paraffin sections with RNAase, but not with DNAase and trypsin. The blue staining may, therefore, indicate an increased amount of nuclear RNA. The Harderian gland in the frog most probably serves to lubricate and moisten the eye in the absence of the lacrimal gland. However, the gland may also represent an immunoactive organ owing to the presence of numerous mast cells and plasma cells in the interacinar spaces.  相似文献   

9.
Summary Thyroidectomy cells of the rat pituitary gland were studied by the peroxidase-antibody labeling procedure and by electron microscopy. Secretory granules accumulated in these cells in response to a short-term treatment with thyroxine, and the cells were then reactive to the peroxidase-antibody labeling procedure. An intravenous injection of synthetic thyrotrophin releasing hormone (TRH) to thyroxine-treated, thyroidectomized rats provoked an acute and active extrusion of secretory granules from the thyroidectomy cells. The secretory granules in these cells were mostly haloed after primary fixation in osmium tetroxide. It is concluded that TRH causes thyroidectomy cells to release their secretory granules, and presumably TSH, by the usual process of exocytosis or granule extrusion.This study was supported by USPHS Grant AM 12583.  相似文献   

10.
Summary Unique rod-shaped secretory granules were observed among oval or spherical secretory granules in GH cells of the anterior pituitary gland of musk shrew using the protein A-gold procedure combined with electron microscopy. The rod-shaped and spherical secretory granules were both immunoreactive by the immuno-gold method using antiserum to sheep GH. The rod-shaped secretory granules, which seem to be formed directly from the Golgi vesicles, extend from several hundred to several thousand nm in length. They often touch each other and fuse. The spherical secretory granules are also unique in that they may also fuse with loss of dense contents to leave empty circular membrane profiles in the cytoplasm. Both the rodshaped and spherical secretory granules are secreted from the cell by exocytosis.  相似文献   

11.

Background

Mast cell secretory granules accommodate a large number of components, many of which interact with highly sulfated serglycin proteoglycan (PG) present within the granules. Polyamines (putrescine, spermidine and spermine) are absolutely required for the survival of the vast majority of living cells. Given the reported ability of polyamines to interact with PGs, we investigated the possibility that polyamines may be components of mast cell secretory granules.

Methodology/Principal Findings

Spermidine was released by mouse bone marrow derived mast cells (BMMCs) after degranulation induced by IgE/anti-IgE or calcium ionophore A23187. Additionally, both spermidine and spermine were detected in isolated mouse mast cell granules. Further, depletion of polyamines by culturing BMMCs with α-difluoromethylornithine (DFMO) caused aberrant secretory granule ultrastructure, impaired histamine storage, reduced serotonin levels and increased β-hexosaminidase content. A proteomic approach revealed that DFMO-induced polyamine depletion caused an alteration in the levels of a number of proteins, many of which are connected either with the regulated exocytosis or with the endocytic system.

Conclusions/Significance

Taken together, our results show evidence that polyamines are present in mast cell secretory granules and, furthermore, indicate an essential role of these polycations during the biogenesis and homeostasis of these organelles.  相似文献   

12.
Endocytosis in secretory cells   总被引:2,自引:0,他引:2  
Membranes of secretion granules inserted during exocytosis into the luminal plasma membranes of glandular cells are retrieved by endocytosis as revealed by electron dense tracers applied selectively to the apical cell surfaces. Two major pathways that endocytic vesicles may take are described: (1) a direct route to the Golgi complex (e.g. in parotid and exocrine pancreas) with later appearance of the tracer in the periphery of mature secretion granules; (2) an indirect route with lysosomes as a first station and the subsequent appearance of tracer in stacked Golgi cisternae. It is presumed that some of the retrieved membrane follows the same pathways and is reutilized in the secretory cycle.  相似文献   

13.
In the present report, the prolactin secretory pathways were re-examined in cultured lactotrophs submitted to various experimental conditions of stimulation, inhibition and/or alteration of the intracellular flow of the synthesis and release of prolactin.Primary cultures of rat pituitary cells stimulated with thyrotropin-releasing hormone, or inhibited with either cycloheximide or dopamine in the presence or absence of 0.1µg/ml brefeldin A, were used. The radioimmunoassay quantification of released and intracellular prolactin was correlated with ultrastructural and immunocytochemical studies.Brefeldin A diminished significantly the secretion and the intracellular content of prolactin 4h after application, while morphological effects were seen starting from 30min. The drug did not modify the response to thyrotropin-releasing hormone (120% increment). The simultaneous incubation of brefeldin A with cycloheximide or dopamine diminished the released prolactin concomitant with a lower (cycloheximide) or greater (dopamine) hormonal intracellular prolactin content with respect to brefeldin A. The combined treatment cycloheximide–dopamine inhibited prolactin secretion. The ultrastructural and immunocytochemical features of lactotrophs supported these radioimmunoassay data.These results revealed that prolactin release in vitro in the presence or not of brefeldin A is dependent on either: the neo-synthesized hormone that can be inhibited by cycloheximide, and the hormone stored in granules, the exocytosis of which was blocked by dopamine, indicates the contribution of both constitutive and regulated pathways in the secretory process. The brefeldin A blockade of the intracellular transport also disclosed morphological evidence of an alternative pathway of prolactin secretion through vesicles originated in the rough endoplasmic reticulum bypassing the Golgi complex.  相似文献   

14.
Summary In the planum nasolabial glands of the goat, glycoconjugates of glandular and duct cells have been studied by means of a series of electron microscopic cytochemical methods. In the glandular cells glycoconjugates with vicinal diol groupings were present in secretory granules, certain elements of the Golgi complex, lysosome-like dense bodies, the surface coat of the plasma membrane, the majority of intracellular cytomembranes, glycogen particles and the basal lamina. In duct cells, glycoconjugates with the same properties were localized in similar ultrastructures, except for secretory granules, which were not detected in these cells. By lectin cytochemistry, glycoconjugates in glandular cell secretory granules contained a variety of saccharide residues such as -d-mannose, -d-glucose,N-acetyl-d-glucosamine and -l-fucose. The cytochemical properties of the secretory glycoconjugates are discussed in relation to the physiological functions performed by the planum nasolabial glands in the goat.  相似文献   

15.
Summary Effects of phospholipase A2-activators, melittin and mastoparan, on rat anterior pituitary cells were studied by use of the electron microscope. Rat anterior pituitaries were incubated in HEPES buffer containing 20 g/ml of melittin or the same dose of mastoparan for 5 min, 10 min and 20 min. Features indicating discharge of granule contents by exocytosis were increased with time, and the simultaneous extrusion of a number of secretory granules, named multigranular exocytosis, was often recognized in addition to single-granule exocytosis at 10 min and 20 min. Most membrane pits, where the multigranular exocytosis as well as the single-granule exocytosis occurred, were coated. Moreover, a large number of vesicles coated or noncoated were distributed near the trans side of the Golgi apparatus of melittin-treated or mastoparan-treated cells after 20 min. These vesicles might be related to membrane internalized from the excess surface membrane derived from the limiting membrane of exocytosed granules. These observations indicate that phospholipase A2-activators induce hormone release involving membrane fusion between limiting membranes of secretory granules, and between granulelimiting membrane and plasma membrane in rat anterior pituitary cells.This study was supported by grants from the Japan Ministry of Education  相似文献   

16.
Summary Ultrastructural aspects of the secretory and the endocytotic pathways and the lysosomal system of corpus cardiacum glandular cells (CCG cells) of migratory locusts were studied using morphological, marker enzyme, immunocytochemical and tracer techniques. It is concluded that (1) the distribution of marker enzymes of trans Golgi cisternae and trans Golgi network (TGN) in locust CCG cells corresponds to that in most non-stimulated vertebrate secretory cell types; (2) the acid phosphatase-positive TGN in CCG cells is involved in sorting and packaging of secretory material and lysosomal enzymes; (3) these latter substances are produced continuously; (4) at the same time, superfluous secretory granules and other old cell organelles are degraded; (5) the remarkable endocytotic activity in the cell bodies and the minor endocytotic activity in cell processes are coupled mainly to constitutive uptake of nutritional and/or regulatory (macro)molecules, rather than to exocytosis; (6) plasma membrane recycling occurs mainly by direct fusion of tubular endosomal structures with the plasma membrane and little traffic passes the Golgi/TGN; and (7) so-called cytosomes arise mainly from autophagocytotic vacuoles and represent a special kind of complex secondary lysosomes involved in the final degradation of endogenous (cell organelles) and exogenous material.  相似文献   

17.
(1) alpha-amylase was extracted and purified from the stomach/digestive gland complex of the scallop Pecten maximus and an anti-serum was induced against the purified amylase by rabbit immunization. (2) The anti scallop amylase was used to localize the amylase-secreting cells in the stomach of Pecten maximus by immunofluorescence and immunogold labelling. The amylase-secreting cells are glandular cells particularly numerous in the main sorting area of the stomach. Their secretory granules were found strongly positive for anti-amylase. Three types of glandular cells were observed, actually corresponding to the three stages of the glandular-cell activity, synthesis, secretion and excretion. (3) The synthesizing cell shows the characteristic features of a protein-synthesizing cell: a conspicuous nucleolus and abundant granular endoplasmic reticulum. In the secretory cell, the secretory granules are formed by the Golgi apparatus and accumulate in the apical part of the cell. The secretory cell is filled with two types of secretory granules which are released in the stomach lumen by apocrine excretion. (4) The present study brings the first demonstration of the synthesis and extracellular release of amylase by glandular cells of the stomach epithelium of a bivalve.  相似文献   

18.
The spatiotemporal changes in intracellular free Ca(2+) concentration ([Ca(2+)](i)) as well as fluid secretion and exocytosis induced by acetylcholine (ACh) in intact acini of guinea pig nasal glands were investigated by two-photon excitation imaging. Cross-sectional images of acini loaded with the fluorescent Ca(2+) indicator fura-2 revealed that the ACh-evoked increase in [Ca(2+)](i) was immediate and spread from the apical region (the secretory pole) of acinar cells to the basal region. Immersion of acini in a solution containing a fluorescent polar tracer, sulforhodamine B (SRB), revealed that fluid secretion, detected as a rapid disappearance of SRB fluorescence from the extracellular space, occurred exclusively in the luminal region and was accompanied by a reduction in acinar cell volume. Individual exocytic events were also visualized with SRB as the formation of Omega-shaped profiles at the apical membrane. In contrast to the rapidity of fluid secretion, exocytosis of secretory granules occurred with a delay of approximately 70s relative to the increase in [Ca(2+)](i). Exocytic events also occurred deep within the cytoplasm in a sequential manner with the latency of secondary exocytosis being greatly reduced compared with that of primary exocytosis. The delay in sequential compound exocytosis relative to fluid secretion may be important for release of the viscous contents of secretory granules into the nasal cavity.  相似文献   

19.
Summary The formation and secretion of ecdysteroid by the prothoracic gland cells of Galleria mellonella (Insecta, Lepidoptera) were investigated electron microscopically and immunocytochemically. The moulting hormone ecdysone becomes first evident in vesicles and tubules of the smooth endoplasmic reticulum (SER). The SER forms secretory granules in which ecdysone was shown immunocytochemically. The Golgi apparatus seems not to be directly involved in ecdysone secretion. The secretory granules are released from the cells by exocytosis.Supported by the Sächsische Akademie der Wissenschaften zu LeipzigThe author is grateful to Mrs. Angelika Schmidt for her excellent assistance  相似文献   

20.
Summary L-3H-fucose was injected intravenously into adult male mice, after which, at different time intervals, the submandibular glands were removed and processed for light-and electron-microscopic radioautography. This radio active hexose was taken up by newly synthesized glycoproteins in the cells lining the granular ducts which were maximally labeled at 4 h after injection. Between 4 and 72 h the amount of labeled glycoproteins decreased moderately indicating that these macromolecules undergo a slow renewal. The main subcellular site of incorporation of 3 H-fucose into glycoproteins was the Golgi apparatus. From this organelle labeled glycoproteins were transferred to small secretory granules (diameter up to 1.0 m) located not only near the Golgi region but also throughout the apical cytoplasm. At 1 h after injection the concentration of label reached a maximum in the small secretory granules and labeling of medium (diameter between 1.1 and 2.0 m) and large (diameter over 2.0 m) granules was very low. At this postinjection interval the secretion product inside the lumen of the duct was already labeled. Between 1 and 72 h after injection the concentration of radioactivity in the small secretory granules decreased intensely while increasing in the medium and in the large ones. The concentration of fucose label reached a maximum in the medium secretory granules at 24 h and in the large ones at 72 h after injection. Additional experiments using mice previously injected with 4 intraperitoneal doses of 3H-fucose given 3 h apart demonstrated that the large granules undergo a very slow renewal. Some were found to be labeled as long as 28 days after administration of 3H-fucose. Recorded in this latter series of experiments was the labeling pattern of dense bodies that were regularly visualized in the cells lining the granular ducts. Their significance in the secretory process is discussed. In conclusion, newly synthesized glycoproteins are transferred from the Golgi apparatus to small secretory granules which carry a readily releasible pool of these macromolecules to the lumen of the duct. The small secretory granules also transfer newly synthesized glycoproteins to medium and large secretion granules which store a pool that is released very slowly. This characterizes the large secretory granules as the intracellular sites of storage of secretion products. The results of this investigation were correlated with the knowledge about the chemical composition of the different macromolecules that are known to be synthesized by the secretory cells of the granular ducts of the submandibular gland of the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号