首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elgersma  Anjo  Hassink  Jan 《Plant and Soil》1997,197(2):177-186
To increase our insight into the above- and belowground N flows in grass and grass-clover swards relations between crop and soil parameters were studied in a cutting trial with perennial ryegrass (Lolium perenne) monocultures and ryegrass–white clover (Trifolium repens) mixtures. The effects of clover cultivar on herbage yield, the amount of clover-derived nitrogen, apparent N transfer to companion grass, dynamics of N and organic matter in the soil were estimated.The grass monocultures had very low DM yields (<2.1 t ha-1) and a low N concentration in the harvested herbage. During 1992–1995 the annual herbage DM yield in the mixtures ranged from 7.0 to 14.3 t ha-1, the white clover DM yield from 2.4 to 11.2 t ha-1 and the mean annual clover content in the herbage DM harvested from 34 to 78%. Mixtures with the large-leaved clover cv. Alice yielded significantly more herbage and clover DM and had a higher clover content than mixtures with small/medium-leaved cvs. Gwenda and Retor. Grass cultivar did not consistently affect yield, botanical composition or soil characteristics.The apparent N2 fixation was very high, ranging from 150 to 545 kg N ha-1 in the different mixtures. For each tonne of clover DM in the harvested herbage 49 to 63 kg N was harvested, while the apparent N transfer from clover to grass varied between 55 and 113 kg N ha-1 year-1.The net N mineralization rate was lower under monocultures than under mixtures. The C mineralization and the amounts of C and N in active soil organic matter fractions were similar for monocultures and mixtures, but the C:N ratio of the active soil organic matter fractions were higher under grass than under mixtures. This explains the lower N mineralization under grass.  相似文献   

2.
Elgersma  A.  Schlepers  H.  Nassiri  M. 《Plant and Soil》2000,221(2):281-299
Nitrogen (N) fertiliser and clover cultivar choice affect competition and productivity in grass-clover mixtures. Pure stands and mixtures of perennial ryegrass and white clover cultivars with contrasting growth habits were examined. The aim of this work was to study the effect of repetitive nitrogen (N) application and cultivar combination on competition and productivity, N yield in the harvested herbage, N2 fixation in mixtures and pure stands, and transfer of N from clover to the companion grass. Large-leaved white clover cultivar Alice and small-leaved cv. Gwenda and perennial ryegrass cvs. Barlet (erect) and Heraut (prostrate) were sown in pure stands and as four binary grass-clover mixtures on a sandy soil in 1995. In the mixtures, two levels of N fertiliser were applied: 0 (-N) and 150 and 180 kg ha-1 y-1 N (+N) in 1996 and 1997, respectively, while the grass monocultures received three N levels (0, 140/180 and 280/360 kg ha-1) in 1996 and 1997, respectively. No N was applied to pure clover. The plots were cut five times during 1996 and six times during 1997. Fertiliser N was applied in early spring and after every harvest. The treatments were continued until the summer of 1999. In pure grass, the applied N was effectively recovered. In mixtures, N application affected competition by enhancing grass growth and the overall effect of N application was 17 kg DM per kg N applied in 1996. However, there was no yield response to N fertilizer in 1997, because this was compensated for by a higher clover production in unfertilised mixtures. In 1997, -N mixtures yielded more N than +N mixtures, owing to the higher clover content and N2 fixation. Large-leaved clover cv. Alice was better able to withstand the negative effect of repetitive N application on clover production in mixtures and increased its proportion during the growing season of the second harvest year. In 1997, mixtures with Alice yielded more N than mixtures with Gwenda, but in pure clover swards, there was no cultivar effect on N yield. Also, during the autumn of 1998 and the spring of 1999, the clover content was highest in mixtures with Alice. Harvested N and apparent N2 fixation were almost twice as high in 1997 as in 1996. N yield and apparent N2 fixation were higher in pure clover than in mixtures. In mixtures, the apparent N2 fixation in 1996 was 142 kg N ha-1, irrespective of cultivar or N treatment. In 1997, it was on average 337 kg N ha-1, and higher in -N mixtures and in mixtures with Alice. For each tonne of clover DM in the harvested herbage, 65 and 57 kg N was harvested in 1996 and 1997 in -N mixtures, respectively. The apparent transfer of clover-derived N to grass was on average 29 and 70 kg N ha-1 yr-1 in 1996 and 1997, respectively. It was highest in +N mixtures and highest in mixtures with Gwenda in 1997. In contrast to clover, the grass cultivars were very similar in their productivity and seasonal patterns, despite their contrasting growth habits. Seasonal trends in N yield, N transfer and N recovery are discussed in relation to fertilizer application regimes and variation in production patterns in mixtures and pure stands. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Plants exhibit a great variety of types of clonal growth. Moderate variation in clonal traits often exists even within species. The consequences of these variations for species interaction are of great interests to ecologists. In this paper, I address the small-leaved (phalanx) to large-leaved (guerrilla) variation in white clover ( Trifolium repens ), and discuss its consequences for species and genotype coexistence. I also address the clonal and sexual resource allocation variants within the large-leaved type. Small-leaved and large-leaved genotypes differ in various aspects of clonal growth. The large-leaved genotype displays greater phenotypic plasticity but is less physiologically integrated than the small-leaved genotype. We examined the consequences in a grazed sward, where white clover and zoysia grass coexist. In this sward, white clover is patchily distributed. We first tested the hypothesis that the large-leaved genotype is more advantageous in growth than the small-leaved genotype. Results from both common garden and competition experiments supported the hypothesis. Second, we tested the hypothesis that within large-leaved plants, the clonal subtype (which invests more resources to stolons but less in flower heads than the sexual one) is more advantageous than the sexual one because it is more competitive. This hypothesis was rejected. Both subtypes coexisted in the sward. This is probably because the sexual subtype is superior for interpatch migration than the clonal one. Both subtypes differ in advantages they offer for between-patch and within-patch processes, which promotes their coexistence. Finally, field monitoring of the behavior of a large-leaved clone is described. This monitoring was conducted in a moderately grazed sward, where microenvironmental heterogeneity is extremely high in time and space.  相似文献   

4.
Reiter  Karin  Schmidtke  Knut  Rauber  Rolf 《Plant and Soil》2002,238(1):41-55
Pea as a grain legume and red clover as a forage legume in the seeding year were cultivated in two long-term differentiated tillage systems on a loess soil in Germany. A continuous conventional tillage system (plow; CT) and a continuous minimum tillage system (rotary harrow; MT) were established in 1970. With pea and red clover dry matter accumulation and N parameters (N accumulation, Ndfa, N-harvest-index, N balance) were investigated in 1998 and 1999. Differences in the N2 fixation of pea due to the tillage system could clearly be shown whereas grain yields and total N accumulation were equal in both tillage systems and years. In both years a significantly (P < 0.05) higher Ndfa in the MT system was found at least in the final harvest (maturity of pea): 1998/1999, 0.42/0.54 in CT, 0.62/0.75 in MT. The differences in N2 fixation of pea may be explained by the delayed soil N supply in MT at the beginning of the vegetative period. Simplified N balances of pea were -18 and –25 kg N ha–1 in CT and –5 and +1 kg N ha–1 in MT for 1998 and 1999, respectively. Red clover showed no significant differences in the DM and N accumulation between both tillage systems but a year dependent effect caused by different stubble and root yields between the years was apparent. With red clover slightly, but also significantly (P < 0.05) increased Ndfa values were found in the MT system compared to the CT system with 0.55/0.62 in CT (1998/1999) and 0.64/0.71 in MT. However, the difference in Ndfa between the tillage systems (9 percentage points) was much smaller with red clover than with pea (20 and 21 percentage points in 1998 and 1999, respectively). Soil N uptake of red clover using the longer growing season reflected the more adjusted N supply in both long-term differentiated tillage systems, whereas pea in using only a short-term vegetative period reacted stronger to the lower N mineralization in the MT system in springtime.  相似文献   

5.
Subterranean clover (Trifolium subterraneum L. cv Woogenellup) and soft chess grass (Bromus mollis L. cv Blando) were grown in monocultures with 15NH4Cl added to the soil to study nitrogen movement during regrowth following shoot removal. Four clipping treatments were imposed. Essentially all available 15N was assimilated from the soil prior to the first shoot harvest. Measurements of total reduced nitrogen and 15N contained within that nitrogen fraction in roots, crowns, and shoots at each harvest showed large, significant (P ≤ 0.001) declines in excess 15N of crowns and roots in both species between the first and fourth harvests. There was no significant decline in total reduced nitrogen in the same organs over that period. Similar responses were evident in plants defoliated three times. The simplest interpretation of these data is that reduced nitrogen compounds turn over in plant roots and crowns during shoot regrowth. Calculations for grass and clover plants clipped four times during the growing season indicated that 100 to 143% of the nitrogen present in crowns and roots turned over between the first and fourth shoot harvest in both species, assuming nitrogen in those organs was replaced with nitrogen containing the lowest available concentration of 15N. If other potential sources of nitrogen were used for the calculations, it was necessary to postulate that larger amounts of total nitrogen flowed through the crown and root to produce the measured dilution of 15N compounds. These data provide the first quantitative estimates of the amount of internal nitrogen used by plants, in addition to soil nitrogen or N2, to regenerate shoots after defoliation.  相似文献   

6.
The short-term effects of a simulated cattle dung pat on N2 fixation and total uptake of N in a perennial ryegrass/white clover mixture was studied in a container experiment using sheep faeces mixed with water to a DM content of 13%. We used a new 15N cross-labelling technique to determine the influence of dung-pat N on N2 fixation in a grass/clover mixture and the uptake of dung N in grass and clover. The proportion of N in clover derived from N2 fixation (%Ndfa) varied between 88–99% during the 16 weeks following application of the dung. There was no effect of dung on the %Ndfa in clover grown in mixture, whereas the %Ndfa in clover grown in pure stand decreased (nominal 2–3%) after dung application. Dung did not influence the amount of N2 fixed, and the uptake of dung N in grass and clover proceeded at an almost constant rate. After 16 weeks, 10% of the applied dung N was taken up by grass and clover, 57% had been incorporated in the soil by faunal activity and 27% remained in residual dung on the soil surface. The dung N unaccounted for (7%) was probably lost by ammonia volatilisation and denitrification. The uptake of dung N in grass/clover mixtures in the field was similarly followed by using simulated 15N-labelled dung pats. The total dry matter production and N yields increased in the 0–30 cm distance from the edge of the dung patch, but the proportion of clover decreased. Thirteen months after application of the dung 4% of the applied dung N was recovered in the harvested herbage, 78% was recovered from the soil and the residual dung, and 18% was not accounted for. It is concluded that N2 fixation in the dung patch border area in grass/clover mixtures is not influenced directly by the release of N from dung pats in the short term. However the amount of N2 fixed may be reduced, if the growth of clover is reduced in the patch border area.  相似文献   

7.
Protein in white clover (Trifolium repens L.) is poorly utilised by ruminants because of its extensive degradation to ammonia in the rumen. However, white clover produces condensed tannins (CT) in its flowers, which can reduce rumen proteolysis. Effects of increasing proportions of clover dry matter (DM) as flowers (and therefore floral CT) on soluble protein, ammonia and volatile fatty acid (VFA) concentrations were determined with in vitro incubations. Minced mixtures of 0, 250, 500, 750 and 1000 g/kg of DM as white clover flower (F) with the remainder as white clover leaf, were incubated in vitro and sampled after 0, 2, 4, 8, 12 and 24 h. Treatments contained 0, 13, 26, 39 and 52 g CT/kg DM, respectively. A further treatment with 500 g/kg DM as flower and 500 g/kg DM as leaf had polyethylene glycol added to remove effects of CT. Increasing the proportion of white clover as flowers from 0 to 1000 g/kg DM reduced net conversion of plant N to ammonia N from 290 to 120 mM/M at least partly due to reduced solubility of the protein. Treatments with 750 g/kg DM or more as clover flowers reduced ammonia concentrations to levels likely to limit microbial growth. Total VFA production was not affected by flower content, although the proportion of acetate to propionate increased. The contribution of CT to treatment effects was small compared to effects attributed to difference in chemical composition between flowers and leaves.  相似文献   

8.
The effect of clipping height on ryegrass regrowth was investigated by examining the roles of several plant hormones. Our study consisted of three treatment conditions: (1) darkness over whole plants, (2) darkness only over stubble leaf sheaths, and (3) light over whole plants. Results showed that under darkness over whole plant, low stubble height resulted in low leaf regrowth biomass. Similar leaf regrowth biomass was observed under conditions of darkness only over stubble leaf sheaths as well as light over whole plants. Each unit weight of stubble at different clipping heights has relatively similar potential of providing stored organic substance for leaf regrowth. Therefore, regrowth index, calculated as newly grown leaf biomass divided by unit stubble weight, was used to evaluate regrowth capacity at different clipping heights under minimal influence of organic substances stored in stubbles. Under light over whole plants and single clipping, low stubble height and high stubble height with root thinning resulted in low leaf biomass and high regrowth index. On the other hand, under light over whole plants and frequent clipping high leaf biomass and regrowth index were observed in high stubble height. In addition, we found that leaf zeatin and zeatin riboside (Z + ZR) affected ryegrass regrowth and that roots regulated leaf Z + ZR concentration. Thus, our results indicate that root-derived cytokinin concentration in leaves influences ryegrass regrowth at different clipping heights.  相似文献   

9.
Leys, used for grazing or production of forage to be conserved as silage or hay, are very important crops in northern areas. In order to measure the N2 fixation in leys of varying ages and during different parts of the season, detailed measurements were taken of yield, N2 fixation and the amounts of N remaining in the field after harvesting red clover (Trifolium pratense L.)-grass leys at a site in northern Sweden, where they are generally harvested twice per growing season. Entire plants, including stubble and roots, were sampled at the time of first and second harvest and, in addition, at the end of the growing season in three neighbouring fields, carrying a first, a second and a third year ley, respectively. N2 fixation was measured by both 15N isotope dilution (ID) and 15N natural abundance (NA) methods. The proportion of clover dry matter (DM) in the stands increased from the first to the second harvest, but the grasses dominated throughout the entire season, especially below ground. The N concentrations, in both herbage and whole plants, were about twice as high in the clover as in the grasses. Seasonal variations in N concentrations were minor, and total N contents followed the same trends as DM. The clover acquired nearly all of its N from N2 fixation: the proportion of N in clover herbage derived from N2 fixation was often >0.8 throughout the season. The variations in the amounts of N2 fixed during the course of the season corresponded well to the seasonal changes in clover biomass. Amounts of fixed N2 allocated to clover herbage during the whole season were in the range 4 to 6 g N m−2 in this unusually rainy year. Calculations of daily N allocation rates to herbage showed that N uptake rates were similar, and high, in grasses during May–June and July–August, while N2 fixation rates in clover were about 10-fold as high in July–August as in May–June, reflecting the need for N in clover growth. The proportion of N remaining in clover stubble and roots after the first and second harvests was about 60 and 25%, respectively, while about 60% of the N in grasses remained in stubble and roots after both harvests. The considerable amounts of biomass and N that were left in field after harvesting red clover-grass leys are important for re-growth of the plants and provide substantial N fertilization for the next crop in the crop rotation.  相似文献   

10.
Summary Different densities of populations were created under field conditions at two levels of N and canopy analysis was made with variety Sona on different growth parameters governing productivity. The relationships between leaf area index (LAI) and dry matter, grain yield and grain number were quadratic. LAI vs panicle number and grain number vs grain yield relationships were linear. The panicle number and grains per panicle are found to be compensatory for one another. The intercepting points of the two appear to be around 400 panicles per square metre with a grain range of 90–100 per panicle. re]19750228  相似文献   

11.
An experiment was designed to evaluate the role of N and C reserves on regrowth of Lolium perenne cv. Bravo following defoliation. By using two nitrogen fertilization levels together with three photoperiodic conditions, plants with variable contents of water-soluble carbohydrates (43-216 mg g-1 DW in stubble) and contrasting amounts of nitrogen (7-49 mg g-1 DW) were obtained. Plants were severely defoliated and regrowth was followed for 28 d under the same environmental conditions. The yield of leaf dry matter at the end of the regrowth period was not related to the initial level of carbohydrate reserves. However, levels of fructan in leaf sheaths and in elongating leaf bases strongly influenced the shoot yield during the first 2 d following defoliation. Fructan exohydrolase activity increased 2-3-fold in sheaths and 3.5-5-fold in elongation leaf bases, suggesting that not only fructans from sheaths but also fructans from immature cells may be used as substrates for growth. In contrast, no direct relationship was found between shoot production and nitrogen or soluble protein accumulation in source organs during early regrowth. A significant correlation existed with the initial amount of soluble proteins in sheaths and in elongating leaf bases after only 6 d of regrowth.  相似文献   

12.
The contribution of nitrogen reserves to regrowth following defoliation was studied in white clover plants (Trifolium repens cv. Huia). This was found to be closely linked to the morphological pattern of development of the aerial parts during the same period. Low temperature (6 degrees C) and short day exposure (8 h photoperiod) were used to induce dwarf development, i.e. to increase branching rate and to enhance new sites of leaf production during a period of regrowth. Treated plants exhibited a large reduction in leaf area and a large increase in leaf pool size for the first 10 d of a subsequent regrowth under standard culture conditions (16 h daylight; 22/18 degrees C day/night). The contribution of nitrogen from storage compounds in organs remaining after defoliation (sources) to regrowing tissues (sinks) was assessed by 15N pulse-chase labelling during regrowth following shoot removal. The mobilization of nitrogen reserves from storage tissues of regrowing clover was closely linked to the pattern of differentiation of the newly developed organs. It appeared that regrowth was supported less by endogenous N for the first 10 d after defoliation in treated plants, compared with control plants grown continuously in standard conditions. It is assumed that dwarf plants exhibit a lower dependence upon the mobilization of soluble proteins previously accumulated in roots and uncut stolons. The relationship between leaf development rate and N-uptake recovery following defoliation is discussed.  相似文献   

13.
李锋瑞  王树芳 《生态学报》2001,21(10):1620-1626
采用非破坏性的田间观测方法,以主匍匐茎的叶片伤害数,叶片伤害率和叶片伤害程度3个变量为指标,综合评价了小型无脊椎动物对多年生黑麦草与白三叶的混播草地白三叶叶片的伤害程度,系统探讨了白三叶品种类型(Alice,Retor和Gwenda),刈割频率(高与低)及草地特征(如三叶含量,地上生物量和草层高度)对小型无脊椎动物对叶片伤害的影响。研究表明,高频率刈割的草地白三叶叶片总的伤害数及中等程度伤害的叶片数明显地高于低频率刈割处理(分别为21%和35%),另外,研究期总的叶片伤害数不同程度伤害的叶片数因白三叶品种的不同而存在着很大差异,且这种差异在春季,夏末和秋季等3个时期均十分明显,在这3个时期,在两种频率刈割下,均是品种Retor的叶片伤害数和叶片伤害率明显高于品种Alice和Gwenda,研究还表明,叶片的伤害与白三叶种群特征如白三叶含量和地上生物量存在显著的负相关,白三叶含量和地上生物量越低,则叶片的伤害数和伤害率就越高,回归模型显示,白三叶含量和地上生物量可以解释叶片的伤害数在春季,夏末,秋季各65%,59%和50%的变异,可以解释叶片伤害率在这3个时期各58%,57%和45%。  相似文献   

14.
White clover (Trifolium repens L.) and Perennial ryegrass (Loliumperenne L.) plants were grown, in Perlite, in simulated swardsas either monocultures or mixtures of equal plant numbers. Theywere supplied with a nutrient solution either high (220 µgg–1) or low (40 µg g–1) in 15N-labelled nitrateand grown to ceiling yield at either high (20°C day/15°Cnight) or low (10°C day/8°C night) temperature. Temperature had little effect on the maximum rates of grosscanopy photosynthesis which were similar in High-N grass andHigh-N and Low-N clover monocultures. However these maxima werereached more slowly in clover than grass, and more slowly atlow rather than high temperature. Nitrogen supply increasedphotosynthesis in grass but not in clover. Clover had higherN contents than grass in all four treatments, although in anygiven treatment its N content was lower, and contribution ofN2-fixation relative to nitrate uptake higher, in mixture thanin monoculture. Conversely, grass had higher N contents in mixturethan monoculture, because more nitrate was available per plantand not because of transfer of biologically fixed N from clover. Under Low-N, clover outyielded grass in mixture, particularlyat high temperature. The grass plants in the Low-N mixtureshad higher N contents and higher SLA, LAR and shoot: root ratiosthan those in monoculture. It is proposed that competition forlight is the cause of the low relative yield and negative aggressivityof grass in these swards. Under High-N, grass outyielded cloverin monoculture and mixture, at both temperatures but particularlyat low temperature when grass had a high aggressivity. Nitrogenand yield component analyses shed no light on clover's apparentlylow competitive ability and evidence is drawn from the previouspaper to demonstrate that grass grew faster than clover onlyas spaced individuals during non-com petitive growth. The relativemerits of measures of competitive ability based on final harvestdata and physiological data taken over a growth period are discussed. Trifolium repens L., white clover, Lolium perenne, perennial ryegrass, competition, temperature, nitrogen  相似文献   

15.
Nitrogen fixation in perennial forage legumes in the field   总被引:13,自引:0,他引:13  
Nitrogen acquisition is one of the most important factors for plant production, and N contribution from biological N2 fixation can reduce the need for industrial N fertilizers. Perennial forages are widespread in temperate and boreal areas, where much of the agriculture is based on livestock production. Due to the symbiosis with N2-fixing rhizobia, perennial forage legumes have great potential to increase sustainability in such grassland farming systems. The present work is a summary of a large number of studies investigating N2 fixation in three perennial forage legumes primarily relating to ungrazed northern temperate/boreal areas. Reported rates of N2 fixation in above-ground plant tissues were in the range of up to 373 kg N ha–1 year–1 in red clover (Trifolium pratense L.), 545 kg N ha–1 year–1 in white clover (T. repens L.) and 350 kg N ha–1 year–1 in alfalfa (Medicago sativa L.). When grown in mixtures with grasses, these species took a large fraction of their nitrogen from N2 fixation (average around 80%), regardless of management, dry matter yield and location. There was a large variation in N2 fixation data and part of this variation was ascribed to differences in plant production between years. Studies with experiments at more than one site showed that also geographic location was an important source of variation. On the other hand, when all data were plotted against latitude, there was no simple correlation. Climatic conditions seem therefore to give as high N2 fixation per ha and year in northern areas (around 60°N) as in areas with a milder climate (around 40°N). Analyzing whole plants or just above-ground plant parts influenced the estimate of N2 fixation, and most reported values were underestimated since roots were not included. Despite large differences in environmental conditions, such as N fertilization and geographic location, N2 fixation (Nfix; kg N per ha and year) was significantly (P<0.001) correlated to legume dry matter yield (DM; kg per ha and year). Very rough, but nevertheless valuable estimations of Nfix in legume/grass mixtures (roots not considered) are given by Nfix = 0.026DM + 7 for T. pratense, Nfix = 0.031DM + 24 for T. repens, and Nfix = 0.021DM + 17 for M. sativa.  相似文献   

16.
J. Boucaud  J. Bigot 《Plant and Soil》1989,114(1):121-125
The activities of key enzymes involved in N assimilation were investigated after defoliation of 6-week-old ryegrass plants grown in water culture conditions. In a first experiment, nitrate reductase, glutamine synthetase and glutamate dehydrogenase activities were measured in roots, stubble and leaves on the day of cutting and at 7-day intervals over the following 5-week period of regrowth. Ammonia assimilation enzymes showed little change whereas the nitrate reductase activity sharply decreased 2 weeks after clipping. In a second experiment, the nitrate reductase activity was measured at 2- or 3-day intervals 1 week before and 3 weeks after clipping.In vivo andin vitro assays both showed an increasing activity in leaves up to 8 days after cutting while root activity decreased. The opposite changes then occurred and both organs recovered their initial nitrate reductase activity levels after 12–14 days of regrowth. These fluctuations in nitrate reductase activity were considered to be related to the capacity for C assimilation and the nitrate availability.  相似文献   

17.
The influence of P deficiency on the utilization of two sources of N, mineral N (exogenous N) and reserved N (endogenous N), for regrowth of Italian ryegrass (Lolium multiflorum) was studied. P-sufficient (+P) or P-free (−P) nutrition solution was applied from 7 days before defoliation to 24 days of regrowth and the N flows derived from two different N sources within the plant were quantified by 15N pulse-chase labeling. Shoot regrowth significantly reduced by 12 days of regrowth, while root growth was more in −P plants. Inorganic P (Pi) concentration was highly reduced by P deprivation more in the stubble and regrowing shoots and less in the roots. At defoliation, P deprivation had induced a higher accumulation for all N compounds in the stubble and for amino acids in the roots. The previously incorporated 15N in stubble and roots as nitrate and amino acids was much decreased in −P plants especially for the first 6 days of regrowth. Total N content in the regrowing leaves was not significantly different between +P and −P plants, but percentage contribution of remobilized N for total leaf N formation was significantly higher in −P plants (78%) than in +P plants (69%) at 6 days of regrowth. From day 12, the utilization of both endogenous and exogenous N was apparently inhibited in −P plants.  相似文献   

18.
P. J. Goodman 《Plant and Soil》1988,112(2):247-254
The stable isotope15N is particularly valuable in the field for measuring N fixation by isotope dilution. At the same time other soil-plant processes can be studied, including15N recovery, and nitrogen transfer between clover and grass. Three contrasting sites and soils were used in the present work: a lowland soil, an upland soil, and an upland peat. Nitrogen fixation varied from 12 gm–2 on lowland soil to 2.7 gm–2 on upland peat. Most N transfer occurred on upland soil (4.2 gm–2) which, added to nitrogen fixed, made a total of 8.7 gm2 input during summer 1985.15N recovery for the whole experiment was small, around 25%.Measurement of dead and dying leaves, stubble and roots, suggests that plant organ death is the first stage in N transfer from white clover to ryegrass, through the decomposer cycle. Decomposition was fastest on lowland soils, slowest on peat. On lowland soil this decomposer nitrogen is apparently subverted before transfer, probably by soil microbes.Variations in natural abundance of15N in plants were found in the two species on the different soils. These might be used to measure nitrogen fixation without adding isotope, but the need for many replicates and repeat samples would limit throughput.  相似文献   

19.
Ledgard  S.F.  Sprosen  M.S.  Penno  J.W.  Rajendram  G.S. 《Plant and Soil》2001,229(2):177-187
Effects of rate of nitrogen (N) fertilizer and stocking rate on production and N2 fixation by white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L.) were determined over 5 years in farmlets near Hamilton, New Zealand. Three farmlets carried 3.3 dairy cows ha–1 and received urea at 0, 200 or 400 kg N ha–1 yr–1 in 8–10 split applications. A fourth farmlet received 400 kg N ha–1 yr–1 and had 4.4 cows ha–1.There was large variation in annual clover production and total N2 fixation, which in the 0 N treatment ranged from 9 to 20% clover content in pasture and from 79 to 212 kg N fixed ha–1 yr–1. Despite this variation, total pasture production in the 0 N treatment remained at 75–85% of that in the 400 N treatments in all years, due in part to the moderating effect of carry-over of fixed N between years.Fertilizer N application decreased the average proportion of clover N derived from N2 fixation (PN; estimated by 15N dilution) from 77% in the 0 N treatment to 43–48% in the 400 N treatments. The corresponding average total N2 fixation decreased from 154 kg N ha–1 yr–1 to 39–53 kg N ha–1 yr–1. This includes N2 fixation in clover tissue below grazing height estimated at 70% of N2 fixation in above grazing height tissue, based on associated measurements, and confirmed by field N balance calculations. Effects of N fertilizer on clover growth and N2 fixation were greatest in spring and summer. In autumn, the 200 N treatment grew more clover than the 0 N treatment and N2 fixation was the same. This was attributed to more severe grazing during summer in the 0 N treatment, resulting in higher surface soil temperatures and a deleterious effect on clover stolons.In the 400 N treatments, a 33% increase in cow stocking rate tended to decrease PN from 48 to 43% due to more N cycling in excreta, but resulted in up to 2-fold more clover dry matter and N2 fixation because lower pasture mass reduced grass competition, particularly during spring.  相似文献   

20.
Pasture swards containing perennial ryegrass (Lolium perenne L.) alone or with one of five different white clover (Trifolium repens L.) cultivars were examined for production and transfer of fixed nitrogen (N) to grass under dairy cow grazing. Grass-only swards produced 21% less than mixed clover-grass swards during the second year after sowing. Production from grass-only plots under a mowing and clipping removal regime was 44% less than from grass-only plots under grazing. Much of this difference could be attributed to N transfer. In swards without clover, the ryegrass component also decreased in favour of other grasses.The average amount of fixed N in herbage from all clover cultivars was 269 kg N ha–1 yr–1. Above-ground transfer of fixed N to grasses (via cow excreta) was estimated at 60 kg N ha–1 yr–1. Below-ground transfer of fixed N to grasses was estimated at 70 kg N ha–1 yr–1 by 15N dilution and was similar for all clover cultivars. Thus, about 50% of grass N was met by transfer of fixed N from white clover during the measurement year. Short-term measurements using a 15N foliar-labelling method indicated that below-ground N transfer was largest during dry summer conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号