首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mammalian brain, beta-tubulin occurs as a mixture of four isotypes designated as types I, II, III, and IV. It has been speculated in recent years that the different tubulin isotypes may confer functional diversity to microtubules. In an effort to investigate whether different tubulin isotypes differ in their functional properties we have studied the colchicine binding kinetics of bovine brain tubulin upon removal of the beta III isotype. We found that the removal of the beta III isotype alters the binding kinetics from biphasic to monophasic with the disappearance of the slow phase. The kinetics become biphasic with the reappearance of the slow phase when the beta III-depleted tubulin was mixed with the beta III fraction eluted from the affinity column with 0.5 M NaCl. The analysis of the kinetic data reveals that the tubulin dimers containing beta III bind colchicine at an on-rate constant of 35 M-1 s-1 while those lacking beta III bind at 182 M-1 s-1. Our results strongly suggest that the beta-subunit plays a very important role in the interaction of tubulin with colchicine.  相似文献   

2.
Tubulin, the constituent protein of microtubules, is an alpha beta heterodimer; both alpha and beta exist in several isotypic forms whose functional significance is not precisely known. The antimitotic alkaloid colchicine binds to mammalian brain tubulin in a biphasic manner under pseudo-first-order conditions in the presence of a large excess of colchicine (Garland, D. L. (1978) Biochemistry 17, 4266-4272). We have studied the kinetics of colchicine binding to purified beta-tubulin isotypes and find that each of the purified beta-tubulin isotypes binds colchicine in a monophasic manner. The apparent on-rate constants for the binding of colchicine to alpha beta II-, alpha beta III-, and alpha beta IV-tubulin dimers are respectively 132 +/- 5, 30 +/- 2, and 236 +/- 7 M-1 s-1. When the isotypes are mixed, the kinetics become biphasic. Scatchard analysis revealed that the isotypes differ significantly in their affinity constants (Ka) for binding colchicine. The affinity constants are 0.24 x 10(6), 0.12 x 10(6), and 3.31 x 10(6) M-1, respectively, for alpha beta II-, alpha beta III-, and alpha beta IV-tubulin dimers. Our results are in agreement with the hypothesis that the beta-subunit of tubulin plays a major role in the interaction of colchicine with tubulin. Our binding data raise the possibility that the tubulin isotypes might play important regulatory roles by interacting differently with other non-tubulin proteins in vivo, which in turn, may regulate microtubule-based functions in living cells.  相似文献   

3.
Tubulin, the major constituent protein of microtubules, is a heterodimer of alpha and beta subunits. Both alpha and beta exist in multiple isotypic forms. It is not clear if different isotypes perform different functions. In order to approach this question, we have made a monoclonal antibody specific for the beta III isotype of tubulin. This particular isotype is neuron-specific and appears to be phosphorylated near the C terminus. We have used immunoaffinity depletion chromatography to prepare tubulin lacking the beta III subunit. We find that removal of the beta III isotype results in a tubulin mixture able to assemble much more rapidly than is unfractionated tubulin when reconstituted with either of the two microtubule-associated proteins (MAPs), tau or MAP 2. Our results suggest that the different isotypes of tubulin differ from each other in their ability to polymerize into microtubules. We have also found that the anti-beta III antibody can stimulate microtubule assembly when reconstituted with tubulin and either tau or MAP 2. When reconstituted with tubulin lacking the beta III isotype, the antibody causes the tubulin to polymerize into a polymer that is a microtubule in the presence of MAP 2 and a ribbon in the presence of tau.  相似文献   

4.
The kinetics of the binding of MDL 27048 to tubulin have been studied by fluorescence stopped flow. The binding is accompanied by a fluorescence increase. The time course can be described by a sum of two exponentials, assumed to be due to the presence of two major tubulin isoforms. The observed rate constants depend in a nonlinear way on the concentration of MDL in pseudo-first-order conditions. This concentration dependence can be described by the presence of a fast equilibrium of low affinity, followed by an isomerization of the initial complex. The dissociation kinetics have been studied by displacement experiments, in which MTC was used as a competitive ligand. The reaction enthalpy change for the first binding equilibrium and the activation energies for the forward and reverse steps of the isomerization were determined from the temperature dependence. This was possible for the two tubulin isotype populations. The kinetics of the binding of MDL to tubulin are slowed down in the presence of 3',4',5'-trimethoxyacetophenone, a fast binding analog of the colchicine A-ring, but are not influenced by the binding of tropolone methyl ether, indicating that the binding site of MDL has the A-subsite in common with colchicine, but not the C-subsite.  相似文献   

5.
alpha and beta Tubulins exist in a number of different isotypes with distinct expression patterns during development. We have shown by immunofluorescent staining that beta 1, beta 2 and beta 3 tubulins are distributed very specifically in the testes of Drosophila. beta 3 Tubulin is present exclusively in cytoplasmic microtubules of cells somatic in origin, while the beta 1 isotype is localized in the somatic cells and in early germ cells of both the microtubules of the cytoskeleton as well as in the mitotic spindle. In contrast, beta 2 tubulin is present in all microtubular arrays (cytoskeleton, meiotic spindles, axoneme) of germ cells from meiotic prophase onward, though not detectable in somatic cells. Thus, a switch of beta tubulin isotypes from beta 1 to beta 2 occurs during male germ cell differentiation. This switch is also observed in the distantly related species Drosophila hydei. By fusing beta 1 or beta 3 amino acid coding regions to the control region of the beta 2 tubulin gene and performing germ line transformation experiments, we have examined the copolymerization properties of the different tubulin isotypes. Neither beta 1 nor beta 3 are detectable in the axoneme in the wild-type situation. Analysis of transgenic flies carrying beta 2-beta 1 fusion genes or beta 2-beta 3 fusion genes revealed that both beta 1 and beta 3 tubulin isotypes have the potential to co-incorporate with beta 2 tubulin into microtubules of the sperm axoneme. Male flies homozygous for the fusion genes (beta 2-beta 1 or beta 2-beta 3) remain fertile, despite the mixture of beta tubulin isotypes in the axoneme.  相似文献   

6.
The tubulin molecule is a heterodimer composed of two polypeptide chains, designated alpha and beta; both alpha and beta exist in numerous isotypic forms, which differ in their assembly and drug binding properties. 2-(4-Fluorophenyl)-1-(2-chloro-3, 5-dimethoxyphenyl)-3-methyl-6-phenyl-4(1H)-pyridinone (IKP-104) is an antimitotic compound which inhibits polymerization and induces depolymerization of microtubules [Mizuhashi, F., et al. (1992) Jpn. J. Cancer Res. 83, 211]. Since the previous work was undertaken with isotypically unfractionated tubulin, we have investigated the interactions of IKP-104 with the isotypically purified tubulin dimers (alpha beta(II), alpha beta(III), and alpha beta(IV)). We find that IKP-104 binds to alpha beta(II) and alpha beta(III) at two classes of binding sites. However, affinities for each class of site are much weaker for alpha beta(III) than for alpha beta(II). Interestingly, the low-affinity site on alpha beta(IV) was not detectable. Its high-affinity site was weaker than those of either alpha beta(II) or alpha beta(III). In a pattern consistent with these results, IKP-104 inhibited assembly better with alpha beta(II) than with the other two dimers. Higher concentrations of IKP-104 induced formation of spiral aggregates from alpha beta(II) and alpha beta(III) but not from alpha beta(IV). Our results suggest that the interaction of IKP-104 with tubulin isotypes is very complex: alpha beta(II) and alpha beta(III) differ quantitatively in their interaction with IKP-104, and alpha beta(IV)'s interaction differs both quantitatively and qualitatively from those of the other two dimers.  相似文献   

7.
EPR titration of tubulin with an allocolchicine spin probe showed more than one binding site: one high-affinity binding site (Kd = 8 microM), consistent with the Ki found for competition with colchicine, and one or more low-affinity site(s) (Kd higher than 50 microM). No disturbance of the EPR signal of the tubulin-bound allocolchicine spin probe could be observed at room temperature in the presence of other paramagnetic probes: Mn(II) for the binding site of Mg(II), Co(II) for the Zn(II) binding site and Cr(III)GTP for the binding site of the exchangeable GTP. Labelling of tubulin with both the allocolchicine and a SH-group spin probe also showed lack of interaction. The colchicine-binding site is thus sterically isolated from the binding sites for GTP, Mg(II), Zn(II) and the two essential SH-groups. In the tubulin-colchicin complex, all SH-groups could still be labelled with an excess of the SH-reagent, N-ethylmaleimide. Furthermore, colchicine binding was only minimally influenced by the blocking of the two essential SH-groups. However, the rate constant of the reaction of two equivalents of the SH-reagent, a maleimide spin probe, with the tubulin-colchicine complex was only 50% of the rate constant found with uncomplexed tubulin. As direct steric interaction of the essential SH-groups with the colchicine-binding site can be excluded, we can now definitively decide that binding of colchicine to tubulin induces a conformational change, which affects the accessibility of the most reactive SH-groups.  相似文献   

8.
Tubulin is the target for some very powerful anti-mitotic and anti-tumor drugs. The betaIII tubulin isotype is found in very few normal tissues, but is often found in tumors, where it has been implicated in resistance to anti-tumor drugs. The betaIII isotype occurs in fish, amphibians, birds and mammals and its unique features are highly conserved in evolution. One of these features is the replacement of cys239 by ser239. Cys239 is unusual in being highly sensitive to oxidation; in fact, oxidation of this residue inhibits microtubule assembly. The betaIII isotype also has a very unusual cys124, where other beta isotypes have ser/ala124. The striking conservation in betaIII of vertebrates strongly suggests that cys124 and ser239 play functional roles. We have prepared the C124S and S239C mutants of betaIII and tested their effects on the functional properties of tubulin. We have found that both the betaIII C124S and betaIII S239C mutants bind colchicine less well than does wild-type alphabetaIII, and also make transfected HeLa cells more resistant to colchicine. However, the double mutant, betaIII C124S/S239C, binds colchicine still less well than do either of the single mutants, but in contrast to the former, the double mutant increases the cells' sensitivity to colchicine. Our results indicate that the roles that these residues play in colchicine binding and microtubule integrity are far more complex than previously imagined and that the specific residues at which betaIII differs from the other isotypes act collectively to keep betaIII in a functional conformation.  相似文献   

9.
Pluripotent P19 embryonal carcinoma (EC) cells were differentiated along the neuronal and muscle pathways. Comparisons of class I, II, III, and IV beta tubulin isotypes in total and colchicine-stable microtubule (MT) arrays from uncommitted EC, neuronal, and muscle cells were made by immunoblotting and by indirect immunofluorescence microscopy. In undifferentiated EC cells the relative amounts of these four isotypes are the same in both the total and stable MT populations. Subcellular sorting of beta tubulin isotypes was demonstrated in both neuronal and muscle differentiated cells. During neuronal differentiation, class II beta tubulin is preferentially incorporated into the colchicine-stable MTs while class III beta tubulin is preferentially found in the colchicine-labile MTs. The subcellular sorting of class II into stable MTs correlates with the increased staining of MAP 1B, and with the expression of MAP 2C and tau. Although muscle differentiated cells express class II beta tubulin, stable MTs in these cells do not preferentially incorporate this isotype but instead show increased incorporation of class IV beta tubulin. Muscle cells do not show high levels of MAP 1B and do not express MAP 2C or tau. These results are consistent with the hypothesis that a subcellular sorting of tubulin isotypes is the result of a complex interaction between tubulin isotypes and MT-associated proteins.  相似文献   

10.
Mammalian brain tubulin consists of several isotypes of alpha and beta subunits that separate on polyacrylamide gels into three electrophoretic classes, designated alpha, beta 1, and beta 2. It has not been possible hitherto to resolve the different isotypes in a functional form. To this end, we have now isolated a monoclonal antibody, using as an immunogen a chemically synthesized peptide corresponding to the carboxyl-terminal sequence of the major tubulin isotype (type II) found in the beta 1-tubulin electrophoretic fraction. The antibody binds to beta 1 but not to alpha or beta 2. When pure tubulin from bovine brain is passed through an immunoaffinity column made from the anti-type II antibody, the tubulin that elutes in the unbound fraction is enriched greatly for the beta 2 electrophoretic variant. The tubulin that binds to the column appears to contain only alpha and beta 1, not beta 2. When these tubulin fractions are characterized by immunoblotting using the anti-type II antibody, the antibody binds only to the beta 1 band in the bound fraction, not to the beta 1 band in the unbound fraction. Using polyclonal antibodies generated against the carboxyl-termini of types I, III, and IV, we demonstrate that the beta 1 electrophoretic species is comprised of isotypes I, II, and IV, whereas the beta 2 variant is comprised exclusively of type III beta-tubulin. Further, we calculate that beta-tubulin in purified bovine brain tubulin is comprised of 3% type I, 58% type II, 25% type III, and 13% type IV tubulins.  相似文献   

11.
12.
13.
Rao S  Aberg F  Nieves E  Band Horwitz S  Orr GA 《Biochemistry》2001,40(7):2096-2103
The extensive C-terminal molecular heterogeneity of alpha- and beta-tubulin is a consequence of multiple isotypes, the products of distinct genes, that undergo several posttranslational modifications. These include polyglutamylation and polyglycylation of both subunits, reversible tyrosination and removal of the penultimate glutamate from alpha-tubulin, and phosphorylation of the beta III isotype. A mass spectrometry-based method has been developed for the analysis of the C-terminal diversity of tubulin from human cell lines. Total cell extracts are resolved by SDS--PAGE and transferred to nitrocellulose, and the region of the blot corresponding to tubulin (approximately 50 kDa) was excised and digested with CNBr to release the highly divergent C-terminal tubulin fragments. The masses of the human alpha- and beta-tubulin CNBr-derived C-terminal peptides are all in the 1500--4000 Da mass range and can be analyzed directly by MALDI-TOF mass spectrometry in the negative ion mode without significant interference from other released peptides. In this study, the tubulin isotype diversity in MDA-MB-231, a human breast carcinoma cell line, and A549, a human non-small lung cancer cell line, is reported. The major tubulin isotypes present in both cell lines are k-alpha 1 and beta 1. Importantly, we report a previously unknown alpha isotype present at significant levels in both cell lines. Moreover, the degree of posttranslational modifications to all isotypes was limited. Glu-tubulin, in which the C-terminal tyrosine of alpha-tubulin is removed, was not detected. In contrast to mammalian neuronal tubulin which exhibits extensive polyglutamylation, only low-level monoglutamylation of the k-alpha 1 and beta 1 isotypes was observed in these two human cell lines.  相似文献   

14.
Native pig brain tubulin in heterodimer or polymer form was subjected to limited proteolysis by subtilisin, which is known to cleave at accessible sites within the last 50 amino acids of the highly variable carboxyl-termini of the alpha and beta subunits. Heterodimeric tubulin or tubulin polymerized in the presence of 4 M glycerol or taxol was used in these experiments. Digested tubulin was purified by cycles of polymerization and depolymerization, ammonium sulfate precipitation, or ion-exchange chromatography in the absence or presence of nonionic detergent; however, smaller cleaved products of about 34,000 to 40,000 MW remained associated with the major cleaved subunits, alpha' and beta', under all purification conditions. In order to determine the effect of subtilisin cleavage on tubulin heterogeneity, purified native or subtilisin-cleaved tubulin was subjected to isoelectric focusing, followed by SDS-PAGE. The total number of isotypes was reduced from 17-22 for native alpha,beta tubulin to 7-9 for subtilisin-cleaved alpha',beta' tubulin. When tubulin heterodimers were cleaved, a single major beta' isotype was evident; however, when tubulin polymerized in 4 M glycerol was cleaved, two major beta' isotypes were found. Monoclonal antibodies that recognize a beta carboxyl-terminal peptide, residues 410-430, reacted with both major beta' isotypes, indicating that subtilisin cleavage occurred within the last 20 of the 450 amino acids. In order to establish whether this difference was in fact associated with polymer or heterodimer forms of tubulin, digestion was carried out in the presence of taxol, which stabilizes tubulin polymers. A single major beta' isotype different from the cleaved heterodimer, but coincident with one of the bands of the cleaved glycerol-induced polymers, was found when taxol-treated tubulin was digested. This result suggests the presence of more than one subtilisin site in the beta subunit, near residues 430-435, with different accessibility to the enzyme in the heterodimer and polymer form.  相似文献   

15.
Tubulin, the 100-kDa subunit protein of microtubules, is a heterodimer of two 50-kDa subunits, alpha and beta. Both alpha and beta subunits exist as numerous isotypic forms. There are four isotypes of beta-tubulin in bovine brain tubulin preparations; their designations and relative abundances in these preparations are as follows: beta I, 3%; beta II, 58%; beta III, 25%; and beta IV, 13%. We have previously reported the preparation of monoclonal antibodies specific for beta II and beta III (Banerjee, A., Roach, M. C., Wall, K. A., Lopata, M. A., Cleveland, D. W., and Luduena, R. F. (1988) J. Biol. Chem. 263, 3029-3034; Banerjee, A., Roach, M. C., Trcka, P., and Luduena, R. F. (1990) J. Biol. Chem. 265, 1794-1799). We here report the preparation of a monoclonal antibody specific for beta IV. By using this antibody together with those specific for beta II and beta III, we have prepared isotypically pure tubulin dimers with the composition alpha beta II, alpha beta III, and alpha beta IV. We have found that, in the presence of microtubule-associated proteins, all three dimers assemble into microtubules considerably faster and to a greater extent than does unfractionated tubulin. More assembly was noted with alpha beta II and alpha beta III than with alpha beta IV. When assembly is measured in the presence of taxol (10 microM), little difference is seen among the isotypically purified dimers or between them and unfractionated tubulin. These results indicate that the assembly properties of a tubulin preparation are influenced by its isotypic composition and raise the possibility that the structural differences among tubulin isotypes may have functional significance.  相似文献   

16.
Banerjee M  Roy D  Bhattacharyya B  Basu G 《FEBS letters》2007,581(26):5019-5023
Colchicine-tubulin interaction, responsible for the disruption of microtubule formation, has immense pharmacological importance but is poorly understood in terms of its biological significance. The interaction is characterized by a marked higher affinity of colchicine for animal tubulins compared to tubulins from plants, fungi and protists. From an analysis of tubulin sequences and colchicine-tubulin crystal structure, we propose that Pro268beta and Ala248beta (270beta and 250beta in the crystal structure 1SA0) in animal tubulin are crucial for the observed differential binding. We also suggest that mediated by the binding of endogenous molecules to the colchicine-binding site, microtubule assembly in eukaryotes may be modulated in a family specific manner.  相似文献   

17.
Isolated microtubule proteins from the cold-adapted fish, Atlantic cod (Gadus morhua), assemble at temperatures between 8 and 30 degrees C, while avian and mammalian microtubules normally do not assemble at temperatures below 20 degrees C. Tubulin, the main component in microtubules, is expressed as many isotypes. Microtubules with different isotype composition have been shown to have different dynamic properties in vitro. Our hypothesis was that cold-tolerance of microtubules is caused by tubulin isotypes that differ in the primary sequence compared to mammalian tubulins. Here we show that transfection of human HepG2 cells with cod beta-tubulin induced cold-adaptation of the endogenous microtubules. Incorporation of one single tubulin isotype can induce cold-tolerance to cold-intolerant microtubules. Three cod beta-tubulin isotypes were tested and two of these (beta1 and beta2) transferred cold-tolerance to HepG2 microtubules, thus not all cod beta-tubulins were able to confer cold-stability.  相似文献   

18.
A colchicine-binding component was detected in vegetative amoebae of Dictyostelium discoideum by using a Millipore-filter assay. The colchicine-binding activity is temperature-and time-dependent, maximum binding occurring at 22-35 degrees C after 60 min incubation. Further increases in temperature are without effect on the extent of binding, but bound colchicine is released with increased time of incubation. Furthermore, colchicine-binding activity itself decreased in the high-speed supernatant from D. discoideum, with half the activity being lost in approx. 2.5h. Several lines of evidence, including the saturation kinetics of colchicine binding, enhancement of colchicine binding by tartrate, insensitivity to lumicolchicine, precipitation of the binding protein by vinblastine and behaviour of the binding protein on DEAE-cellulose and Sephadex resins, suggest that the colchicine-binding protein may be tubulin.  相似文献   

19.
In this communication, we report the presence of a unique colchicine-binding activity in the polysomes of rat brain. This drug-binding property, is somewhat similar to that of tubulin isolated from many sources; however, it differs in several bio-chemical characteristics such as (i) thermal stability of colchicine-binding site, (ii) protection of binding site by vinblastine and (iii) time required for binding equilibration. Such binding of colchicine to the polysomes is most probably due to the presence of a nascent peptide chain of tubulin in the polysome.  相似文献   

20.
Abstract

Tubulin isotypes are known to regulate microtubule dynamic instability and contribute to the development of drug resistance in certain types of cancers. Combretastatin-A4 (CA-4) has a potent anti-mitotic, vascular disrupting and anti-angiogenic activity. It binds at the interface of αβ tubulin heterodimers and inhibits microtubules assembly. Interestingly, the CA-4 resistant human lung carcinoma shows alteration of βI and βIII isotype levels, a higher expression of βI tubulin isotype and a decreased expression of βIII tubulin isotypes has been reported in drug resistant cell lines. However, the origin of CA-4 resistance in lung carcinoma is not well understood. Here, we investigate the interaction and binding affinities of αβI, αβIIb, αβIII and αβIVa tubulin isotypes with CA-4, employing molecular modeling approaches. Sequence analysis shows that variations in residue composition at the CA-4 binding pocket of βI, βIII and βIVa tubulin isotypes when compared to template βIIb isotype. Molecular docking result shows that the CA-4 prefers ‘cis’ conformation in all αβ-tubulin isotypes. Molecular dynamics simulation reveal role of H7 helix, T7 loop and H8 helix of β-tubulin in lower binding affinity of αβI and αβIII isotypes for CA-4. The order of binding energy for CA-4 is αβIIb?>?αβIVa?>?αβI?>?αβIII. This suggest that drug resistance is induced in human lung carcinoma cells by altering the expression of β-tubulin isotypes namely βI and βIII which show lowest binding affinities. Our present study can help in designing potential CA-4 analogs against drug-resistant cancer cells showing altered expression of tubulin isotypes. Abbreviations: CA-4 combretastatin-A4

MD molecular dynamics

RMSD root mean square deviation

DSSP dictionary of secondary structure of proteins

VMD visual molecular dynamics

Communicated by Ramaswamy H. Sarma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号