首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Summary The dopaminergic innervation of the goldfish pituitary gland was studied by immunocytochemistry at the electron-microscope level using highly specific antibodies against dopamine coupled to bovine serum albumin with glutaraldehyde. A satisfactory preservation of the tissue was achieved after immersion in 5% glutaraldehyde in phosphate buffer containing sodium metabisulfite to prevent oxidation of the endogenous dopamine. The immunocyto-chemical procedure was performed on Vibratome sections using the preembedding method. Immunoreactivity was restricted to part of the neurosecretory type-B fibers (diameter of the secretory vesicles lower than 100 nm) in which it was found to occupy the whole cytoplasm. Labeled fibers were observed within the neurohypophysis in the different parts of the gland and in the adenohypophyseal tissue where immunoreactive profiles were detected in close apposition to the different cell types. These data are in agreement with previous results obtained by means of radioautography and further support a role for dopamine in the neuroendocrine regulation of pituitary functions in teleosts.  相似文献   

2.
We studied the localization of metabotropic glutamate receptors (mGluRs) in the goldfish outer plexiform layer by light-and electron-microscopical immunohistochemistry. The mGluR1α antibody labeled putative ON-type bipolar cell dendrites and horizontal cell processes in both rod spherules and cone triads. Immunolabeling for mGluR2/3 was absent in the rod synaptic complex but was found at horizontal cell dendrites directly opposing the cone synaptic ribbon. The mGluR5 antibody labeled Müller cell processes wrapping rod terminals and horizontal cell somata. The mGluR7 antibody labeled mainly horizontal cell dendrites invaginating rods and cones and some putative bipolar cell dendrites in the cone synaptic complex. The finding of abundant expression of various mGluRs in bipolar and horizontal cell dendrites suggests multiple sites of glutamatergic modulation in the outer retina. Financial support for this work was provided by Conselho Nacional de Pesquisa (CNPq), Brazil (grant 200915/98-3 to C.J.)  相似文献   

3.
Summary The distribution of neuropeptide Y (NPY)-like immunoreactivity in rat, rabbit, chick, frog and goldfish retinas was investigated by immunohistochemistry. Positive results were observed only in the frog and goldfish retinas. NPY immunoreactivity was associated with a small population of amacrine cell bodies in the inner nuclear layer and cell processes in the inner plexiform layer of both retinas. In the frog retina, three distinct layers containing immunoreactivity were observed in the inner plexiform layer. In contrast, the immunoreactivity in the same area of the goldfish retina was more or less separated into two layers. Convincing evidence could not be found for the co-existence of NPY-like material with other putative transmitter-like substances in the two retinas.Radioimmunoassay revealed the presence of small amounts of NPY-like immunoreactivity in the rabbit retina; the goldfish and frog retinas contained significantly more immunoreactive material. High performance liquid chromatography of the immunoreactive material in frog and goldfish retinas showed each retina containing different molecular forms of NPY-like proteins, neither of which resembled porcine NPY or PYY.The endogenous NPY-like material of the frog retina can be released by potassium depolarisation in a calciumdependent way. In view of all these data an NPY-like protein must now be considered a potential retinal transmitter.  相似文献   

4.
5.
Summary Histochemically, an intense acetylcholinesterase (AChE) reaction has been observed in the perikarya of the nerve cells and in the neuropil formations of the pineal organ in the goldfish, Carassius auratus. A group of AChE-rich nerve cells has also been observed between the caudal end of the pineal stalk and the habenular ganglion. No component of the complex revealed butyrylcholinesterase (BuChE) activity.Two different types of nerve cells were recognized on the basis of their size, AChE activity and distribution. Type I cells are characterized by large perikarya possessing a moderate AChE activity and by the presence of an extensive AChE-rich neuropil formation in their vicinity; they are restricted to the rostro-lateral regions of the pineal vesicle. Type II cells are situated in the medio-rostral area of the pineal vesicle and along the entire length of the stalk, and are smaller than Type I cells; they show an intense AChE activity in their perikarya.The neuropil formations in the medio-rostral area of the pineal vesicle are almost as large as those in the vicinity of the Type I cells; they exhibit a strong AChE activity. In the rostral half of the vesicle several sensory cells are associated with each nerve cell, while in the caudal portion only a few cells are apposed to each nerve cell. Thus, the ratio of the number of sensory cells to that of AChE-containing nerve cells in the anterior half of the pineal vesicle is high when compared with the remaining area. In the anterior half of the vesicle the outer segments of the sensory cells are more distinct and their inner segments possess a higher AChE activity than those in the posterior region and the stalk. A gradation in the degree of development of neuropil formations along the pineal axis is remarkable; their size and AChE activity gradually diminish in a caudal direction. In view of the structural specialization of the rostral region of the pineal organ, it has been argued that its terminal portion is more photosensitive.This work was supported by a fellowship from the Alexander von Humboldt Foundation, Federal Republic of Germany.  相似文献   

6.
Summary Microinjections of dopamine (DA) were made into specific forebrain loci in goldfish (Carassius auratus: 40–85 g) to study the involvement of DA in behavioral thermoregulation. Injections of 25, 50, 100 and 250 ng DA into the anterior aspect of the nucleus preopticus periventricularis (NPP) led to consistent, dose-dependent decreases in selected temperature was observed following injections of 5 or 10 ng DA. Injections of the control solution were without effect.Injections of DA into other forebrain loci, including the posterior half of the NPP, either had no thermoregulatory effect or had minor thermoregulatory effects which, in comparison to injections into the most effective sites, were inconsistent and required larger doses to obtain. The decrease in selected temperature following injections of 100 ng DA into the anterior NPP was blocked by haloperidol, a dopaminergic antagonist, but not by phentolamine, a noradrenergic antagonist. Injections of haloperidol alone resulted in a minor, but statistically significant, increase in selected temperature.The most sensitive DA sites lie caudal to the sites most sensitive to norepinephrine within the anterior NPP. DA acts on the dopaminergic receptors of central thermoregulatory neurons in the anterior NPP of goldfish. These receptors appear to mediate behavioral responses to excessively warm environments.Abbreviations DA dopamine - NE norepinephrine - NPP nucleus preopticus periventricularis - PBS phosphate buffer solution  相似文献   

7.
GABAergic neurons in the vertebrate retina have received intensive study. Yet there are several notable examples of a mismatch among the cytochemical markers used to identify GABAergic neurons. The mismatch between [3H]GABA uptake autoradiography and all other indicators of GABAergic neurons as they pertain to amacrine cells in goldfish retina is examined in this overview. The discrepancies can be accounted for largely by barriers to diffusion presented by significant GABA uptake sinks at the inner and outer margins of the retina and by the differential subcellular distribution of the various markers for GABAergic neurons. Also, conditions producing a redistribution of [3H]-GABA and endogenous GABA stores within the retina are described and discussed.Special issue dedicated to Dr. Eugene Roberts  相似文献   

8.
Summary The distribution of gamma-aminobutyric acid (GABA) immunoreactivity was studied in the forebrain (tel-and diencephalon) of the goldfish by means of immunocytochemistry on Vibratome sections using antibodies against GABA. Positive perikarya were detected in the olfactory bulbs and in all divisions of the telencephalon, the highest density being found along the midline. In the diencephalon, GABA-containing cell bodies were found in the hypothalamus, in particular in the preoptic and tuberal regions. The inferior lobes, the nucleus recessus lateralis, and more laterodorsal regions, such as the nucleus glomerulosus and surrounding structures, also exhibited numerous GABA-positive perikarya. Cell bodies were also noted in the thalamus, in particular in the dorsomedial, dorsolateral and ventromedial nuclei. The relative density of immunoreactive fibers was evaluated for each brain nucleus and classified into five categories. This ubiquitous distribution indicates that, as in higher vertebrates, GABA most probably represents one of the major neurotransmitters in the brain of teleosts.  相似文献   

9.
The role of calcitonin (CT) in plasma calcium regulation was studied by the administration of exogenous CT and anti-salmon(s) CT antibody using goldfish,Carasius auratus, loaded or otherwise with calcium. CT elicited a decrease in plasma calcium concentrations at a dose of 10 ng/g body weight 1 h after administration. However, no effects were observed following doses of 30 ng and 50 ng/g 1 h, nor for the three doses 3 h after administration. In calcium-loaded fish, the effect of CT was different depending on the dosage of CT. Ten ng and 50 ng/g induced a decrease and an increase in plasma calcium concentrations, respectively, 3 h after administration. Anti-sCT antibody (0.02 μg or 0.1 μg/g) did not affect plasma calcium concentrations. In calcium-loaded fish, neither dose of anti-sCT antibody changed plasma calcium concentrations 1 h after administration. However, following a dose of 0.1 μg/g, plasma calcium concentrations decreased after 3 h. A positive correlation between plasma calcium concentrations and the gonad somatic index (GSI) in females was no longer apparent after administration of anti-sCT antibody. There was no relationship between plasma calcium concentrations and GSI in control and anti-sCT antibody-treated males. These results suggested that CT regulates plasma calcium concentrations in different ways depending on the dosage with CT having a role in calcium physiology during vitellogenesis.  相似文献   

10.
Goldfish have a tetrachromatic color vision with a high discrimination ability for spectral colors as well as for object colors. We investigate the question whether goldfish organize the high number of discriminable colors in terms of color categories, i.e. in a few larger groups of colors independent of wavelength discrimination. Twenty-four goldfish were trained with food reward, each fish on one out of 13 wavelengths between 371 nm and 630 nm. In transfer tests two different wavelengths were presented, one shorter and one longer than the training wavelength, and the choice behavior was determined. Choice frequencies of ≥50% were assumed to indicate similarity to the training color. The wavelength ranges ≥50% were about 100 nm and twice as large as the just noticeable differences measured in wavelength discrimination tests (Fig. 7). The ranges were surprisingly about the same for all training wavelengths, provided the data were plotted on a wavelength scale weighted according to discrimination ability (Fig. 4). Thus, with the training method chosen goldfish showed a kind of categorization which, however, depends on training wavelength and discrimination ability. Generalization tests in which training wavelength and test wavelengths were shown separately for 2 min each gave the same results as wavelength discrimination tests (Figs. 5 and 6) and are, therefore, not indicative for color categories.  相似文献   

11.
The distribution of neuropeptide F (NPF) immunoreactivity in the snail, Helix aspersa, has been demonstrated by immunocytochemistry using 2 regionspecific antisera. One, designated NPF3, was raised against a synthetic N-terminal fragment of Helix aspersa NPF; the other, designated PP221, was raised against the C-terminal hexapeptide amide of mammalian pancreatic polypeptide (PP) but cross-reacts fully with the analogous C-terminal region of Helix aspersa NPF. The distribution of NPF immunoreactivity has also been compared with that of FMRFamide using alternate serial sections of Helix aspersa ganglia. Results showed that NPF immunoreactivity was abundant and widespread in the central and peripheral nervous systems and the pattern of immunostaining obtained using both region-specific antisera was similar. Likewise, immunocytochemistry of neural tissues of a congeneric species, Helix pomatia, and 2 prosobranch gastropods, Buccinum undatum and Littorina littorea, produced similar staining patterns with both antisera. However, in the cephalopod mollusc, Loligo vulgaris, and the cestode, Moniezia expansa, positive immunostaining was only obtained with the C-terminal PP antiserum. Immunostaining of alternate serial sections of Helix aspersa ganglia with NPF3, and an antiserum raised to FMRFamide, showed that while a few neurones were immunoreactive with one antiserum only, in the majority, both immunoreactivities were co-localised. NPF thus appears to be an important neuropeptide of widespread distribution in Helix aspersa and the differential immunocytochemical staining obtained using the 2 region-specific antisera would suggest a high degree of primary structural conservation within the gastropod molluscs, but lack of conservation of the N-terminal region of the peptide in other invertebrate groups.  相似文献   

12.
Summary In order to identify the cell-type responsible for the production of hypocalcin (the recently isolated hypocalcemic hormone of teleost fish), the corpuscles of Stannius (CS) of trout, flounder and goldfish, were immunocytochemically stained with antisera raised against trout hypocalcin. The secretory granules of the type-1 cells of the CS, considered to be the hypocalcin-producing cells, showed intense immunoreactivity in all species examined. However, in trout and flounder, the secretory granules produced by the type-2 cells, which have been suggested to represent a functionally different cell-type, also showed an intense immunoreactivity. In goldfish, no type-2 cells were observed. We tentatively conclude that type-1 and type-2 cells represent structurally different forms of the same functional cell-type.  相似文献   

13.
Goldfish Carassius auratus were acclimated to either 10 or 30°C for a minimum of 5 weeks. A 65-kDa protein specific to warm-temperature-acclimated fish was extracted from the gel with 70% formic acid after two-dimensional electrophoresis of the muscle cytoplasmic protein fraction. The 65-kDa protein thus prepared to homogeneity was used to raise specific antibodies in rabbit by conventional methods. The antibody produced exhibited specific reaction with a protein having the same molecular weight from brain and liver tissue, suggesting that the 65-kDa protein is a ubiquitous cytosolic component in warm-acclimated goldfish. When water temperature was increased from 20 to 30°C over a 20-h period, a prominent amount of the 65-kDa protein was observed in muscle tissue extracts within 5 days of additional rearing; this was demonstrated by immunoblotting with the specific antibody. The N-terminal amino acid sequence of the 65-kDa protein was determined as Asp-Glu-Pro-Gln-Gly-His-Gln-His (or Asp)-Glu-Leu, differing from that of a family of known heat-shock proteins having about 70 kDa in molecular mass (hsp 70). No interaction between ATP and the 65-kDa protein revealed by ATP-agarose affinity chromatography further confirmed the different properties of the 65-kDa protein from those of hsp 70.Abbreviations ATP adenosine 5-triphosphate - hsp heat-shock protein(s) - IgG immunoglobulin G - mRNA messenger ribonucleic acid - PMSF phenylmethylsulphonyl fluoride - PVDF polyvinylidene difluoride - SDS sodium dodecyl sulphate - SDS-PAGE SDS-polyacrylamide gel electrophoresis  相似文献   

14.
Moritz C  Labbe C 《Cryobiology》2008,56(3):181-188
When gametes and embryos are not available, cryobanking of somatic tissues is one possibility to keep a genetic record of fish valuables in a context of biodiversity conservation and animal breeding management. Cryopreservation of whole fin pieces would be more advantageous than the commonly used cryopreservation of cells after fin culture, as it would allow extensive sampling without immediate need for laboratory facilities. The objective of this work was to assess the cryopreservation ability of fin pieces from goldfish (Carassius auratus) and to test whether a laboratory procedure could be adapted to field conditions. Caudal fin explants were cryopreserved in culture medium with 125 mM sucrose and 10% Me2SO. After 14 days of culture, the frozen–thawed explants showed the same cell growth rate and grew the same somatic cell number as the fresh ones. Cells proliferated inside and around the explants as shown by BrdU labeling. Neither the size of the fin pieces nor the freezer type, −70 °C upright or −20 °C chest, influenced the outcome of cryopreservation. Fin pieces were stored 4 days at 4 °C in dry conditions prior to cryopreservation without alteration of the fin explant culture success. This study demonstrated that field collecting of goldfish fin pieces is possible as whole fin pieces can be stored in standard fridge or be shipped at subzero temperature before they are frozen into a plain −20 °C chest freezer. After incorporation in cryobanks in liquid nitrogen, thawed fin pieces reliably produce somatic cells in cell culture conditions.  相似文献   

15.
Summary The occurrence and intracellular distribution of myosin and actin in melanophore-like cells derived from a goldfish erythrophoroma cell line have been studied by means of sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), immunoblot and immunofluorescence using antisera against chick gizzard myosin heavy chain and carp skeletal muscle actin. SDS-PAGE of the cell extracts separates out one band at 200 kDalton; this is conjugated with the anti-myosin antiserum. Immunofluorescence using the anti-myosin antiserum discloses that myosin in these cells occurs in two forms: discrete, minute clusters and thin filaments bearing a resemblance to stress fibers. The former is distributed evenly over the entire cytoplasm in the cells with dispersed pigments and, upon pigment aggregation, accumulates densely around collapsed melanosomes. The latter runs as thin bundles either radially along the cell center-to-periphery axis or connecting the corners of cell margins; it gives a similar profile in all states of the motile response. Immunofluorescence using the antiactin antiserum or rhodamine-conjugated phalloidin discloses that actin is similarly distributed to myosin, suggesting its possible existence as actomyosin. Simultaneous translocation of the amorphous forms of myosin and actin with melanosomes indicates that they may be involved in pigment migration.  相似文献   

16.
In part I of this study (Kitschmann and Neumeyer 2005), goldfish categorized spectral colors only in the sense that wavelengths in a range of about twice as large as the just noticeable difference were treated as similar to a given training wavelength. Now, we trained goldfish on more than one wavelength to prevent very accurate learning. In one experiment goldfish were trained on six adjacent wavelengths with equal numbers of rewards, and, thus, equal numbers of learning events. Generalization tests showed that some wavelengths were chosen more often than others. This indicated that certain spectral ranges are either more attractive or more easily remembered than others. As this is a characteristic of the “focal” colors or centers of color categories in human color vision, we interpret the findings in goldfish accordingly. We conclude (Figs. 5 and 6) that there are four categories in spectral ranges approximately coinciding with the maximal sensitivities of the four cone types, and three categories in-between. Experiments with two training colors indicate that there is no direct transition between categories analogous to human “green” and “red”, but that there is a color analogous to human “yellow” in-between (Figs. 2, 3; Table 1).  相似文献   

17.
Summary The dynamics of gap junctions between outer horizontal cells or their axon terminals in the retina of the crucian carp were investigated during light and dark adaptation by use of ultrathin-section and freeze-fracture electron microscopy. Light adaptation was induced by red light, while dark adaptation took place under ambient dark conditions. The two principal findings were: (1) The density of connexons within an observed gap junction is high in dark-adapted retina, and low in light-adapted retina. This, respectively, may reflect the coupled and uncoupled state of the gap junction. (2) The size of individual gap junctions is larger in light-than in dark-adapted retinae. Whereas the overall area occupied by gap junctions is reduced with dark adaptation, the percentage of small and very small gap junctions increases dramatically. A lateral shift of connexons in the gap junctional membrane is strongly suggested by these reversible processes of densification and dispersion. Two additional possibilities of gap junction modulation are discussed: (1) the de novo formation of very small gap junctions outside the large ones in the first few minutes of dark adaptation, and (2) the rearrangement of a portion of the very large gap junctions. The idea that the cytoskeleton is involved in such modulatory processes is corroborated by thin-section observations.Dedicated to Professor J. Peiffer on the occasion of his 65th birthday  相似文献   

18.
Intracerebroventricular (ICV) injection of melanin-concentrating hormone (MCH) influences feeding behavior in the goldfish and exerts an anorexigenic action in goldfish brain, unlike its orexigenic action in mammals. Despite a growing body of knowledge concerning MCH function in mammals, the role of MCH in appetite has not yet been well studied in fish. The aim of the present study was to investigate the involvement of endogenous MCH in the feeding behavior of the goldfish. We examined the distribution of MCH-like immunoreactivity (MCH-LI) in the goldfish brain and the effect of feeding status upon this distribution. Neuronal cell bodies containing MCH-LI were localized specifically to four areas of the hypothalamus. Nerve fibers with MCH-LI were found mainly in the neurohypophysis, with a few in the telencephalon, mesencephalon, and diencephalon. The number of neuronal cell bodies containing MCH-LI in the dorsal area adjoining the lateral recess of the third ventricle in the posterior and inferior lobes of the hypothalamus showed a significant decrease in fasted fish compared with that in normally fed fish, although other areas showed no evident differences. We also administered an antiserum against fish MCH (anti-MCH serum) by ICV injection and examined its immunoneutralizing effect on food intake by using an automatic monitoring system. Cumulative food intake was significantly increased by ICV injection of the anti-MCH serum. These results indicate that MCH potentially functions as an anorexigenic neuropeptide in the goldfish brain, and that the further study of the evolutionary background of the MCH system and its role in appetite is warranted. This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (K.M. and A.T.) and by a research grant from the Toyama Marine Biotechnology Association (K.M.).  相似文献   

19.
Summary Particular neurons in the nervous system of the Colorado potato beetle, Leptinotarsa decemlineata, are recognized by antisera against bovine pancreatic polypeptide and FMRFamide. Both antisera react with the same neurons. Solid phase absorptions showed that antiserum against bovine pancreatic polypeptide cross-reacts with FMRFamide, whereas antiserum against FMRFamide cross-reacts with bovine pancreatic polypeptide. Some of the immunoreactive neurons have axons branching extensively within the neuropile, which suggests that the peptide is used as transmitter. In the corpus cardiacum, a neurohaemal organ in insects, numerous immunoreactive axon terminals are present. Here, the peptide material is presumably released as a hormone.  相似文献   

20.
Summary The distribution of neuropeptide Y (NPY) immunoreactivity has been studied by means of immunocytochemistry and radioimmunoassay in the brain of the goldfish. It was found that NPY had a widespread distribution in the entire brain in particular in the telencephalon, diencephalon, optic tectum and rhombencephalon. In the pituitary gland, positive type-B fibers were observed in the various lobes frequently in direct contact with secretory cells, in particular the gonadotrophs, somatotrophs and MSH (melanocyte-stimulating hormone) secreting cells. When measured by radioimmunoassay, the highest NPY concentrations were found in the pituitary and telencephalon, confirming the results of immunocytochemistry. The displacement curves obtained with serial dilutions of brain extracts were parallel to that of synthetic porcine NPY. Following high performance liquid chromatography, the NPY-like material extracted from goldfish brain co-eluted as a single peak with synthetic porcine NPY. These data demonstrate the presence of an NPY-like substance widely distributed in the goldfish brain. The observation of NPY-immunoreactive fibers in the pituitary gland suggests that, among its other functions, NPY may play a role in the neuroendocrine regulation of pituitary function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号