首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of insulin on glucose metabolism in isolated human fat cells   总被引:3,自引:0,他引:3  
Isolated fat cells were used for the study of in vitro effects of insulin on glucose metabolism in human and rat adipose tissue. In human subcutaneous fat cells, effects of insulin could be detected at concentrations of glucose in the medium from 1 to 10 micro moles/ml. Cellular responsiveness was inversely proportional to the glucose level. At a constant concentration of 6 micro moles of glucose per ml, the effects of insulin at various concentrations up to 500 micro U/ml were investigated. At the highest concentration, which gave the maximal response, there was a 100% increase in the conversion of glucose-U-(14)C to glyceride-glycerol and a 40% increase in glucose oxidation. The dose-response curve was steepest between 2 and 20 micro U/ml. Rat epididymal fat cells were much more responsive to insulin. Glucose lipogenesis and pentose cycle activity could also be demonstrated in rat cells, whereas these activities could not be shown in fat cells from human omental and subcutaneous tissue. The findings for human cells are attributed to changes in cellular activity during preparation.  相似文献   

2.
3.
Addition of 5 μg/ml concanavalin A to isolated white fat cells in the presence of 1 % albumin maximally stimulated the conversion of d-[1-14C]glucose to CO2, glyceride-glycerol and fatty acids over a 1 h incubation period; as little as 1 μg/ml agglutinin increased fat cell glucose oxidation more than 2-fold. Labelled CO2 production in the presence of concanavalin A was linear for at least 90 min and was inhibited by 40 mM α-methyl-d-glucoside which had little effect on basal or insulin-stimulated glucose oxidation. The effect of a submaximal concentration of the agglutinin was additive to that of submaximal but not maximal concentrations of insulin.Concanavalin A caused agglutination of fat cells which could be readily detected by light microscopy. Digestion of fat cells with 0.5 mg/ml trypsin for 15 min did not affect subsequent agglutination and inhibited the increased glucose oxidation due to concanavalin A by less than 30%. Thus the action of concanavalin A was much less sensitive to trypsinization of fat cells than insulin since trypsin under the above conditions completely abolished the effect of insulin. An anti-blood group A agglutinin from Phaseolus lunatus and Lens culanaris agglutinin also markedly stimulatedfat cell glucose conversion to CO2. Agglutinin-stimulated glucose metabolism was inhibited by phloretin. This binding of several types of specific plant lectins to fat cell membrane glycoprotein(s) and/or glycolipid(s) apparently initiates events which results in increased glucose transport.  相似文献   

4.
5.
Insulin-stimulated phosphoinositide metabolism in isolated fat cells   总被引:6,自引:0,他引:6  
Treatment of isolated fat cells with insulin produced increases of up to 4.8-fold in the incorporation of [3H]inositol into phosphatidylinositol. This effect of insulin was both time- and dose-dependent with half-maximal stimulation at 30 microunits/ml of insulin. Insulin increased the labeling of phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate but not phosphatidylinositol 4-monophosphate in cells which had been preincubated with [3H]inositol for 90 min. Incubation of the cells in a Ca2+-free buffer increased the basal level of phosphatidylinositol labeling and enhanced the effect of insulin. Glucagon and isoprenaline, both of which stimulate lipolysis, had no effect on phosphatidylinositol labeling but did potentiate insulin-stimulated incorporation of [3H]inositol into phosphatidylinositol. Phosphoinositide breakdown was measured by the accumulation of inositol phosphates. Insulin did not increase the level of the inositol phosphates at all concentrations of the hormone tested. By comparison, phenylephrine and vasopressin were able to stimulate phosphoinositide breakdown. Pretreatment of the cells with insulin enhanced the effect of phenylephrine on inositol phosphates' accumulation, suggesting that insulin may potentiate phenylephrine-mediated phosphoinositide turnover. From these data we conclude that insulin stimulates the de novo synthesis of phosphatidylinositol and phosphatidylinositol 4,5-biphosphate, but has no effect on phosphoinositide breakdown.  相似文献   

6.
Glucocorticoids inhibit glucose utilization by fat cells. The possibility that this effect results from altered glucose transport was investigated using an oil-centrifugation technique which allows a rapid (within 45 s) estimation of glucose or 3-O-methylglucose uptake by isolated fat cells. At high concentration (greater than 25 muM), dexamethasone inhibited glucose uptake within 1 min of its addition to fat cells. Efflux of 3-O-methylglucose was also impaired by 0.1 mM dexamethasone. However, diminished glucose uptake was not a specific effect of glucocorticoids; high concentrations (0.1 mM) of 17beta-estradiol, progesterone, and deoxycorticosterone produced a similar response in adipocytes. At a more physiologic steroid concentration (0.1 muM), glucocorticoids inhibited glucose uptake in a time-dependent manner (maximum effect in 1 to 2 hours). This effect was specific for glucocorticoids since, under these conditions, glucose uptake was not changed by the non-glucocorticoid steroids. Lineweaver-Burk analysis showed that 0.1 muM dexamethasone treatment produced a decrease in Vmax for glucose uptake but did not change the Ku. Hexokinase activity and ATP levels were not altered by this treatment, suggesting that processes involved in glucose phosphorylation were not affected. Dexamethasone treatment also caused a reduction in uptake of 3-O-methylglucose when assayed using a low sugar concentration (0.1 mM). At a high concentration (10 mM), uptake of the methyl sugar was only slightly less than normal in treated cells. Stimulation by insulin markedly enhanced uptake of glucose and 3-O-methylglucose by both treated and untreated cells. At a low hexose concentration (0.1 mM) and in the presence of insulin, sugar uptake by dexamethasone-treated cells was slightly less than control cells. Stimulation by insulin did however completely overcome the alteration in hexose uptake when larger concentrations of sugars (greater than 5 mM) were used. There was no detectable change in total protein synthesis during incubation of fat cells with dexamethasone. However, actinomycin C blocked the inhibitory effect of dexamethasone on glucose uptake. Cycloheximide, which caused a small inhibition in glucose uptake, prevented the full expression of the inhibitory effect of dexamethasone on glucose transport. These results indicate that dexamethasone alters the facilitated transport of glucose and, secondly, suggest that synthesis of RNA and protein is needed for glucocorticoid action.  相似文献   

7.
Dietary fat type can influence the regulation of carbohydrate metabolism in multiple tissue types. The influence of feeding high-fat (40% of kilocalories) diets containing either menhaden oil (MO) or coconut oil (CO) on hepatic glycogenolytic and gluconeogenic capacities was studied in isolated rat hepatocytes. Estimates of both glycogenolytic and gluconeogenic capacities were performed on hepatocytes isolated from fed and fasted animals, respectively. In MO-fed animals, both basal and hormone-stimulated rates of glucose production were significantly greater than those in CO-fed animals. However, both groups displayed a similar maximal increase in glucose production above basal for glucagon and epinephrine (2.3- and 1.9-fold, respectively). Basal rates of adenosine 3′,5′-cyclic phosphate (cAMP) production were not different between groups whereas glucagon-stimulated cAMP production was increased twofold in the MO-fed group. In both MO and CO groups, the addition of 10 nM insulin reduced glucose production in fed animals to similar absolute rates. In animals fasted for 24 hours, gluconeogenic capacity was estimated using 10 mM pyruvate, lactate, or glycerol. Glucose production from all substrates was significantly greater in CO-fed animals. In addition to increased gluconeogenic rates, maximal phosphoenolpyruvate carboxykinase (PEPCK) activity was increased in the CO-fed group. Insulin reduced glucose production in both dietary groups, but the absolute rate of glucose production was 28% greater in the CO-fed group relative to the MO-fed group. In summary, dietary fat type can markedly influence the regulation of hepatic glucose metabolism in multiple metabolic pathways. MO feeding promoted glycogenolysis and sensitivity to insulin whereas CO feeding favored gluconeogenesis and reduced insulin sensitivity.  相似文献   

8.
To study the role of membrane SH-groups in glucose transport of isolated rat fat cells we compared the effects of a small organic mercurial reagent p-CMB with those of a large p--CMB-derivative -- p-CMB-Dextran, MW 10.000 --. It could be shown that both compounds were of almost identical reactivity on fat cell homogenate metabolism. When applied to intact fat cells uncoupled p--CMB showed an (1) insulin like enhancement of 14C incorporation from (U-14C) glucose into CO2 and triglyceride, (2) inhibition of the insulin-stimulatory effect on these parameters and (3) inhibition of basal glucose uptake dependent on the concentrations used. Identical concentrations of p-CMB-Dextran, however, failed to influence basal glucose uptake as well as the insulin mediated increase in glucose metabolism.  相似文献   

9.
10.
1. The metabolism of isolated fat cells from parametrial adipose tissue of starved normal rats was studied during 8hr. incubation. 2. There was a three- to eight-fold increase in conversion of glucose into carbon dioxide, fatty acids and glycerol during the fourth to eighth hours of incubation in 4% albumin buffer over that seen during the first 4hr. of incubation. 3. The addition of growth hormone and dexamethasone to fat cells at the start of the incubation period accelerated lipolysis during the first 4hr. of incubation but no further effect was seen during the fourth to eighth hours of incubation. Addition of growth hormone and dexamethasone to fat cells that had been incubated for 4hr. did not accelerate lipolysis during the next 4hr. whether fat cells were incubated with or without glucose. 4. Fat cells incubated for prolonged periods also displayed a reduced sensitivity to the lipolytic action of adrenocorticotrophic hormone. 5. During prolonged incubation there was no damage to the cells as judged by the retention of two soluble cytoplasmic enzymes, lactate dehydrogenase and malate dehydrogenase, within the cells.  相似文献   

11.
12.
13.
Glucose metabolism by sloth fat cells with and without addition of insulin was investigated. The data were compared to the results obtained with rat fat cells incubated under the same experimental conditions. Sloth fat cells showed a very low glucose oxidation to 14CO2 and incorporation into total lipids. The glucose incorporated into lipids is mainly in the glyceride-glycerol moiety. Addition of insulin did not produce an increase on glucose oxidation and a slight increase in the incorporation into total lipids was observed. Since it has been reported that sloths have a very low rate on thyroxine secretion, the results are discussed in relation to data in the literature on carbohydrate and lipid metabolism in hypothyroid animals.  相似文献   

14.
15.
16.
17.
18.
The metabolism of inositol-containing phospholipids during insulin secretion was studied in rat islets of Langerhans preincubated with [3H]inositol to label their phospholipids. Glucose (20 mM) caused a rapid breakdown of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate and an accumulation of inositol trisphosphate and inositol bisphosphate. This effect was maximal at 60s, did not require the presence of extracellular Ca2+, and was abolished by mannoheptulose (15 mM), but not by noradrenaline (1 microM). Mannose (20 mM) and DL-glyceraldehyde (10 mM) produced similar effects to those of glucose, but galactose (20 mM) and KCl (30 mM) were without effect. These results are compatible with the hypothesis that an early event in the stimulus-secretion coupling mechanism in the pancreatic B-cell is the rapid breakdown of polyphosphoinositides catalysed by phospholipase C. Moreover, they suggest that the breakdown of polyphosphoinositides is linked to sugar metabolism in the B-cell. This observation is important, since it demonstrates that events in a cell other than plasma-membrane receptor occupancy can promote polyphosphoinositide hydrolysis.  相似文献   

19.
The effect of different pHs obtained by changing the PCO2 and the effect of PCO2 at constant pH on the lipolysis induced by epinephrine in isolated fat cells have been investigated. An inhibition of activated lipolysis was found in acidosis while in alkalosis no significant change was detected. When the experiments were performed at different PCO2s but at constant pH, the results showed an inhibition of lipolysis by high PCO2 whereas low PCO2 did not affect it. It is concluded that either acidosis or high PCO2 lead to an inhibition of the lipolysis induced by epinephrine in isolated fat cells. As regards alkalosis and low PCO2 it seems likely that the intracellular pH is not affected to the same extent as in alkalosis by high [HCO(-3)] or under the conditions of the present experiments the [H+] needed to alterate lipolysis was not reached.  相似文献   

20.
The effects of age and cellularity on lipolysis have been investigated in isolated epididymal fat cells from both Swiss albino mice and Sprague-Dawley rats. No significant lipolytic response to glucagon could be demonstrated with adipocytes from either young or old mice, while glycerol output was increased by this hormone with fat cells from young rats. Larger adipocytes from older mice showed significantly greater isoproterenol-stimulated lipolysis than those from younger animals if the glycerol output was expressed on a per cell basis. However, the lipolytic response per cell appeared to be equivalent in young and old rat adipocytes with either isoproterenol or ACTH-(1-24). In a complete aging study, relationships between body weight, epididymal fat pad weight and cellularity were examined covering the life span of the mouse. ACTH-(1-24)- and dibutyryl cyclic AMP-stimulated lipolysis increased with age and cell size but fell at senescence when adipocyte size diminished. Although an effect of aging per se cannot be ruled out with the experimental techniques used in the present study, a dominant influence of adipocyte size on the lipolytic process was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号