首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. We monitored streamwater and streambed sediment porewaters from White Clay Creek (WCC), SE Pennsylvania, for dissolved organic carbon (DOC), dissolved oxygen (DO) and conductivity to investigate organic matter processing within the hyporheic zone. Dissolved organic carbon and DO concentrations were higher in the streamwater than in the porewaters and, in many cases, concentrations continued to diminish with increasing depth into the streambed. 2. Hydrological exchange data demonstrated that the permeability of the stream bed declines with depth and constrains downwelling, effectively isolating porewaters >30 cm from streamwater. 3. End‐member mixing analysis (EMMA) based on conductivity documented a DOC source and DO sink in the hyporheic zone. We calculated hyporheic streambed DOC fluxes and respiration from the EMMA results and estimates of water flux. Based upon our calculations of biodegradable DOC entering the hyporheic zone, we estimate that DOC supports 39% of the hyporheic zone respiration, with the remaining 61% presumably being supported by entrained particulate organic carbon. Hyporheic respiration averaged 0.38 g C m?2 d?1, accounted for 41% of whole ecosystem respiration, and increased baseflow ecosystem efficiency from 46 to 59%. 4. Advective transport of labile organic molecules into the streambed concentrates microbial activity in near‐surface regions of the hyporheic zone. Steep gradients in biogeochemical activity could explain how a shallow and hydrologically constrained hyporheic zone can dramatically influence organic matter processing at the ecosystem scale.  相似文献   

2.
1. We measured the hyporheic microbial exoenzyme activities in a floodplain river to determine whether dissolved organic matter (DOM) bioavailability varied with overlying riparian vegetation patch structure or position along flowpaths. 2. Particulate organic matter (POM), dissolved organic carbon (DOC), dissolved oxygen (DO), electrical conductivity and temperature were sampled from wells in a riparian terrace on the Queets River, Washington, U.S.A. on 25 March, 15 May, 20 July and 09 October 1999. Dissolved nitrate, ammonium and soluble reactive phosphorus were also collected on 20 July and 09 October 1999. Wells were characterised by their associated overlying vegetation: bare cobble/young alder, mid‐aged alder (8–20 years) and old alder/old‐growth conifer (25 to >100 years). POM was analysed for the ash‐free dry mass and the activities of eight exoenzymes (α‐glucosidase, β‐glucosidase, β ‐N‐acetylglucosaminidase, xylosidase, phosphatase, leucine aminopeptidase, esterase and endopeptidase) using fluorogenic substrates. 3. Exoenzyme activities in the Queets River hyporheic zone indicated the presence of an active microbial community metabolising a diverse array of organic molecules. Individual exoenzyme activity (mean ± standard error) ranged from 0.507 ± 0.1547 to 22.8 ± 5.69 μmol MUF (g AFDM)?1 h?1, was highly variable among wells and varied seasonally, with the lowest rates occurring in March. Exoenzyme activities were weakly correlated with DO, DOC and inorganic nutrient concentrations. 4. Ratios of leucine aminopeptidase : β‐glucosidase were low in March, May and October and high in July, potentially indicating a switch from polysaccharides to proteins as the dominant component of microbial metabolism. 5. Principal components analysis indicated that there were patch effects and that these effects were strongest in the summer. 6. DOM degradation patterns did not change systematically along hyporheic flowpaths but varied with overlying forest patch type in the Queets River hyporheic zone, suggesting that additional carbon inputs exist. We hypothesise that the most likely input is the downward movement of DOM from overlying riparian soils. Understanding this movement of DOM from soils to subsurface water is essential for understanding both the hyporheic metabolism and the carbon budget of streams and rivers.  相似文献   

3.
SUMMARY. Seasonal changes in dissolved organic carbon (DOC) concentrations were monitored biweekly for 1 year at seven stations in the Shetucket River watershed in eastern Connecticut, U.S.A. Nine monthly diurnal studies revealed 24-h fluctuations of up to 53% of the seasonal range of 250–2200 μm DOC. Net DOC removal along a 1.9-km stretch below a secondary sewage treatment plant (activated sludge effluent diluted to a final average volume of 1.4% in the river) ranged from 0 to 1600 and averaged 68 ± 64 mmol m?2 day?1. Removal of DOC further downstream could only be observed during a severe 3-h October storm when net uptake ranged from 16 to 92 mmol m?2 h?1, using upstream-downstream techniques. Oxygen respiration could account for about half of the net DOC removal during the October storm. Even though net uptake was somewhat greater than reported in other lotic studies, about 97% of the DOC potentially available to benthic heterotrophs was exported further downstream.  相似文献   

4.
The Red River, draining a 169,000 km2 watershed, is the second largest river in Viet Nam and constitutes the main source of water for a large percentage of the population of North Viet Nam. Here we present the results of an investigation into the spatial distribution and temporal dynamics of particulate and dissolved organic carbon (POC and DOC, respectively) in the Red River Basin. POC concentrations ranged from 0.24 to 5.80 mg C L?1 and DOC concentrations ranged from 0.26 to 5.39 mg C L?1. The application of the Seneque/Riverstrahler model to monthly POC and DOC measurements showed that, in general, the model simulations of the temporal variations and spatial distribution of organic carbon (OC) concentration followed the observed trends. They also show the impact of high population densities (up to 994 inhab km?2 in the delta area) on OC inputs in surface runoff from the different land use classes and from urban point sources. A budget of the main fluxes of OC in the whole river network, including diffuse inputs from soil leaching and runoff and point sources from urban centers, as well as algal net primary production and heterotrophic respiration was established using the model results. It shows the predominantly heterotrophic character of the river system and provides an estimate of CO2 emissions from the river of 330 Gg C year?1. This value is in reasonable agreement with the few available direct measurements of CO2 fluxes in the downstream part of the river network.  相似文献   

5.
Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC) release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata – Ochrophyta; Amansia rhodantha – Rhodophyta; Halimeda opuntia – Chlorophyta), a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii) and a dominant hermatypic coral (Porites lobata). Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h−1 dm−2), stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h−1) and concomitant oxygen drawdown (0.16±0.05 µmol L−1 h−1 dm−2). Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence reef microbial dynamics and biogeochemical parameters (i.e., DOC and oxygen availability, bacterial abundance and metabolism) in coral reef communities.  相似文献   

6.
1. The Ogeechee River, in south-eastern Georgia, U.S.A, is a blackwater river with an extensive floodplain that is inundated regularly during winter months. Previous studies have shown that low to moderate bacterial production rates cannot support the relatively high suspended bacteria concentrations observed (107?-108 cells ml?1), suggesting an allochthonous source of bacteria. We report the results of a combination of field and flume experiments which demonstrate that river sediments and floodplain soils are significant sources of suspended bacteria during seasonal flooding. Benthic bacteria are also entrained by normal discharges. There are sizeable fluxes of POC and DOC from river sediments and floodplain soils. 2. Bacterial, POC and DOC fluxes (14, 250, and 790 mg Cm?2 h?1, respectively) were substantial when water was percolated upward through floodplain soils. 3. Simulation of overland flow using a flume demonstrated further fluxes of bacteria and POC from floodplain soils (up to 61 and 10700 mg Cm?2h?1, respectively) and river sediments, but did not yield additional DOC from floodplain soils. 4. These laboratory results are supported by experiments in which we measured significant increases in concentrations of bacteria and DOC in a downstream direction in (i) the main river channel during a winter flood in 1986, and (ii) a floodplain slough (channel side-arm) which re-entered the main channel 800m from its initial divergence. Inputs of bacteria and DOC from the surrounding floodplain were estimated to be up to 3500 kg DOC h?1, and 4000 kg bacteria Ch?1 over a 50-km reach. 5. These previously unmeasured fluxes of organic carbon help to explain the high concentrations of suspended bacteria in the Ogeechee River.  相似文献   

7.
1. In their natural state, river floodplains are composed of a complex mosaic of contrasting aquatic and terrestrial habitats. These habitats are expected to differ widely in their properties and corresponding ecological processes, although empirical data on their capacity to produce, store and transform organic matter and nutrients are limited. 2. The objectives of this study were (i) to quantify the spatiotemporal variation of respiration, a dominant carbon flux in ecosystems, in a complex river floodplain, (ii) to identify the environmental drivers of respiration within and among floodplain habitat types and (iii) to calculate whole‐floodplain respiration and to put these values into a global ecosystem context. 3. We measured soil and sediment respiration (sum of root and heterotrophic respiration; SR) throughout an annual cycle in two aquatic (pond and channel) and four terrestrial (gravel, large wood, vegetated island and riparian forest) floodplain habitat types in the island‐braided section of the near‐natural Tagliamento River (NE Italy). 4. Floodplain habitat types differed greatly in substratum composition (soil to coarse gravel), organic matter content (0.63 to 4.1% ash‐free dry mass) and temperature (seasonal range per habitat type: 8.6 to 33.1 °C). Average annual SR ranged from 0.54 ± 1.56 (exposed gravel) to 3.94 ± 3.72 μmol CO2 m?2 s?1 (vegetated islands) indicating distinct variation in respiration within and among habitat types. Temperature was the most important predictor of SR. However, the Q10 value ranged from 1.62 (channel habitat) to 4.57 (riparian forest), demonstrating major differences in habitat‐specific temperature sensitivity in SR. 5. Total annual SR in individual floodplain habitats ranged from 160 (ponds) to 1205 g C m?2 (vegetated islands) and spanned almost the entire range of global ecosystem respiration, from deserts to tropical forests.  相似文献   

8.
1. The microbial metabolism of organic matter in rivers has received little study compared with that of small streams. Therefore, we investigated the rate and location of bacterial production in a sixth‐order lowland river (Spree, Germany). To estimate the contribution of various habitats (sediments, epiphyton, and the pelagic zone) to total bacterial production, we quantified the contribution of these habitats to areal production by bacteria. 2. Large areas of the river bottom were characterized by loose and shifting sands of relatively homogenous particle size distribution. Aquatic macrophytes grew on 40% of the river bottom. Leaf areas of 2.8 m2 m?2 river bottom were found in a 6.6 km river stretch. 3. The epiphyton supported a bacterial production of 5–58 ng C cm?2 h?1. Bacterial production in the pelagic zone was 0.9–3.9 μg C L?1 h?1, and abundance was 4.0–7.8 × 109 cells L?1. Bacterial production in the uppermost 2 cm of sediments ranged from 1 to 8 μg C cm?3 h?1, and abundance from 0.84 to 6.7 × 109 cells cm?3. Bacteria were larger and more active in sediments than in the pelagic zone. 4. In spite of relatively low macrophyte abundance, areal production by bacteria in the pelagic zone was only slightly higher than in the epiphyton. Bacterial biomass in the uppermost 2 cm of sediments exceeded pelagic biomass by factors of 6–22, and sedimentary bacterial production was 17–35 times higher than in the overlying water column. 5. On a square meter basis, total bacterial production in the Spree was clearly higher than primary productivity. Thus, the lowland river Spree is a heterotrophic system with benthic processes dominating. Therefore, sedimentary and epiphytic bacterial productivity form important components of ecosystem carbon metabolism in rivers and shallow lakes. 6. The sediments are focal sites of microbial degradation of organic carbon in a sand‐bottomed lowland river. The presence of a lowland river section within a river continuum probably greatly changes the geochemical fluxes within the river network. This implies that current concepts of longitudinal biogeochemical relationships within river systems have to be revised.  相似文献   

9.
Freeze-dried aqueous extracts of autumn-shed maple leaves, birch leaves, and spruce needles were added to a third-order reach of Bear Brook, New Hampshire at concentrations similar to those predicted to occur during peak leaf fall. Leachate from each species was rapidly removed from solution. With initial concentrations of added leachate of approximately 5 mgl–1, dissolved organics (DOC) uptake ranged from 73 to 130 mg m–2 h–1 for the first five hours of travel downstream from the point of addition. There was no preferential removal of DOC of low molecular weight, or of monomeric carbohydrates relative to phenolics or unidentified DOC.Stream sediments and organic debris rapidly removed DOC from solution in laboratory experiments. No significant flocculation or microbial assimilation of sugar maple leachate occurred in stream water alone. Stream sediments showed small increases in respiration with addition of leaf leachate, but no increase in respiration occurred upon addition of leachate to organic debris. Abiotic adsorption due to the high concentrations of exchangeable iron and aluminium in stream sediments may be responsible for much of the rapid removal of leaf leachate observed in field experiments. Abiotic processes appear to retain DOC within the stream, thereby allowing subsequent metabolism of dissolved organic carbon by stream microflora.  相似文献   

10.
The Catskill Mountains of southeastern New York State have among thehighest rates of atmospheric nitrogen deposition in the United States. Somestreams draining Catskill catchments have shown dramatic increases in nitrateconcentrations while others have maintained low nitrate concentrations. Streamsin which exchange occurs between surface and subsurface (i.e. hyporheic) watersare thought to be conducive to nitrate removal via microbial assimilationand/ordenitrification. Hyporheic exchange was documented in the Neversink River inthesouthern Catskill Mountains, but dissolved organic carbon (DOC) and nitrate(NO3 ) losses along hyporheic flowpaths werenegligible. In this study, Neversink River water was amended with natural,bioavailable dissolved organic carbon (BDOC) (leaf leachate) in a series ofexperimental mesocosms that simulated hyporheic flowpaths. DOC and N dynamicswere examined before and throughout a three week BDOC amendment. In addition,bacterial production, dissolved oxygen demand, denitrification, and sixextracellular enzyme activities were measured to arrive at a mechanisticunderstanding of potential DOC and NO3 removalalong hyporheic flowpaths. There were marked declines in DOC and completeremoval of nitrate in the BDOC amended mesocosms. Independent approaches wereused to partition NO3 loss into two fractions:denitrification and assimilation. Microbial assimilation appears to be thepredominant process explaining N loss. These results suggest that variabilityinBDOC may contribute to temporal differences in NO3 export from streams in the Catskill Mountains.  相似文献   

11.
1. The carbon budgets and assimilation efficiencies (AEs) of adults and juveniles of Daphnia magna were quantified using 14C as a tracer. Animals were fed pure Chlamydomonas reinhardtii or Scenedesmus obliquus at different food concentrations. Carbon AEs (46–70%) were comparable at food concentrations of 0.03–0.30 mg C L?1 for both algal species, but decreased to 34–49% when the food concentration further increased by 10‐fold. The carbon AEs were significantly and negatively correlated with the food level. 2. During the postdigestive period, partitioning of ingested carbon into different compartments including excretion, respiration and egestion was not influenced by the food species and life stage. There was a negative correlation between respiration (as % of total loss) and food concentration and a positive correlation between egestion (as % of total loss) and food concentration. Dissolved organic carbon (DOC) and CO2 accounted for 55–72% and 9–37%, respectively, of the total carbon loss from juveniles fed both algal diets. For adults, DOC and CO2 contributed to 44–64% and 20–47% of the total carbon loss, respectively. Particulate organic carbon (POC) was a minor pathway for the overall carbon loss. 3. The turnover and release budget of structural carbon (as moults and neonate reproduction) were further evaluated in long‐term experiments at different algal concentrations. Food concentration did not affect the carbon efflux or the carbon allocation into different physiological compartments except for respiration. Juveniles had twofold lower carbon turnover rate (0.12–0.16 day?1) than those of the adults (0.32–0.35 day?1). In adults, comparable carbon was allocated into DOC (35–42%) and reproduction (27–35%), which were the dominant routes for carbon loss. For the juveniles, DOC accounted for 42–64% of the total carbon loss. 4. About 21–38% of the total DOC released by adults and juveniles was associated with the high molecular weight organic carbon fraction (>5 kDa). Our results show that carbon was mainly lost by D. magna in the form of DOC during assimilation process as well as from the structural materials. Reproduction or maternal transfer was another major drain of body carbon for adult D. magna.  相似文献   

12.
Soil respiration is derived from heterotrophic (decomposition of soil organic matter) and autotrophic (root/rhizosphere respiration) sources, but there is considerable uncertainty about what factors control variations in their relative contributions in space and time. We took advantage of a unique whole‐ecosystem radiocarbon label in a temperate forest to partition soil respiration into three sources: (1) recently photosynthesized carbon (C), which dominates root and rhizosphere respiration; (2) leaf litter decomposition and (3) decomposition of root litter and soil organic matter >1–2 years old. Heterotrophic sources and specifically leaf litter decomposition were large contributors to total soil respiration during the growing season. Relative contributions from leaf litter decomposition ranged from a low of ~1±3% of total soil respiration (6± 3 mg C m?2 h?1) when leaf litter was extremely dry, to a high of 42±16% (96± 38 mg C m?2 h?1). Total soil respiration fluxes varied with the strength of the leaf litter decomposition source, indicating that moisture‐dependent changes in litter decomposition drive variability in total soil respiration fluxes. In the surface mineral soil layer, decomposition of C fixed in the original labeling event (3–5 years earlier) dominated the isotopic signature of heterotrophic respiration. Root/rhizosphere respiration accounted for 16±10% to 64±22% of total soil respiration, with highest relative contributions coinciding with low overall soil respiration fluxes. In contrast to leaf litter decomposition, root respiration fluxes did not exhibit marked temporal variation ranging from 34±14 to 40±16 mg C m?2 h?1 at different times in the growing season with a single exception (88±35 mg C m?2 h?1). Radiocarbon signatures of root respired CO2 changed markedly between early and late spring (March vs. May), suggesting a switch from stored nonstructural carbohydrate sources to more recent photosynthetic products.  相似文献   

13.
Response of soil respiration (CO2 emission) to simulated nitrogen (N) deposition in a mature tropical forest in southern China was studied from October 2005 to September 2006. The objective was to test the hypothesis that N addition would reduce soil respiration in N saturated tropical forests. Static chamber and gas chromatography techniques were used to quantify the soil respiration, following four‐levels of N treatments (Control, no N addition; Low‐N, 5 g N m?2 yr?1; Medium‐N, 10 g N m?2 yr?1; and High‐N, 15 g N m?2 yr?1 experimental inputs), which had been applied for 26 months before and continued throughout the respiration measurement period. Results showed that soil respiration exhibited a strong seasonal pattern, with the highest rates found in the warm and wet growing season (April–September) and the lowest rates in the dry dormant season (December–February). Soil respiration rates showed a significant positive exponential relationship with soil temperature, whereas soil moisture only affect soil respiration at dry conditions in the dormant season. Annual accumulative soil respiration was 601±30 g CO2‐C m?2 yr?1 in the Controls. Annual mean soil respiration rate in the Control, Low‐N and Medium‐N treatments (69±3, 72±3 and 63±1 mg CO2‐C m?2 h?1, respectively) did not differ significantly, whereas it was 14% lower in the High‐N treatment (58±3 mg CO2‐C m?2 h?1) compared with the Control treatment, also the temperature sensitivity of respiration, Q10 was reduced from 2.6 in the Control with 2.2 in the High‐N treatment. The decrease in soil respiration occurred in the warm and wet growing season and were correlated with a decrease in soil microbial activities and in fine root biomass in the N‐treated plots. Our results suggest that response of soil respiration to atmospheric N deposition in tropical forests is a decline, but it may vary depending on the rate of N deposition.  相似文献   

14.
1. Phytoplankton carbon assimilation and losses (exudation, dark carbon losses) as well as oxygen release and dark community respiration were measured regularly for 2 years at four stations along the lower Spree (Germany). Carbon balance of river phytoplankton was estimated using measured assimilation, metabolic losses and variations in algal carbon along a stretch of river. 2. The light/dark bottle method was modified to simulate vertical mixing. 3. Waxing and waning of phytoplankton populations dominated the load of particulate organic carbon as well as the oxygen budget of the river. 4. Phytoplankton assimilated 310–358 g C m?2 yr?1. A mean value of 586 mg C m?3 day?1 was fixed in photosynthesis, with 16.7 mg C being exuded during the day and 20.1 mg lost at night. The measured dark respiration was equivalent to only 28% of the daily gross oxygen production of the plankton community. Phytoplankton washed from upstream lakes and reservoirs was not measurably damaged by turbulent transport. 5. In spring, 18–22% of assimilated carbon was used for net biosynthesis of phytoplankton along the river course. At this time, the carbon balance of this part of the Spree was dominated by autochthonous net production. During summer, however, total carbon losses exceeded the intensive carbon assimilation. The decline of algal biomass along the river course in summer was not explicable by measurable physiological losses. The importance of sedimentation and grazing losses is discussed.  相似文献   

15.
1. While anthropogenic stream acidification is known to lower species diversity and impair decomposition, its effects on nutrient cycling remain unclear. The influence of acid‐stress on microbial physiology can have implications for carbon (C) and nitrogen (N) cycles, linking environmental conditions to ecosystem processes. 2. We collected leaf biofilms from streams spanning a gradient of pH (5.1–6.7), related to chronic acidification, to investigate the relationship between qCO2 (biomass‐specific respiration; mg CO2‐C g?1 fungal C h?1), a known indicator of stress, and biomass‐specific N uptake (μg NH4‐N mg?1 fungal biomass h?1) at two levels of N availability (25 and 100 μg NH4‐N L?1) in experimental microcosms. 3. Strong patterns of increasing qCO2 (i.e. increasing stress) and increasing microbial N uptake were observed with a decrease in ambient (i.e. chronic) stream pH at both levels of N availability. However, fungal biomass was lower on leaves from more acidic streams, resulting in lower overall respiration and N uptake when rates were standardized by leaf biomass. 4. Results suggest that chronic acidification decreases fungal metabolic efficiency because, under acid conditions, these organisms allocate more resources to maintenance and survival and increase their removal of N, possibly via increased exoenzyme production. At the same time, greater N availability enhanced N uptake without influencing CO2 production, implying increased growth efficiency. 5. At the ecosystem level, reductions in growth because of chronic acidification reduce microbial biomass and may impair decomposition and N uptake; however, in systems where N is initially scarce, increased N availability may alleviate these effects. Ecosystem response to chronic stressors may be better understood by a greater focus on microbial physiology, coupled elemental cycling, and responses across several scales of investigation.  相似文献   

16.
1. Side‐arms connected to the main stem of the river are key areas for biogeochemical cycling in fluvial landscapes, exhibiting high rates of carbon processing. 2. This work focused on quantifying autochthonous and allochthonous carbon pools and, thereby, on comparing transport and transformation processes in a restored side‐arm system of the River Danube (Regelsbrunn). We established a carbon budget and quantified carbon processing from March to September 2003. In addition, data from previous studies during 1997 to 1999 were assessed. 3. Gross primary production (GPP) and community respiration were estimated by diel oxygen time curves and an oxygen mass balance. Plankton primary production was determined to estimate its contribution to GPP under different hydrological conditions. 4. Based on the degree of connectivity, three hydrological phases were differentiated. Most of the organic matter, dominated by allochthonous carbon, was transported in the main channel and through the side‐arm during floods, while at intermediate and low flows (and thus connectivity), transformation processes became more important and autochthonous carbon dominated the carbon pool. The side‐arm system functioned as a sink for particulate matter [total suspended solids and particulate organic carbon (POC)] and a source of dissolved organic carbon (DOC) and chlorophyll‐a. 5. Autochthonous primary production of 4.2 t C day?1 in the side‐arm was equivalent to about 20% of the allochthonous inputs of 20 t C day?1 (POC and DOC) entering the area at mean flow (1% of the discharge of the main channel). Pelagic photosynthesis was generally high at mean flow (1.3–3.8 g C m?2 day?1), and contributed up to 90% of system productivity. During long stagnant periods at low discharge, the side‐arm was controlled by biological processes and a shift from planktonic to benthic activity occurred (benthic primary production of 0.4–14 g C m?2 day?1). 6. The transformation of the organic matter that passes through the side‐arm under different hydrological conditions, points to the importance of these subsystems in contributing autochthonous carbon to the food web of the main channel.  相似文献   

17.
Variations in dissolved organic carbon (DOC) concentrations of surface waters and subsurface interstitial groundwater of riparian and wetland soils to 1.2 m depth were evaluated in a riverine wetland ecosystem over one year. DOC was monitored at seven sites within the wetland pond, two sites on the inflow stream, and one site on the outflow stream. Surface concentrations in the inflow stream ranged from 0.74 to 11.6 mg C L–1 and those of the outflow from 2.1 to 8.0 mg C L–1 Average DOC from stream floodplain hydrosoils (3.1 to 32.1 mg C L–1 was greater than DOC from the sediments below the stream channel (1.6 to 6.8 mg C L–1 Surface DOC within the wetland varied seasonally, with greatest fluctuations in concentrations through the summer and autumn (range 4.8 to 32.6 mg C L–1 ) during intensive macrophyte growth and bacterial production. DOC was less variable during the winter months (1.7 to 3.3 mg C L–1 Within the wetland pond, average DOC concentrations (7.1 to 48.2 mg C L–1) in the subsurface waters were significantly greater (p < 0.05) than average surface concentrations. The microbial availability of surface and subsurface DOC to bacteria was evaluated from losses of DOC by wetland bacteria grown on the DOC. Bacterial growth efficiencies ranged from 5 to 20% and were negatively correlated to the percentage of DOC removed by bacteria (r2=0.93). Throughout the ecosystem, DOC concentrations were greatest in the subsurface waters, but at most depths this DOC was a less suitable substrate than surface DOC for utilization by bacteria.  相似文献   

18.
The effects of fire on soil‐surface carbon dioxide (CO2) efflux, FS, and microbial biomass carbon, Cmic, were studied in a wildland setting by examining 13‐year‐old postfire stands of lodgepole pine differing in tree density (< 500 to > 500 000 trees ha?1) in Yellowstone National Park (YNP). In addition, young stands were compared to mature lodgepole pine stands (~110‐year‐old) in order to estimate ecosystem recovery 13 years after a stand replacing fire. Growing season FS increased with tree density in young stands (1.0 µmol CO2 m?2 s?1 in low‐density stands, 1.8 µmol CO2 m?2 s?1 in moderate‐density stands and 2.1 µmol CO2 m?2 s?1 in high‐density stands) and with stand age (2.7 µmol CO2 m?2 s?1 in mature stands). Microbial biomass carbon in young stands did not differ with tree density and ranged from 0.2 to 0.5 mg C g?1 dry soil over the growing season; Cmic was significantly greater in mature stands (0.5–0.8 mg C g?1 dry soil). Soil‐surface CO2 efflux in young stands was correlated with biotic variables (above‐ground, below‐ground and microbial biomass), but not with abiotic variables (litter and mineral soil C and N content, bulk density and soil texture). Microbial biomass carbon was correlated with below‐ground plant biomass and not with soil carbon and nitrogen, indicating that plant activity controls not only root respiration, but Cmic pools and overall FS rates as well. These findings support recent studies that have demonstrated the prevailing importance of plants in controlling rates of FS and suggest that decomposition of older, recalcitrant soil C pools in this ecosystem is relatively unimportant 13 years after a stand replacing fire. Our results also indicate that realistic predictions and modeling of terrestrial C cycling must account for the variability in tree density and stand age that exists across the landscape as a result of natural disturbances.  相似文献   

19.
Natural fires annually decimate up to 1% of the forested area in the boreal region of Québec, and represent a major structuring force in the region, creating a mosaic of watersheds characterized by large variations in vegetation structure and composition. Here, we investigate the possible connections between this fire‐induced watershed heterogeneity and lake metabolism and CO2 dynamics. Plankton respiration, and water–air CO2 fluxes were measured in the epilimnia of 50 lakes, selected to lie within distinct watershed types in terms of postfire terrestrial succession in the boreal region of Northern Québec. Plankton respiration varied widely among lakes (from 21 to 211 μg C L?1 day?1), was negatively related to lake area, and positively related to dissolved organic carbon (DOC). All lakes were supersaturated in CO2 and the resulting carbon (C) flux to the atmosphere (150 to over 3000 mg C m2 day?1) was negatively related to lake area and positively to DOC concentration. CO2 fluxes were positively related to integrated water column respiration, suggesting a biological component in this flux. Both respiration and CO2 fluxes were strongly negatively related to years after the last fire in the basin, such that lakes in recently burnt basins had significantly higher C emissions, even after the influence of lake size was removed. No significant differences were found in nutrients, chlorophyll, and DOC between lakes in different basin types, suggesting that the fire‐induced watershed features influence other, more subtle aspects, such as the quality of the organic C reaching lakes. The fire‐induced enhancement of lake organic C mineralization and C emissions represents a long‐term impact that increases the overall C loss from the landscape as the result of fire, but which has never been included in current regional C budgets and future projections. The need to account for this additional fire‐induced C loss becomes critical in the face of predictions of increasing incidence of fire in the circumboreal landscape.  相似文献   

20.
Dissolved organic carbon (DOC) plays a key role in the peatland carbon balance and serves numerous ecological and chemical functions including acting as a microbial substrate. In this study, we quantify the concentration, biodegradability, and intrinsic properties of DOC obtained from peat, fresh material, and litter from nine species of ombrotrophic bog vegetation. Potential biodegradability was assessed by incubating vegetation extracts for 28 days in the dark and measuring percent DOC loss as the fraction of biodegradable DOC (%BDOC) while DOC properties were characterized using UV–Vis absorbance and fluorescence measurements. The mean initial DOC concentration extracted differed significantly among species (P < 0.05) and was significantly higher in fresh material, 217 ± 259 mg DOC l?1, than either litter or peat extracts with mean concentrations of 82.1 ± 117 mg DOC l?1 and 12.7 ± 1.0 mg DOC l?1, respectively (P < 0.05). %BDOC also differed significantly among species (P < 0.05) and ranged from 52 to 73% in fresh cuttings with the greatest fraction observed in S. magellanicum; 22–46% in litter; and 24% in peat. The majority of variability (82.5%) in BDOC was explained by initial absorbance at 254 nm and total dissolved nitrogen concentration which was further resolved into significant non-linear relationships between %BDOC and both humic-like and protein-like DOC fractions (P < 0.05). Our results highlight the extremely heterogeneous nature of the surface vegetation-derived DOC input in peatlands and stress the importance of vegetation species in peatland ecosystem function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号