首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fluorescence resonance energy transfer has been used to study oligomerization of the purified erythrocyte Ca2+-ATPase. The energy transfer efficiency has been measured at different enzyme concentrations, from fluorescein 5'-isothiocyanate attached on one enzyme molecule to eosin 5-maleimide or tetramethylrhodamine 5-isothiocyanate attached on another enzyme molecule. The energy transfer efficiency showed a sigmoid dependence on enzyme concentration and was half-maximal at 10-12 nM enzyme; this dependence on enzyme concentration closely resembled previously demonstrated dependence of Ca2+-ATPase activity and polarization of the fluorescein 5'-isothiocyanate enzyme (Kosk-Kosicka, D., and Bzdega, T. (1988) J. Biol. Chem. 263, 18184-18189). Thus, the three independent methods establish that enzyme concentration-dependent oligomerization is a mechanism of activation of the erythrocyte Ca2+-ATPase. Further energy transfer studies demonstrated that enzyme oligomerization required calcium. This calcium dependence was characterized by high affinity (half-maximal energy transfer at pCa 7.15) and cooperativity (Hill coefficient of 2.36), being very similar in both respects to the Ca2+ dependence of the Ca2+-ATPase activity. The data indicated that the oligomerization process produced a highly cooperative, Ca2+-regulated activation of the enzyme at physiologically relevant Ca2+ concentrations. These studies show that the Ca2+-ATPase can be fully activated by a Ca2+-dependent oligomerization mechanism, which is independent of the previously described activation by calmodulin. We propose two pathways for the activation of the Ca2+-ATPase, taking into account the interdependencies between the Ca2+, calmodulin, and enzyme concentrations.  相似文献   

2.
Fluorescence quenching by the water-soluble ions I(-) and Cs(+) was used to probe solvent accessibility and polarity of the nucleotide/fluorescein isothiocyanate binding pocket of the purified soluble Ca(2+)-ATPase from plasma membranes. The E(1).Ca.CaM conformer was the least accessible state studied, presenting the lowest suppression constant (K(q)) for both I(-) (K(q) = 6.7 M(-)(1)) and Cs(+) (K(q) = 0.7 M(-)(1)). Accessibility to I(-) was similar for the E(2).VO(4) and E(1).Ca states (K(q) = 7.13 and 7.5 M(-)(1), respectively), whereas E(2) was slightly more accessible (K(q) = 9.1 M(-)(1)). The phosphorylated state E(2)-P presented the highest accessibility, with a K(q) of 16.5 M(-)(1), very near the K(q) of 20.3 M(-)(1) for free FITC. I(-) was unequivocally a better fluorescence quencher, being usually nearly 3-fold as efficient as Cs(+), as indicated by the K(q)(I(-))/K(q)(Cs(+)) ratio (R(q)). The advent of a positive charge cluster on the nucleotide/fluorescein binding pocket in different states was suggested by the increase in R(q), which reached a value as high as 9.5 for the E(1).Ca.CaM conformer. These results indicate (i) a very high water accessibility of the nucleotide/fluorescein pocket for E(2)-P that (ii) is more restricted on the free E(2) state and (iii) becomes rather lower for the E(1).Ca states. Additionally, a positive charge effect of amino acids on the nucleotide site, possibly related to ATP binding and phosphoryl transfer, appears in these E(1).Ca states, being absent in the phosphorylated and nonphosphorylated E(2) states.  相似文献   

3.
The apparent length of FVIIa in solution was estimated by a FRET analysis. Two fluorescent probes, fluorescein (Fl-FPR) and a rhodamine derivative (TMR), were covalently attached to FVIIa. The binding site of Fl-FPR was in the protease domain whereas TMR was positioned in the Gla domain, thus allowing a length measure over virtually the whole extension of the protein. From the FRET measurements, the distances between the two probes were determined to be 61.4 for free FVIIa and 65.5 Å for FVIIa bound to soluble tissue factor (sTF). These seemingly short distances, compared to those anticipated based on the complex crystal structure, require that the probes stretch towards each other. Thus, the apparent distance from the FRET analysis was shown to increase with 4 Å upon formation of a complex with sTF in solution. However, considering how protein dynamics, based on recent molecular dynamics simulations of FVIIa and sTF:FVIIa (Y.Z. Ohkubo, J.H. Morrissey, E. Tajkhorshid, J. Thromb. Haemost. 8 (2010) 1044–1053), can influence the apparent fluorescence signal our calculations indicated that the global average conformation of active-site inhibited FVIIa is nearly unaltered upon ligation to sTF.It is known from amidolytic activity measurements that Ca2+ binding leads to activation of FVIIa, but we have for the first time directly demonstrated conformational changes in the environment of the active site upon Ca2+ binding. Interestingly, this Ca2+-induced conformational change can be noted even in the presence of an inhibitor. Forming a complex with sTF further stabilized this conformational change, leading to a more inaccessible active-site located probe.  相似文献   

4.
5.
Ca2+-ATPase of human erythrocyte membranes, after being washed to remove Ca2+ after incubation with the ion, was found to be activated. Stimulation of the ATPase was related neither to fluidity change nor to cytoskeletal degradation of the membranes mediated by Ca2+. Activation of the transport enzyme was also unaffected by detergent treatment of the membrane, but was suppressed when leupeptin was included during incubation of the membranes with Ca2+. Stimulation of the ATPase by a membrane-associated Ca2+-dependent proteinase was thus suggested. Much less 138 kDa Ca2+-ATPase protein could be harvested from a Triton extract of membranes incubated with Ca2+ than without Ca2+. Activity of the activated enzyme could not be further elevated by exogenous calpain, even after treatment of the membranes with glycodeoxycholate. There was also an overlap in the effect of calmodulin and the Ca2+-mediated stimulation of membrane Ca2+-ATPase. While Km(ATP) of the stimulated ATPase remained unchanged, a significant drop in the free-Ca2+ concentration for half-maximal activation of the enzyme was observed.  相似文献   

6.
The tryptophan intrinsic fluorescence of the (Ca2+ + Mg2+)-ATPase from sarcoplasmic reticulum was quenched by acrylamide at different temperatures. Sharp increases in the quenching constants were found in samples of ATPase reconstituted with dimyristoyl-phosphatidylcholine and dipalmitoylphosphatidylcholine at temperatures slightly below the Tc transition temperature of the pure phospholipid. It is suggested that acrylamide may diffuse more easily through proteins surrounded by a fluid phospholipid matrix than if they are in a rigid matrix, due to different states of protein fluidity.  相似文献   

7.
Ca2+-ATPase molecules were labeled in intact sarcoplasmic reticulum (SR) vesicles, sequentially with a donor fluorophore, fluorescein-5'-isothiocyanate (FITC), and with an acceptor fluorophore, eosin-5'-isothiocyanate (EITC), each at a mole ratio of 0.25-0.5 mol/mol of ATPase. The resonance energy transfer was determined from the effect of acceptor on the intensity and lifetime of donor fluorescence. Due to structural similarities, the two dyes compete for the same site(s) on the Ca2+-ATPase, and under optimal conditions each ATPase molecule is labeled either with donor or acceptor fluorophore, but not with both. There is only slight labeling of phospholipids and other proteins in SR, even at concentrations of FITC or EITC higher than those used in the reported experiments. Efficient energy transfer was observed from the covalently bound FITC to EITC that is assumed to reflect interaction between ATPase molecules. Protein denaturing agents (8 M urea and 4 M guanidine) or nonsolubilizing concentrations of detergents (C12E8 or lysolecithin) abolish the energy transfer. These results are consistent with earlier observations that a large portion of the Ca2+-ATPase is present in oligomeric form in the native membrane. The technique is suitable for kinetic analysis of the effect of various treatments on the monomer-oligomer equilibrium of Ca2+-ATPase. A drawback of the method is that the labeled ATPase, although it retains conformational responses, is enzymatically inactive.  相似文献   

8.
Berg  D.  Maier  K.  Otteken  D.  Terjung  F. 《Photosynthetica》1998,34(1):97-106
Detached leaves of pea (Pisum sativum) were submitted to water stress at different relative air humidities. The photosynthetic activity of photosystem 2 (PS2) was monitored by time-resolved picosecond chlorophyll (Chl) fluorescence spectroscopy. In the first days the well-known fast Chl fluorescence decay was observed which indicated high PS2 activity. After a few days the average fluorescence decay time τm reached a maximum, depending on the wilting conditions, but always at a relative loss of leaf mass of 80%. After this maximum, τm decreased within a few hours, the fluorescence decay became similar to that one of an intact leaf, but an additional fluorescence decay component with a lifetime of 3.6 ns appeared. At first the primary quinone QA was reduced due to inhibition of the electron transfer to the secondary quinone QB. Simultaneously, water deficiency caused an electron lack at the oxidizing site of PS2. This disabled the primary electron donor of PS2, tyrosine Z, from reducing the oxidized reaction centre of PS2 (P680+). Thus a recombination of P680+-pheophytin-QA- took place, and the energy was lost as heat. With further water stress, QA was decoupled from PS2. The new fluorescence decay component could therefore be assigned to energetically decoupled antenna complexes.  相似文献   

9.
The temperature dependence of fluorescence polarization and F?rster-type resonance energy transfer (FRET) was analyzed in the Ca2(+)-ATPase of sarcoplasmic reticulum using protein tryptophan and site-specific fluorescence indicators such as 5-[2-[iodoacetyl)amino)ethyl]aminonaphthalene-1-sulfonic acid (IAEDANS), fluorescein 5'-isothiocyanate (FITC), 2',3'-O-(2,4,3-trinitrophenyl)adenosine monophosphate (TNP-AMP) or lanthanides (Pr3+, Nd3+) as probes. The normalized energy transfer efficiency between AEDANS bound at cysteine-670 and -674 and FITC bound at lysine-515 increases with increasing temperature in the range of 10-37 degrees C, indicating the existence of a relatively flexible structure in the region of the ATPase molecule that links the AEDANS to the FITC site. These observations are consistent with the theory of Somogyi, Matko, Papp, Hevessy, Welch and Damjanovich (Biochemistry 23 (1984) 3403-3411) that thermally induced structural fluctuations increase the energy transfer. Structural fluctuations were also evident in the energy transfer between FITC linked to the nucleotide-binding domain and Nd3+ bound at the putative Ca2+ sites. By contrast the normalized energy transfer efficiency between AEDANS and Pr3+ was relatively insensitive to temperature, suggesting that the region between cysteine-670 and the putative Ca2+ site monitored by the AEDANS-Pr3+ pair is relatively rigid. A combination of the energy transfer data with the structural information derived from analysis of Ca2(+)-ATPase crystals yields a structural model, in which the location of the AEDANS-, FITC- and Ca2+ sites are tentatively identified.  相似文献   

10.
Detached leaves of pea (Pisum sativum) were submitted to water stress at different relative air humidities. The photosynthetic activity of photosystem 2 (PS2) was monitored by time-resolved picosecond chlorophyll (Chl) fluorescence spectroscopy. In the first days the well-known fast Chl fluorescence decay was observed which indicated high PS2 activity. After a few days the average fluorescence decay time τm reached a maximum, depending on the wilting conditions, but always at a relative loss of leaf mass of 80%. After this maximum, τm decreased within a few hours, the fluorescence decay became similar to that one of an intact leaf, but an additional fluorescence decay component with a lifetime of 3.6 ns appeared. At first the primary quinone QA was reduced due to inhibition of the electron transfer to the secondary quinone QB. Simultaneously, water deficiency caused an electron lack at the oxidizing site of PS2. This disabled the primary electron donor of PS2, tyrosine Z, from reducing the oxidized reaction centre of PS2 (P680+). Thus a recombination of P680+-pheophytin-QA- took place, and the energy was lost as heat. With further water stress, QA was decoupled from PS2. The new fluorescence decay component could therefore be assigned to energetically decoupled antenna complexes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
The high-affinity Ca2+-binding sites of cardiac sarcoplasmic reticulum (Ca2+ +Mg2+)-ATPase have been probed using trivalent lanthanide ions. Non-radiative energy-transfer studies, using luminescent probe Eu3+ as a donor and Nd3+ or Pr3+ as acceptor, were carried out to estimate the distance between two high-affinity Ca2+-binding/transport sites. Eu3+ was excited directly with pulsed laser light and the energy-transfer efficiency to Nd3+ or Pr3+ was measured, under the conditions in which most donor-acceptor pairs occupied the high-affinity Ca2+ sites. The distance between two high-affinity Ca2+ sites is about 0.89 nm. In the presence of ATP the distance between the high-affinity sites is about 0.855 nm, whereas in the presence of adenosine 5'-[beta, gamma-methylene]triphosphate or adenosine 5'-[beta, gamma-imino]triphosphate the distance is about 0.895 nm. To estimate the distance between the high-affinity Ca2+ sites and ATP-binding/hydrolytic site, we have measured the energy-transfer efficiency between Eu3+ and Cr3+-ATP with Eu3+ at the high-affinity Ca2+ sites and Cr3+-ATP at the ATP-binding/hydrolytic site. Our results show that ATP-binding/hydrolytic site is separated by about 2.2 nm from each high-affinity Ca2+ site.  相似文献   

12.
The plasma membrane calcium-ATPase (PMCA) helps to control cytosolic calcium levels by pumping out excess Ca2+. PMCA is regulated by the Ca2+ signaling protein calmodulin (CaM), which stimulates PMCA activity by binding to an autoinhibitory domain of PMCA. We used single-molecule polarization methods to investigate the mechanism of regulation of the PMCA by CaM fluorescently labeled with tetramethylrhodamine. The orientational mobility of PMCA-CaM complexes was determined from the extent of modulation of single-molecule fluorescence upon excitation with a rotating polarization. At a high Ca2+ concentration, the distribution of modulation depths reveals that CaM bound to PMCA is orientationally mobile, as expected for a dissociated autoinhibitory domain of PMCA. In contrast, at a reduced Ca2+ concentration a population of PMCA-CaM complexes appears with significantly reduced orientational mobility. This population can be attributed to PMCA-CaM complexes in which the autoinhibitory domain is not dissociated, and thus the PMCA is inactive. The presence of these complexes demonstrates the inadequacy of a two-state model of Ca2+ pump activation and suggests a regulatory role for the low-mobility state of the complex. When ATP is present, only the high-mobility state is detected, revealing an altered interaction between the autoinhibitory and nucleotide-binding domains.  相似文献   

13.
14.
Calcium-dependent protein kinases are key proteins involved in plant and protozoal Ca2+ signaling. These unique molecules include a calcium regulatory calmodulin-like domain (CLD), which binds to another small regulatory domain named the junction domain (JD). Both CLD and JD are part of the same polypeptide as the protein kinase domain. The CLD consists of N- and C-terminal lobes, each having two helix-loop-helix Ca2+-binding motifs. In this study, fluorescence resonance energy transfer using a series of Trp and Cys site-directed mutants was undertaken to probe the relative motions of the two lobes of CLD between the apo- and Ca2+-saturated forms, as well as bound to a peptide encoding the JD sequence. Using an IAEDANS-modified Cys, a total of 15 Trp --> Cys distances were measured in these three states from the five donor-acceptor combinations F334W-Cys436, L371W-Cys436, L403W-Cys436, F334W-L403C, and L371W-L403C. Consistent with recently reported NMR diffusion measurements and with 1H,15N heteronuclear correlation NMR spectra, the distances derived from fluorescence resonance energy transfer measurements in apoCLD indicate partial unfolding and a subsequent contraction on binding Ca2+, which is maintained on addition of the JD peptide. Interpretation of the distances suggests that the Ca2+-saturated form is open with the two lobes sitting side-by-side although highly flexible. The transition to the JD-CLD state appears to be accompanied by a rotation of the N- and C-terminal domains with respect to each other inducing a slightly more closed overall complex. The observed differences between the behavior of CLD and the well studied related protein calmodulin are likely because of different physiological requirements for activation in vivo.  相似文献   

15.
Fluorescence quenching and resonance energy transfer have been used to determine the localization of the local anesthetic tetracaine in vesicles composed of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) as a function of both temperature and ionic strength. The fluorescence behaviour of tetracaine in vesicles can be attributed to its different partition coefficients in acid and basic solution, in gel phase and fluid phase vesicles, respectively. Using both steady-state and time-resolved fluorescence measurements we show that a saturable binding rather than a partitioning model holds for the interaction of tetracaine with gel phase bilayers. The relative quenching efficiencies of the series of n-AS dyes depend on the phase state of the bilayer and suggest a deeper incorporation of tetracaine in fluid phase than in gel phase membranes. Resonance energy transfer measurements support the view that tetracaine is incorporated predominantly in the region of the 9-AS chromophore in DMPC-bilayers.  相似文献   

16.
D Kosk-Kosicka  T Bzdega 《Biochemistry》1990,29(15):3772-3777
The study was performed on the purified human erythrocyte Ca2(+)-ATPase to test whether or not calmodulin promotes enzyme oligomerization. Two physiologically significant modes of activation of this enzyme were considered, by calmodulin binding to monomeric enzyme and by enzyme oligomerization [Kosk-Kosicka & Bzdega (1988) J. Biol. Chem. 263, 18184]; it was not clear whether the two modes were interdependent or operated independently. Fluorescence resonance energy transfer (FRET) between separately labeled Ca2(+)-ATPase molecules was used to monitor oligomerization. No change in energy transfer efficiency was observed upon subsequent addition of calmodulin at different enzyme concentrations. Lack of decrease in the enzyme concentration at which the half-maximal oligomerization occurred indicated that calmodulin did not facilitate oligomerization. The calmodulin inhibitor compound 48/80 had no effect on either the Ca2(+)-ATPase activity of oligomers or the extent of oligomerization measured by FRET while it drastically decreased the calmodulin-stimulated activity of the monomeric Ca2(+)-ATPase. The findings demonstrate that calmodulin is not involved in the oligomerization-induced activation pathway; it neither promotes oligomerization nor stimulates the Ca2(+)-ATPase activity of oligomers. We have demonstrated that calmodulin added before mixing donor- and acceptor-labeled enzyme populations prevented the occurrence of energy transfer. This inhibition of the formation of mixed donor-acceptor enzyme oligomers by calmodulin was dose dependent. Also, the reversal of the inhibition by compound 48/80 proceeded in a dose-dependent manner. Further, calmodulin prevented the apparent decrease of energy transfer efficiency that resulted from dilution of mixed donor-acceptor enzyme oligomers with unlabeled enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Thermal analysis of the plasma membrane Ca2+-ATPase   总被引:2,自引:0,他引:2  
The plasma membrane Ca2+-ATPase is a well known enzyme in eucaryotes able to extrude calcium to the extracellular space in order to restore intracellular calcium to very low levels. This ATPase needs plasma membrane lipids such as acidic phospholipids in order to maintain its activity. In this study, we investigated the role that calcium and cholesterol play on the thermal stability of the Ca2+-ATPase isolated from cardiac sarcolemma and erythrocyte membranes. Calcium showed a stabilizing and protective effect when the enzyme was exposed to high temperatures. This stabilizing effect showed by calcium was potentiated in the presence of cholesterol. These protection effects were reflected on several thermodynamic parameters such as T50, Hvh and apparent G, indicating that calcium might induce a conformational change stabilized in the presence of cholesterol that confers enzyme thermostability. The effect shown by cholesterol on Hvh and apparent H open the possibility that this lipid decreases cooperativity during the induced transition. Despite that a binding site for cholesterol has not been identified in the plasma membrane Ca2+-ATPase, our results supports the proposal that this lipid interacts with the enzyme in a direct fash  相似文献   

18.
The kinetics and extent of the fluorescence change induced by Ca2+ interaction with the Ca2+-ATPase from sarcoplasmic reticulum have been compared by stopped flow fluorimetry for three preparations: sarcoplasmic reticulum; purified ATPase in membrane vesicles; and solubilized, delipidated ATPase. The kinetics of Ca2+ release and binding for both purified preparations could be described by a single exponential as has been observed for sarcoplasmic reticulum. The rate and extent of the fluorescence change for the solubilized and membrane-associated preparations are shown to be quite similar to those of the sarcoplasmic reticulum. From these results, it is concluded that all of the Ca2+-induced fluoescence change in sarcoplasmic reticulum originates from the Ca2+-ATPase. In addition, since the change in fluorescence is probably result of a conformational change in the ATPase during the Ca2+ pumping cycle, the results provide additional evidence that monomeric Ca2+-ATPase may be capable of Ca2+ transport since the delipidated preparation is monomeric under the conditions used for these experiments. Finally, it is concluded that phospholipid bilayer is not essential for this conformational change.  相似文献   

19.
The Ca2(+)-ATPase found in the light fraction of sarcoplasmic reticulum vesicles can be phosphorylated by Pi, forming an acylphosphate residue at the catalytic site of the enzyme. This reaction was inhibited by the phenothiazines trifluoperazine, chlorpromazine, imipramine, and fluphenazine and by the beta-adrenergic blocking agents propranolol and alprenolol. The inhibition was reversed by raising either the Pi or the Mg2+ concentration in the medium and was not affected by the presence of K+. Phosphorylation of the Ca2(+)-ATPase by Pi was also inhibited by ruthenium red and spermidine. These compounds compete with Mg2+, but, unlike the phenothiazines, they did not compete with Pi at the catalytic site, and the inhibition was abolished when K+ was included in the assay medium. The efflux of Ca2+ from loaded vesicles was greatly increased by the phenothiazines and by propranolol and alprenolol. In the presence of 200 microM trifluoperazine, the rate of Ca2+ efflux was higher than 3 mumol of Ca2+/mg of protein/10 s. The activation of efflux by these drugs was antagonized by Pi, Mg2+, K+, Ca2+, ADP, dimethyl sulfoxide, ruthenium red, and spermidine. The increase of Ca2+ efflux caused by trifluoperazine was not correlated with binding of the drug to the membrane lipids. It is concluded that the Ca2+ pump can be uncoupled by different drugs, thereby greatly increasing the efflux of Ca2+ through the ATPase. Displacement of these drugs by the natural ligands of the ATPase blocks the efflux through the uncoupled pathway and limits it to a much smaller rate. Thus, the Ca2(+)-ATPase can operate either as a pump (coupled) or as a Ca2+ channel (uncoupled).  相似文献   

20.
Phosphorylation by ATP of E.*Ca2 (sarcoplasmic reticulum vesicles (SRV) with bound 45Ca2+) during 5-10 ms leads to the occlusion of 2 *Ca2+/EPtot [quench by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) alone] in both "empty" (10 microM free Ca2+in) or "loaded" SRV (20-40 mM free Ca2+in). The rate of Ca2+ "internalization" from the occluded E approximately P.*Ca2 was measured by using an ADP + EGTA quench; a *Ca2+ ion that is not removed by this quench is defined as internalized. In the presence of 20-40 mM unlabeled Ca2+ inside SRV, 1 *Ca2+/EPtot is internalized from 45Ca-labeled E approximately P.*Ca2 with a first-order rate constant of kl = 34 s-1. Empty SRV take up 2 *Ca2+/EPtot with the same initial rate, but the overall rate constant is kobsd = 17 s-1. The apparent rate constant (kb = 17 s-1) for internalization of the second *Ca2+ is inhibited by [Ca]in, with K0.5 approximately 1.3 mM and a Hill coefficient of n = 1.1. These data show that the two Ca2+ ions are internalized sequentially, presumably from separate sequential sites in the channel. [32P]EP.Ca2 obtained by rapid mixing of E.Ca2 with [gamma-32P]ATP and EGTA disappears in a biphasic time course with a lag corresponding to approximately 34 s-1, followed by EP* decay with a rate constant of approximately 17 s-1. This shows that both Ca2+ ions must be internalized before the enzyme changes its specificity for catalysis of phosphoryl transfer to water instead of to ADP. Increasing the concentration of ATP from 0.25 to 3 mM accelerates the rate of 45Ca2+ internalization from 34 to 69 s-1 for the first Ca2+ and from 17 to 34 s-1 for the second Ca2+. High [ATP] also accelerates both phases of [32P]EP.Ca2 disappearance by the same factor. The data are consistent with a single form of ADP-sensitive E approximately P.Ca2 that sequentially internalizes two ions. The intravesicular volume was estimated to be 2.0 microL/mg, so that one turnover of the enzyme gives 4 mM internal [Ca2+].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号