首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role that the nuclear factor (NF)-kappa B plays in regulating the biosynthesis of interleukin (IL)-1 beta, an inflammatory cytokine, has been investigated in vitro. Irreversible inhibition of the proteasome complex by carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG-132; 1-50 microM) had no inhibitory effect on lipopolysaccharide (LPS)-mediated IL-1 beta biosynthesis. Furthermore, selective inhibition of NF-kappa B by the action of caffeic acid phenylethyl ester (CAPE; 1-100 microM) and sulfasalazine (SSA; 0.1-10 mM), a potent and irreversible inhibitor of NF-kappa B, partially attenuated but did not abolish LPS-dependent IL-1 beta secretion. Incorporation of a selectively permeant inhibitor of NF-kappa B, SN-50 (1-20 microM), a peptide which contains the nuclear localization sequence (NLS) for the p50 NF-kappa B subunit and the amino-terminal sequence of Kaposi fibroblast growth factor to promote cell permeability, attenuated in a dose-dependent manner LPS-mediated release of IL-1 beta. It is concluded that the NF-kapp B pathway is partially implicated and its blockade attenuates but does not abrogate LPS-dependent IL-1 beta biosynthesis in alveolar epithelial cells.  相似文献   

2.
3.
4.
5.
The possible involvement of nuclear factor (NF)-kappa B in mediating the regulation of interleukin (IL)-6 biosynthesis in response to E. coli-derived lipopolysaccharide-endotoxin (LPS) was investigated in vitro. In alveolar epithelial cells, irreversible inhibition of the proteasome complex by carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG-132; 1-50 muM) did not affect LPS-mediated IL-6 secretion. Whereas the selective inhibition of the NF-kappa B pathway by the action of caffeic acid phenyl ethyl ester (CAPE; 1-100 microM) attenuated LPS-dependent IL-6 production at 100 muM, sulfasalazine (SSA; 0.1--10 mM), a potent and irreversible inhibitor of NF-kappa B, did not inhibit LPS-dependent IL-6 secretion. Incorporation of a selectively permeant inhibitor of NF-kappa B, SN-50 (1-20 microM), a peptide which contains the nuclear localization sequence (NLS) for the p50 NF-kappa B subunit and the amino-terminal sequence of Kaposi fibroblast growth factor to promote cell permeability, did not reduce LPS-mediated release of IL-6. These data indicate a NF-kappa B-independent pathway mediating LPS-dependent regulation of IL-6 biosynthesis in the airway epithelium.  相似文献   

6.
7.
8.
9.
10.
Substance P is a ubiquitous CNS neuropeptide and has recently been demonstrated to augment immune cell function during inflammatory events. Central to the ability of substance P to modulate immune cell function is the interaction of substance P with the substance P neurokinin-1 receptor expressed by a variety of immune cells, including microglia. CNS involvement during Lyme disease can occur when Borrelia burgdorferi, the causative agent of Lyme disease, gains access to the CNS. In the present study, we demonstrate that substance P augments B. burgdorferi-induced expression of mRNA encoding COX-2 and subsequent secretion of PGE(2) by cultured, murine microglia. Furthermore, this effect is associated with the ability of substance P to enhance B. burgdorferi-induced NF-kappa B activation, as demonstrated by increased nuclear localization of the p65 (RelA) subunit of NF-kappa B in these cells. Interestingly, we demonstrate that substance P augments B. burgdorferi-induced expression of mRNA encoding two PGE(2) receptors, E-prostanoid receptor subtypes 2 and 4, as well as each receptor protein. In addition, these effects are mediated via interactions between substance P and its high affinity receptor, as evidenced by the absence of augmented PGE(2) synthesis in the presence of a specific neurokinin-1 receptor antagonist or in cells genetically deficient in the expression of these receptors. Taken together, the present demonstration that substance P can exacerbate B. burgdorferi-induced inflammatory responses in microglia in vitro may indicate a role for this neuropeptide in the development of CNS inflammation observed during human neuroborreliosis.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Stimulation with inducers that cause persistent activation of NF-kappa B results in the degradation of the NF-kappa B inhibitors, I kappa B alpha and I kappa B beta. Despite the rapid resynthesis and accumulation of I kappa B alpha, NF-kappa B remains induced under these conditions. We now report that I kappa B beta is also resynthesized in stimulated cells and appears as an unphosphorylated protein. The unphosphorylated I kappa B beta forms a stable complex with NF-kappa B in the cytosol; however, this binding fails to mask the nuclear localization signal and DNA binding domain on NF-kappa B, and the I kappa B beta-NF-kappa B complex enters the nucleus. It appears therefore that during prolonged stimulation, I kappa B beta functions as a chaperone for NF-kappa B by protecting it from I kappa B alpha and allowing it to be transported to the nucleus.  相似文献   

18.
J Inoue  L D Kerr  A Kakizuka  I M Verma 《Cell》1992,68(6):1109-1120
A cDNA corresponding to the 2.6 kb NF-kappa B mRNA species present in a variety of lymphoid cell lines has been molecularly cloned. The deduced 607 amino acid sequence is identical to the sequence of the C-terminal region of 110 kd NF-kappa B protein. A 70 kd protein can be identified in lymphoid cells using antibodies raised against the C-terminal region of p110 NF-kappa B. Comparison of the two-dimensional tryptic peptide maps of the 70 kd protein expressed in cells and the in vitro translated product encoded by the cDNA display extensive homology. The 70 kd protein expressed in bacteria prevents sequence-specific DNA binding of p50-p65 NF-kappa B heterodimer, p50 homodimer, and c-rel. p70 also interferes with transactivation by c-rel and prevents its nuclear translocation. The 70 kd protein, predominantly found in lymphoid cells, is a new member of the I kappa B family of proteins and is referred to as I kappa B gamma.  相似文献   

19.
X-ray crystal structures of the NF-kappa B.I kappa B alpha complex revealed an extensive and complex protein-protein interface involving independent structural elements present in both I kappa B alpha and NF-kappa B. In this study, we employ a gel electrophoretic mobility shift assay to assess and quantitate the relative contributions of the observed interactions toward overall complex binding affinity. I kappa B alpha preferentially binds to the p50/p65 heterodimer and p65 homodimer, with binding to p50 homodimer being significantly weaker. Our results indicate that the nuclear localization sequence and the region C-terminal to it of the NF-kappa B p65 subunit is a major contributor to NF-kappa B. I kappa B alpha complex formation. Additionally, there are no contacts between the corresponding nuclear localization signal tetrapeptide of p50 and I kappa B alpha. A second set of interactions involving the acidic C-terminal/PEST-like region of I kappa B alpha and the NF-kappa B p65 subunit N-terminal domain also contributes binding energy toward formation of the complex. This interaction is highly dynamic and nonspecific in nature, as shown by oxidative cysteine cross-linking. Phosphorylation of the C-terminal/PEST-like region by casein kinase II further enhances binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号