首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro cultures of isolated fowl embryo otocysts were studied with the electron microscope. Hair cells of the developing organ of Corti and crista ampullaris have been examined with particular reference to the structure of the cilia and of the cell membrane. Two types of hair cells could be distinguished on the basis whether or not they possessed a "kinocilium" and "stereocilia," or "stereocilia" only. The cytoplasmic membranes were simple and there were no multiple vesicular layers in any of the hair cells. The supporting elements consisted of supporting cells flanking the hair cells, fibroblasts, and the cartilaginous otic capsule. Both the cochlear and vestibular sensory area showed rich innervation by mainly non-myelinated fibers with partial myelinization in others. There were well developed ganglion cells present. Bare axons penetrated the basement membrane and spread, amongst the supporting cells sheltering them, to the base of the hair cells where they formed bud-shaped nerve endings but, at the stage of development examined, no calyces. These in vitro cultures of the isolated fowl embryo otocyst provided convenient and suitable material for the electron microscope study of the sensory epithelium of the ear and revealed further that the isolated fowl embryo otocyst possesses great powers of self-differentiation also at the ultrastructural level.  相似文献   

2.
The sensory epithelium of the paratypanic organ (Vitali) was studied by means of the electron microscope. Two kinds of cells are present. One type extends from the basement membrane to the surface of the epithelium; their nuclei are arranged close to the connective tissue and are surrounded by a pale cytoplasm. The distal part of these cells, which are denser and richer in organelles, possess microvilli. The cells of the second type are located above the basement membrane and are found between the upper parts of the cells of the first type. Their cytoplasm is rich in small round vesicles, free ribosomes and cisternae of rough endoplasmic reticulum are present especially in the infranuclear zone. The apical part contains a Golgi apparatus lysosomes and multive sicular bodies. At the apex each cell possesses a cuticular plate numerous stereocilia and one kinocilium. The stereocilia become increasingly longer from one side of the cell surface to the other and the kinocilium is situated on the side where the stereocilia are longest. Nervous fibers are present in the epithelium and are in close contact with the cells of the second type. The cells we have described are remarkably similar to the supporting and hair cells of the vestibular sensory epithelium.  相似文献   

3.
Tumor necrosis factor (TNF)-α is a cytokine involved in acute inflammatory phase reactions, and is the primary upstream mediator in the cochlear inflammatory response. Treatment of the organ of Corti with TNF-α can induce hair cell damage. However, the resulting morphological changes have not been systematically examined. In the present study, cochlear organotypic cultures from neonatal mice were treated with various concentrations and durations of TNF-α to induce inflammatory responses. Confocal microscopy was used to evaluate the condition of hair cells and supporting cells following immunohistochemical staining. In addition, the ultrastructure of the stereocilia bundle, hair cells, and supporting cells were examined by scanning and transmission electron microscopy. TNF-α treatment resulted in a fusion and loss of stereocilia bundles in hair cells, swelling of mitochondria, and vacuolation and degranulation of the endoplasmic reticulum. Disruption of tight junctions between hair cells and supporting cells was also observed at high concentrations. Hair cell loss was preceded by apoptosis of Deiters’ and pillar cells. Taken together, these findings detail the morphological changes in the organ of Corti after TNF-α treatment, and provide an in vitro model of inflammatory-induced ototoxicity.  相似文献   

4.
《The Journal of cell biology》1989,109(4):1711-1723
The sensory epithelium of the chick cochlea contains only two cell types, hair cells and supporting cells. We developed methods to rapidly dissect out the sensory epithelium and to prepare a detergent-extracted cytoskeleton. High salt treatment of the cytoskeleton leaves a "hair border", containing actin filament bundles of the stereocilia still attached to the cuticular plate. On SDS-PAGE stained with silver the intact epithelium is seen to contain a large number of bands, the most prominent of which are calbindin and actin. Detergent extraction solubilizes most of the proteins including calbindin. On immunoblots antibodies prepared against fimbrin from chicken intestinal epithelial cells cross react with the 57- and 65-kD bands present in the sensory epithelium and the cytoskeleton. It is probable that the 57-kD is a proteolytic fragment of the 65-kD protein. Preparations of stereocilia attached to the overlying tectorial membrane contain the 57- and 65-kD bands. A 400-kD band is present in the cuticular plate. By immunofluorescence, fimbrin is detected in stereocilia but not in the hair borders after salt extraction. The prominent 125 A transverse stripping pattern characteristic of the actin cross-bridges in a bundle is also absent in hair borders suggesting fimbrin as the component that gives rise to the transverse stripes. Because the actin filaments in the stereocilia of hair borders still remain as compact bundles, albeit very disordered, there must be an additional uncharacterized protein besides fimbrin that cross-links the actin filaments together.  相似文献   

5.
Light and electron microscopic observations were made on the lateral line organs of the free neuromasts of the goby Bathygobius fuscus and the canal neuromasts of the cardinal fish Apogon cyanosoma. As in other lateral line systems, each neuromast consists of hair cells, supporting cells and mantle supporting cells, the whole being covered by a cupula. In B. fuscus the free neuromasts are mounted on papillae and have hair cells with stereocilia up to 2.5 μm long and a single kinocilium at least 25 μm long. Each neuromast is covered by a vane-like cupula that can be divided into two regions. The central region over the sensory area contains columns of myelin-like figures. These figures are absent from the outer region covering the mantle. The canal neuromasts of A. cyanosoma are diamond-shaped with up to 1,500 hair cells. The cupula is unusual in having a channel that lies over the sensory region. The hair cells have up to 45 stereocilia, the tallest reaching 2.5 μm, and a kinocilium at least 5 μm long. Tip links are shown for the first time between rows of stereocilia of the hair cells of lateral line neuromasts. The presence of tip links has now been demonstrated for all acousticolateral hair cell systems.  相似文献   

6.
The regeneration of hair cells in the chick inner ear following acoustic trauma was examined using transmission electron microscopy. In addition, the localization of proliferation cell nuclear antigen (PCNA) and basic fibroblast growth factor (b-FGF) was demonstrated immunohistochemically. The auditory sensory epithelium of the normal chick consists of short and tall hair cells and supporting cells. Immediately after noise exposure to a 1500-Hz pure tone at a sound pressure level of 120 decibels for 48 h, all the short hair cells disappeared in the middle region of the auditory epithelium. Twelve hours to 1 day after exposure, mitotic cells, binucleate cells and PCNA-positive supporting cells were observed, and b-FGF immunoreactivity was shown in the supporting cells and glial cells near the habenula perforata. Spindle-shaped hair cells with immature stereocilia and a kinocilium appeared 3 days after exposure; these cells had synaptic connections with the newly developed nerve endings. The spindle-shaped hair cell is considered to be a transitional cell in the lineage of the supporting cell to the mature short hair cell. These results indicate that, after acoustic trauma, the supporting cells divide and differentiate into new short hair cells via spindle-shaped hair cells. Furthermore, it is suggested that b-FGF is related to the proliferation of the supporting cells and the extension of the nerve fibers.  相似文献   

7.
The human ear is capable of processing sound with a remarkable resolution over a wide range of intensity and frequency. This ability depends largely on the extraordinary feats of the hearing organ, the organ of Corti and its sensory hair cells. The organ of Corti consists of precisely patterned rows of sensory hair cells and supporting cells along the length of the snail-shaped cochlear duct. On the apical surface of each hair cell, several rows of actin-containing protrusions, known as stereocilia, form a "V"-shaped staircase. The vertices of all the "V"-shaped stereocilia point away from the center of the cochlea. The uniform orientation of stereocilia in the organ of Corti manifests a distinctive form of polarity known as planar cell polarity (PCP). Functionally, the direction of stereociliary bundle deflection controls the mechanical channels located in the stereocilia for auditory transduction. In addition, hair cells are tonotopically organized along the length of the cochlea. Thus, the uniform orientation of stereociliary bundles along the length of the cochlea is critical for effective mechanotransduction and for frequency selection. Here we summarize the morphological and molecular events that bestow the structural characteristics of the mammalian hearing organ, the growth of the snail-shaped cochlear duct and the establishment of PCP in the organ of Corti. The PCP of the sensory organs in the vestibule of the inner ear will also be described briefly.  相似文献   

8.
Summary The cochleas from chinchilla inner ears were processed in the cold through Lowicryl K4M, and cured by UV light. Thick (2 m) sections were reacted with primary antibodies raised against actin, and anti-actin antibodies localized by FITC epifluorescence. On thin sections from the same blocks anti-actin antibodies were localized ultrastructurally with secondary antibodies coupled to colloidal gold.In the hair cells, actin was present in the stereocilia and cuticular plate, regions where thin filaments were observed by electron microscopy. Colloidal gold was uniformly distributed over these regions and over the stereocilia rootlets demonstrating that actin was present in this region although previously in permeabilized cells, the rootlet was not decorated with myosin subfragment S-1. Actin was present in the pillar and Deiters supporting cells at the reticular lamina and at the basilar membrane, where a meshwork of thin filaments was seen by electron microscopy. Colloidal gold particles were also localized over the thin processes of the pillar and Deiters cells, and over the region of the Deiters cell which envelops the base of the outer hair cell. In these regions actin co-localized with microtubules along the entire length of the supporting cells.  相似文献   

9.
The cochleae of chick embryos of 8 days of incubation until hatching (21 days) were examined by scanning electron microscopy. Unlike what one would expect from the literature, the total number of hair cells per cochlea (10,405 +/- 529) is already determined and visible in a 10-day embryo and the growth of the cochlea is a result of the growth in size and surface area of the hair cells. We also find that the hair cells differentiate simultaneously throughout the cochlea and have followed the differentiation of individual hair cells throughout development. During development we find that the total number, hexagonal packing, and orientation of the stereocilia in each hair cell is determined early and accurately (9- to 10-day embryos). The stereocilia then begin to elongate in all the cells of the cochlea at approximately 0.5 micron/day. By Day 12 the tallest stereocilia in each cell are 1.5-1.8 micron long, the mature length for cells at the proximal end of the cochlea. At this point all stereocilia cease elongating, but those along the inferior edge gradually increase in width from 0.11 micron to maximally 0.19 micron in 17-day embryos. When the stereocilia on the inferior edge reach their mature width, widening ceases and the elongation of stereocilia in the distal hair cells begins again. When these stereocilia have attained their mature lengths, they stop growing. Thus elongation and widening of stereocilia are separated in time. During this period, 11 to 13 days, the shape of the tufts at the proximal end of the cochlea changes. This occurs because stereocilia in the front of each tuft are absorbed while others at the sides appear de novo. This rearrangement converts a circular bundle of stereocilia to a rectangular bundle.  相似文献   

10.
Summary The fine structure of the saccular macula of the gold fish has been studied by means of the electron microscope.The sensory epithelium of the macula consists of sensory cells and supporting cells. The surface of the sensory cell is studded with a group of sensory hairs consisting of one kino-cilium and 50–60 stereocilia. In the dorsal half of the macula, the kino-cilium is located at the dorsal end of the sensory hair group. In the ventral half of the macula, the kino-cilium is located at the ventral end of the sensory hair group. In the intermediary portion of the macula, the sensory cells with opposite polarities are situated side-by-side. The relation between the microphonic potential and the position of the kino-cilium has been discussed.Two types of nerve terminals are found situated on the basal surface of the receptor cells. The one contains no synaptic vesicle and the other contains a cluster of synaptic vesicles and a few cored vesicles. It is considered that the former corresponds to the afferent nerve terminal and the latter to the efferent one.This investigation was supported by NIH Grant NB-06052.The author is very grateful to Prof. Taro Furukawa, Osaka City University for his invaluable advice and discussion.  相似文献   

11.
Triphosphoinositide (TPI), an aminoglycoside receptor and a possible regulator of cationic permeation through its ability to bind with Ca++, was localized by the protein-A gold technique in vestibular sensory epithelia using an antibody highly specific to TPI. TPI was detected on the stereocilia, kinocilia, and cuticular plate of hair cells, and in the reticular membrane of supporting cells. The cilia of hair cells are damaged by aminoglycosides at a relatively early stage of toxicity. Ca++-regulated bioactivity in this area is probably involved.  相似文献   

12.
Summary Hair cells of the guinea-pig cochlea and vestibular system were prepared for electron-microscopic examination by fixing in glutaraldehyde without the use of osmium. An extensive array of cross-links was seen between the apical ends of the stereocilia, by both scanning and transmission electron microscopy. Some cross-links ran laterally between stereocilia of the same row. Others ran laterally between the stereocilia of the different rows, holding the tips of the shorter stereocilia in towards the longer stereocilia of the next row. In addition, each tip on the shorter stereocilia gave rise to a single, upwards pointing link, which ran upwards to join the adjacent taller stereocilium of the next row. We suggest that distortion of this link might be involved in the mechanics or even the membrane biophysics of sensory transduction.With this method of preservation, all the apical surface membranes of the hair cells appeared rough, and contained dense granules. The roughness was greatest in the parts of the stereocilia to which the cross-links were attached. The mitochondrial and synaptic membranes of the hair cells appeared normal.  相似文献   

13.
Hearing and balance depend on microvilli-like actin-based projections of sensory hair cells called stereocilia. Their sensitivity to mechanical displacements on the nanometer scale requires a highly organized hair bundle in which the physical dimension of each stereocilium is tightly controlled. The length and diameter of each stereocilium are established during hair bundle maturation and maintained by life-long continuing dynamic regulation. Here, we studied the role of the actin-bundling protein Espin in stereociliary growth by examining the hair cell stereocilia of Espin-deficient jerker mice (Espn(je)), and the effects of transiently overexpressing Espin in the neuroepithelial cells of the organ of Corti cultures. Using fluorescence scanning confocal and electron microscopy, we found that a lack of Espin results in inhibition of stereociliary growth followed by progressive degeneration of the hair bundle. In contrast, overexpression of Espin induced lengthening of stereocilia and microvilli that mirrored the elongation of the actin filament bundle at their core. Interestingly, Espin deficiency also appeared to influence the localization of Myosin XVa, an unconventional myosin that is normally present at the stereocilia tip at levels proportional to stereocilia length. These results indicate that Espin is important for the growth and maintenance of the actin-based protrusions of inner ear neuroepithelial cells.  相似文献   

14.
Summary Triphosphoinositide (TPI), an aminoglycoside receptor and a possible regulator of cationic permeation through its ability to bind with Ca++, was localized by the protein-A gold technique in vestibular sensory epithelia using an antibody highly specific to TPI. TPI was detected on the stereocilia, kinocilia, and cuticular plate of hair cells, and in the reticular membrane of supporting cells. The cilia of hair cells are damaged by aminoglycosides at a relatively early stage of toxicity. Ca++-regulated bioactivity in this area is probably involved.  相似文献   

15.
Unconventional myosins have been associated with hearing loss in humans, mice, and zebrafish. Mutations in myosin VI cause both recessive and dominant forms of nonsyndromic deafness in humans and deafness in Snell's waltzer mice associated with abnormal fusion of hair cell stereocilia. Although myosin VI has been implicated in diverse cellular processes such as vesicle trafficking and epithelial morphogenesis, the role of this protein in the sensory hair cells remains unclear. To investigate the function of myosin VI in zebrafish, we cloned and examined the expression pattern of myosin VI, which is duplicated in the zebrafish genome. One duplicate, myo6a, is expressed in a ubiquitous pattern during early development and at later stages, and is highly expressed in the brain, gut, and kidney. myo6b, on the other hand, is predominantly expressed in the sensory epithelium of the ear and lateral line at all developmental stages examined. Both molecules have different splice variants expressed in these tissues. Using a candidate gene approach, we show that myo6b is satellite, a gene responsible for auditory/vestibular defects in zebrafish larvae. Examination of hair cells in satellite mutants revealed that stereociliary bundles are irregular and disorganized. At the ultrastructural level, we observed that the apical surface of satellite mutant hair cells abnormally protrudes above the epithelium and the membrane near the base of the stereocilia is raised. At later stages, stereocilia fused together. We conclude that zebrafish myo6b is required for maintaining the integrity of the apical surface of hair cells, suggesting a conserved role for myosin VI in regulation of actin-based interactions with the plasma membrane.  相似文献   

16.
Given the evidence that basic fibroblast growth factor (FGF-2) can protect neural and retinal cells from degeneration, we evaluated the potential of this growth factor to protect sensory cells in the inner ear. When sensory cells of the organ of Corti are exposed to aminoglycoside antibiotics such as neomycin either in vivo or in vitro, significant ototoxicity is observed. The in vitro cytotoxic effects of neomycin are dose and time dependent. In neonatal rat organ of Corti cultures, complete inner and outer hair cell destruction is observed at high (mM) concentrations of neomycin while inner hair cell survival and severely damaged outer hair cells are noted at moderate (μM) concentrations, with a maximal effect observed after 2 days of culture. Approximately 50% of cochlear outer hair cells are lost at a dose of 35 μM neomycin, and most surviving cells show disorganized stereocilia. Inner hair cells show primarily disorganization of their stereocilia. A significant protective effect is observed when the organ of Corti is pre-treated with FGF-2 (500 ng/ml) for 48 hours, and then FGF-2 is included with neomycin in the culture medium. A greater extent of outer hair cell survival and a significant decrease in stereociliary damage are noted with FGF-2. However, disorganization of inner hair cell stereocilia is unaffected by FGF-2. The protective effect of FGF-2 is specific, since interleukin-1B, nerve growth factor, tumor necrosis factor, and epidermal growth factor are ineffective, while retinoic acid and transforming growth factor alpha show only a moderate protective effect. These results confirm the potential of molecules like FGF-2 for preventing cell death due to a variety of causes. © 1996 Wiley-Liss, Inc.  相似文献   

17.
The mouse mutant Snell's waltzer (sv) has an intragenic deletion of the Myo6 gene, which encodes the unconventional myosin molecule myosin VI (K. B. Avraham et al., 1995, Nat. Genet. 11, 369-375). Snell's waltzer mutants exhibit behavioural abnormalities suggestive of an inner ear defect, including lack of responsiveness to sound, hyperactivity, head tossing, and circling. We have investigated the effects of a lack of myosin VI on the development of the sensory hair cells of the cochlea in these mutants. In normal mice, the hair cells sprout microvilli on their upper surface, and some of these grow to form a crescent or V-shaped array of modified microvilli, the stereocilia. In the mutants, early stages of stereocilia development appear to proceed normally because at birth many stereocilia bundles have a normal appearance, but in places there are signs of disorganisation of the bundles. Over the next few days, the stereocilia become progressively more disorganised and fuse together. Practically all hair cells show fused stereocilia by 3 days after birth, and there is extensive stereocilia fusion by 7 days. By 20 days, giant stereocilia are observed on top of the hair cells. At 1 and 3 days after birth, hair cells of mutants and controls take up the membrane dye FM1-43, suggesting that endocytosis occurs in mutant hair cells. One possible model for the fusion is that myosin VI may be involved in anchoring the apical hair cell membrane to the underlying actin-rich cuticular plate, and in the absence of normal myosin VI this apical membrane will tend to pull up between stereocilia, leading to fusion.  相似文献   

18.
Nils Wegner 《Acta zoologica》1982,63(3):133-146
The macula lagenae of the anabantide fish Colisa labiosa was studied with light and transmission electron microscopy. (1) The sensory area is naturally divided in a central area (A) surrounded by a peripheral part (B). (2) Generally the central hair cells are separated by supporting cells, while the peripheral hair cells are found in groups. The cells of a group are not separated by supporting cells. (3) Tubuli-like structures, hexagonal in cross section, are found in all cells. In peripheral hair cells the longitudinally oriented tubuli-like structures are aggregated in thick bundles. (4) Variation in shape, electron density, stereocilia arrangement and size of mitochondria was found in different hair cells. (5) The central hair cells contain large accumulations of presynaptic bodies (10–44). Contrarily, the peripheral hair cells contain only a few pre-synaptic bodies (1–3). (6) The central hair cells are innervated by thick afferent (6–15 μm) and fine presumed efferent (less than 1 μm nerve fibres, while the peripheral hair cells are innervated by thin (1–6 μm) afferent nerve fibres only.  相似文献   

19.
Lateral inhibition mediated by Notch is thought to generate the mosaic of hair cells and supporting cells in the inner ear, but the effects of the activated Notch protein itself have never been directly tested. We have explored the role of Notch signalling by transiently overexpressing activated Notch (NICD) in the chick otocyst. We saw two contrasting consequences, depending on the time and site of gene misexpression: (1) inhibition of hair-cell differentiation within a sensory patch; and (2) induction of ectopic sensory patches. We infer that Notch signalling has at least two functions during inner ear development. Initially, Notch activity can drive cells to adopt a prosensory character, defining future sensory patches. Subsequently, Notch signalling within each such patch mediates lateral inhibition, restricting the proportion of cells that differentiate as hair cells so as to generate the fine-grained mixture of hair cells and supporting cells.  相似文献   

20.
Sound transduction depends upon mechanosensitive channels localized on the hair-like bundles that project from the apical surface of cochlear hair cells. Hair bundles show a stair-case structure composed of rows of stereocilia, and each stereocilium contains a core of tightly-packed and uniformly-polarized actin filaments. The growth and maintenance of the stereociliary actin core are dynamically regulated. Recently, it was shown that the actin-binding protein gelsolin is expressed in the stereocilia of outer hair cells (OHCs) and in its absence they become long and straggly. Gelsolin is part of a whirlin scaffolding protein complex at the stereocilia tip, which has been shown to interact with other actin regulatory molecules such as Eps8. Here we investigated the physiological effects associated with the absence of gelsolin and its possible overlapping role with Eps8. We found that, in contrast to Eps8, gelsolin does not affect mechanoelectrical transduction during immature stages of development. Moreover, OHCs from gelsolin knockout mice were able to mature into fully functional sensory receptors as judged by the normal resting membrane potential and basolateral membrane currents. Mechanoelectrical transducer current in gelsolin-Eps8 double knockout mice showed a profile similar to that observed in the single mutants for Eps8. We propose that gelsolin has a non-overlapping role with Eps8. While Eps8 is mainly involved in the initial growth of stereocilia in both inner hair cells (IHCs) and OHCs, gelsolin is required for the maintenance of mature hair bundles of low-frequency OHCs after the onset of hearing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号