首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Oxidation of benzo[a]pyrene by the filamentous fungus Cunninghamella elegans.   总被引:18,自引:0,他引:18  
Cunninghamella elegans oxidized benzo[a]pyrene to several metabolic products. Compounds that were isolated and identified were: trans-9,10-dihydroxy-9,10-dihydrobenzo[a]pyrene, trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene, benzo[a]pyrene 1,6-quinone, benzo[a]pyrene 3,6-quinone, 9-hydroxybenz[a]pyrene, and 3-hydroxybenzo[a]pyrene. In addition, an unidentified dihydroxybenzo[a]pyrene metabolite was also formed. Experiments with [14C]benzo[a]pyrene showed that over a 96-h period, 18.4% of the hydrocarbon was converted to metabolic products. Most of the metabolites were sulfate conjugates as demonstrated by the formation of benzo[a]pyrene quinones and phenols after treatment with aryl sulfatase. Glucuronide and sulfate conjugates were also detected as water-soluble metabolites. The results show that benzo[a]pyrene is metabolized by a filamentous fungus in a manner that is remarkably similar to that observed in higher organisms.  相似文献   

2.
Short-term organ cultures of peripheral lung from lung cancer patients metabolise benzo[alpha]pyrene to ethylacetate-soluble metabolites, which covalently bind to tissue macromolecules. The nature and quantities of metabolites formed and the extent of covalent binding are dependent upon the time of incubation, the substrate concentration and interindividual variability in the metabolic activity of the lung. Individuals whose lungs rapidly metabolise the carcinogen exhibit more extensive further metabolism of primary metabolites and higher levels of covalent binding. Certain striking differences in the relative retention in the tissue or release into the extra-cellular medium of different metabolites have been found as illustrated by the observation that the ratio of 7,8-dihydro-7,8-dihydroxybenzo[alpha]-pyrene to 9,10-dihydro-9,10-dihydroxybenzo[alpha]pyrene was always significantly higher in the tissue than in the extracellular medium.  相似文献   

3.
Harman and norharman, two β-carboline derivatives known to exist in certain foods and to be formed during pyrolysis of tobacco and meat, were tested for mutagenic activity in the presence of benzo[a]pyrene, mouse liver enzymes, and Salmonella typhimurium TA98 in vitro. Both harman and norharman inhibit benzo[a]pyrene mutagenicity, benzo[a]pyrene metabolism (as measured by aryl hydrocarbon hydroxylase activity), and the binding of all benzo[a]pyrene metabolites to DNA in vitro. Moreover, harman and norharman are quite toxic to cultures of hepatoma-derived H-4-II-E and Hepa-1 established cell lines and therefore were found to be very weak inducers of aryl hydrocarbon hydroxylase activity.  相似文献   

4.
In the oxidation of benzo[alpha]pyrene in an abscorbic acid-ferrous sulphate-EDTA system, four dihydrodiols were detected. Three, trans-4,5-dihydro-4,5-dihydroxybenzo[alpha]pyrene, trans-7,8-dihydro-7,8-dihydroxybenzo[alpha]pyrene and trans-9,10-dihydro-9,10-dihydroxybenzo[alpha]pyrene were identified by their UV spectra and by direct comparisons of their chromatographic properties, using HPLC, with those of the authentic compounds. The fourth compound appeared to be trans-11,12-dihydro-11,12-dihydroxybenzo[alpha]pyrene since its ultraviolet spectrum was identical to that of the cis-dihydrodiol. Time-course experiments showed that the maximum amounts of products were obtained after 8 h of oxidation. A re-examination of the dihydrodiols formed from benzo[alpha]pyrene by rat-liver microsomal fractions failed to show the formation of the trans-11,12-dihydrodiol.  相似文献   

5.
Covalently closed circular plasmid DNA was modified by benzo[alpha]pyrene diolepoxide and incubated with partially purified fractions of the Escherichia coli uvr+ gene products. Strand breaks were introduced into the modified DNA by the uvrABC endonuclease; on average, one break was formed for each bound benzo[alpha]pyrene residue in the DNA. These results are direct evidence that benzo[alpha]pyrene adducts in DNA are acted upon by the same repair enzyme as those that handle UV-induced lesions in DNA.  相似文献   

6.
The constitutive and Aroclor 1254-induced activities of hepatic microsomal benzo[a]pyrene hydroxylases in male and female rats were determined in animals from ages 11 to 120 days. In 11-day-old noninduced male rats, benzo[a]pyrenediones and 9-hydroxybenzo[a]pyrene were the major microsomal metabolites; in 21-day-old males benzo[a]pyrene-diones and benzo[a]pyrene-9,10-dihydrodiol were predominant. In 60- and 120-day-old animals 3-hydroxybenzo[a]pyrene was the major microsomal metabolite. A similar trend was observed for the development of benzo[a]pyrene hydroxylase activities in female rats. With the exception of 4,5-dihydrodiol formation, the highest induction of individual and total benzo[a]pyrene hydroxylase activities by Aroclor 1254 was observed in the 21-day-old immature male rats, in which there was a 330- and 4.5-fold increase in the formation of 3-hydroxybenzo[a]pyrene and quinone metabolites, respectively. The induction of benzo[a]pyrene total metabolite formation by Aroclor 1254 in female rats from 11 to 120 days of age was relatively constant (i.e., 13.3- to 10.1-fold induction); however, the relative induction of the individual benzo[a]pyrene hydroxylases was highly variable. In a second set of experiments, male and female rats were neonatally exposed to phenobarbital (600 mumol/kg) or Aroclor 1254 (100 mumol/kg), and the effects of these xenobiotics on neonatal imprinting of hepatic microsomal benzo[a]pyrene hydroxylase activities were determined in the 120-day-old animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The metabolism of benzo[a]pyrene by halogenated biphenyl-induced rat hepatic microsomal monooxygenases was determined using a high pressure liquid chromatographic assay system. Incubation of benzo[a]pyrene with microsomes from rats pretreated with phenobarbitone or phenobarbitone-type inducers (2,2',4,4',5,5'-hexachlorobiphenyl, 2,2',4,4',6,6'-hexachlorobiphenyl, 2,2',5,5'-tetrachlorobiphenyl, 2,2',4,4',5,5'-hexabromobiphenyl, and 2,2',5,5'-tetrabromobiphenyl) resulted in increased overall metabolism of the hydrocarbon (less than fourfold) into phenolic, quinone, and diol metabolites, with the most striking increase observed in the formation of 4,5-dihydro-4,5-dihydroxybenzo[a]pyrene. In contrast, the metabolism of benzo[a]pyrene by microsomes from rats induced with 3-methylcholanthrene or 3,3',4,4'-tetrachlorobiphenyl resulted in a greater than 10-fold increase in overall benzo[a]pyrene metabolism, with the largest increases observed in the formation of the trans-7,8- and -9,10-dihydrodiol metabolites of benzo[a]pyrene. However, in comparison to control and phenobarbitone-induced microsomes, the oxidative conversion of benzo[a]pyrene by microsomes induced with 3-methylcholanthrene and 3,3',4,4'-tetrachlorobiphenyl into the 6,12-quinone was substantially inhibited. Previous reports have shown that the commercial halogenated biphenyl mixtures, fireMaster BP-6, and Aroclor 1254 are mixed-type inducers and that microsomes from rats pretreated with these mixtures markedly enhance the overall metabolism of benzo[a]pyrene. Not surprisingly, the metabolism of benzo[a]pyrene by microsomes from rats pretreated with the mixed-type inducers, 2,3,3',4,4'-penta-,2,3,3',4,4',5-hexa-, and 2',3,3',4,4',5-hexa- chlorobiphenyl was also increased and the metabolic profile was similar to that observed with fireMaster BP-6 and Aroclor 1254 induced microsomes.  相似文献   

8.
Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1   总被引:2,自引:0,他引:2  
Metabolism of the environmental pollutant benzo[a]pyrene in the bacterium Mycobacterium vanbaalenii PYR-1 was examined. This organism initially oxidized benzo[a]pyrene with dioxygenases and monooxygenases at C-4,5, C-9,10, and C-11,12. The metabolites were separated by reversed-phase high-performance liquid chromatography (HPLC) and characterized by UV-visible, mass, nuclear magnetic resonance, and circular dichroism spectral analyses. The major intermediates of benzo[a]pyrene metabolism that had accumulated in the culture media after 96 h of incubation were cis-4,5-dihydro-4,5-dihydroxybenzo[a]pyrene (benzo[a]pyrene cis-4,5-dihydrodiol), cis-11,12-dihydro-11,12-dihydroxybenzo[a]pyrene (benzo[a]pyrene cis-11,12-dihydrodiol), trans-11,12-dihydro-11,12-dihydroxybenzo[a]pyrene (benzo[a]pyrene trans-11,12-dihydrodiol), 10-oxabenzo[def]chrysen-9-one, and hydroxymethoxy and dimethoxy derivatives of benzo[a]pyrene. The ortho-ring fission products 4-formylchrysene-5-carboxylic acid and 4,5-chrysene-dicarboxylic acid and a monocarboxylated chrysene product were formed when replacement culture experiments were conducted with benzo[a]pyrene cis-4,5-dihydrodiol. Chiral stationary-phase HPLC analysis of the dihydrodiols indicated that benzo[a]pyrene cis-4,5-dihydrodiol had 30% 4S,5R and 70% 4R,5S absolute stereochemistry. Benzo[a]pyrene cis-11,12-dihydrodiol adopted an 11S,12R conformation with 100% optical purity. The enantiomeric composition of benzo[a]pyrene trans-11,12-dihydrodiol was an equal mixture of 11S,12S and 11R,12R molecules. The results of this study, in conjunction with those of previously reported studies, extend the pathways proposed for the bacterial metabolism of benzo[a]pyrene. Our study also provides evidence of the stereo- and regioselectivity of the oxygenases that catalyze the metabolism of benzo[a]pyrene in M. vanbaalenii PYR-1.  相似文献   

9.
A dual-label HPLC assay to measure femtomole quantities of ethyl acetate-extractable [3H]benzo[a]pyrene metabolites was developed. 14C-labeled metabolites of benzo[a]pyrene formed by rat liver 9000g supernatant were used as both internal standards and chromatographic markers. The percentage deviation between assays was determined to be between 11 and 13% for 9,10-dihydro-9,10-dihydroxybenzo[a]pyrene, 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene, benzo[a]pyrene-3,6-quinone, benzo[a]pyrene-1,6-quinone, and 9-hydroxybenzo[a]pyrene, 22% for 4,5-dihydro-4,5-dihydroxybenzo[a]pyrene, and less than 5% for 3-hydroxybenzo[a]pyrene. The detection limit of this assay was between 3 and 10 fmol per metabolite. The application of this technique to the metabolism of [3H]benzo[a]pyrene by microsomes of hamster and human oral cavity tissue is described.  相似文献   

10.
Sulfate conjugation of benzo[alpha]pyrene(BP) metabolites and derivatives was studied. The reaction sequence consisted of two steps; activation of sulfate ion to 3'-phosphoadenosine-5'-phosphosulfate and transfer of the activated sulfate to the BP-derivatives. Both reactions were carried out by enzymes located in the rat liver 105 000 g supernatant. The reactions required MgCl2. Phenol and quinone derivatives were generally good substrates for sulfate conjugation and different reactivities were observed with the dihydrodiol derivatives. Sulfate conjugates were more polar than their parent BP-derivatives and except for quinone conjugates were easily extracted with ethyl acetate. The role of sulfate conjugation in BP carcinogenesis is discussed.  相似文献   

11.
Incubation of benzo[alpha] pyrene 4,5-oxide with poly(G) in neutral aqueous ethanol resulted in the formation of covalent adducts and in the production of free 4-hydroxybenzo[alpha]pyrene. This phenol, which was identified by its UV spectral properties and by its chromatographic characteristics, was also formed but at a much slower rate when the epoxide was incubated with DNA or with GMP. Phenol formation was not detected when benzo[alpha]-pyrene 4,5-oxide was incubated for prolonged periods in the presence of poly(A), poly(C) or poly(U) or in the absence of nucleic acid. Formation of 4-hydroxybenzo[alpha] pyrene from the epoxide in the presence of poly(G) was not accompanied by detectable base modifications or by breakage of phosphodiester linkages.  相似文献   

12.
The metabolic profile of benzo[a]pyrene (BP) in cumene hydroperoxide-(CHP)-dependent reaction by male rat liver microsomes was dependent on CHP concentration. At 0.05 mM CHP, 3-hydroxy-BP was the major metabolite. Increase in CHP reduced 3-hydroxy-BP formation but increased BP quinone formation simultaneously. This change in metabolic profile was reversed by preincubation with pyrene. Pyrene (PY) selectively inhibited quinone formation but enhanced 3-hydroxy-BP formation. Naphthalene (NP) had no effect on BP quinone formation but inhibited BP 3-hydroxylation. Phenanthrene (PA) and benz[a]anthracene (BA) inhibited effectively 3-hydroxy-BP formation but only slightly quinone formation. BP binding to microsomal protein correlated to quinone formation and not BP 3-hydroxylation. BP metabolism by female rat liver microsomes also depended on CHP concentration but was much less efficient than the male. Quinones were consistently predominant metabolites and their formation was also inhibited by pyrene. Our data provide evidence that regioselectivity in BP metabolism involves at least two distinct binding sites. One site recognizes the benzo region of BP in BP 3-hydroxylation and the other recognizes the pyrene region in quinone formation. The different ratios of 3-hydroxy-BP to quinone formation by male and female rat liver microsomes suggest that the two binding sites are probably located at separate cytochrome P-450 isozymes.  相似文献   

13.
Antioxidants inhibit the rat liver microsomal mixed-function-oxidase-catalysed hydroxylation of benzo[a]pyrene. These antioxidants also decrease the formation of mutagenic products from benzo[a]pyrene as judged by the Ames bacterial-mutagenicity assay [B.N. Ames, J. McCann & E. Yamazaki (1975) Mutat. Res. 31, 347-364]. It is suggested that antioxidants exert their protective effect against cancer by inhibiting the formation of carcinogenic metabolites.  相似文献   

14.
M Kaneko 《Mutation research》1984,131(3-4):157-161
The rate of removal of DNA adducts of several benzo[a]pyrene metabolites from nuclear DNA was compared by introducing a microsome-activating system in human fibroblast cells. Confluent human fibroblasts were exposed to benzo[a]pyrene in the presence of a microsomal activating system and DNA adducts were formed in the nuclear DNA. The adducts present in DNA were determined after 1 h of incubation and 48 h later. There was no difference in the rate of removal between 7S- and 7R -N2-[10-(7 beta, 8 alpha-trihydroxy-7,8,9,10- tetrahydrobenzo[a]pyrene)yl]deoxyguanosine, 7R -N2-[10(7beta, 8 alpha, 9 beta-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene)yl]deoxyguanosine and the covalent adduct of 9-hydroxybenzo[a]pyrene-4,5-epoxide to guanosine. This finding does not agree with the idea that metabolites forming 'persistent DNA adducts' are always responsible for the carcinogenicity of their parent compound.  相似文献   

15.
At least four different free radicals can be formed from benzo[a]pyrene under different reaction conditions, namely the 6-oxybenzo[a]pyrene radical, the benzo[a]pyrene anion and cation radicals and a radical from heated benzo[a]pyrene. The formation and esr spectra of these radicals have been studied with the aim of clarifying the nature of the radical species involved under different reaction conditions. Additionally the reactivity of the 6-oxybenzo[a]pyrene and the benzo[a]pyrene cation radicals towards several phenolic antioxidants have also been investigated.  相似文献   

16.
The metabolism of benzo[a]pyrene in randomly proliferating and confluent cultures of human skin fibroblast cells was compared with cell cultures in early S phase of the cell cycle after a G1 block. When each cell population was exposed to [G-3H]benzo[a]pyrene for 24 hours and the organic soluble metabolites in the extracellular medium and intracellular components were analyzed by HPLC, a quantitative increase in metabolism was observed in the confluent cell populations. The amount of organic soluble metabolites in the extracellular medium of the confluent dense cultures was 2.7 times the amount found in randomly proliferating cultures and 1.5 times that of the synchronized cultures. The trans-7,8- and 9,10 dihydrodiols and 3-hydroxy benzo[a]pyrene were the major metabolites formed. Small amounts of the sulphate conjugate, 9-hydroxy-benzo[a]pyrene and the tetrols were also detected. Cytoplasmic as well as nuclear extracts from the confluent cell cultures also contained higher amounts of metabolites compared to those from the randomly proliferating and S-phase cells. The levels of DNA modification by metabolically activated benzo[a]pyrene did not differ among the randomly proliferating, confluent and S-phase cells. However, the S-phase cells exhibited approximately 50-fold increase in the frequency of transformation compared to the randomly proliferating cells. Confluent cells were not transformed by benzo[a]pyrene. These data suggest that factors other than random modification of DNA by the carcinogen might have a significant role in the expression of a transformed phenotype and that metabolism and transformation are not directly related. Furthermore, confluent dense cultures with a heightened capability for metabolism of benzo[a]pyrene were more active in the detoxification of benzo[a]pyrene than in the production of the metabolites associated with cellular transformation.Abbreviations BaP benzo[a]pyrene - BaP-4,5-diol trans-4,5 dihydroxy-4,5-dihydrobenzo[a]pyrene - BaP-7,8-diol trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene - Bap-9,10-diol trans-9,10-dihydroxy-9,10 dihydrobenzo[a]pyrene - CM complete medium - HNF human neonatal foreskin - HPLC high pressure liquid chromatography - PAH polycyclic aromatic hydrocarbon - PDL population doubling - RP randomly proliferating  相似文献   

17.
OBJECTIVES: Generation of different metabolites and DNA-adduct(s) of metabolites of benzo[alpha]pyrene (B[alpha]P) in vitro by placental tissues (microsomes) of mothers who actively smoked cigarettes (tobacco) and those who did not smoke were analyzed to determine the variability in metabolism of the B[alpha]P substrate among individual placental samples. METHODS: Overall B[alpha]P metabolism was assayed by alkaline aqueous extraction of metabolites, and reactive metabolites by DNA adducts of B[alpha]P-metabolites produced by salmon sperm DNA added to the incubation mixtures of the substrate and microsomes of exposed- and unexposed-placentas to maternal cigarette smoke. Array of B[alpha]P-metabolites produced by the same incubations were identified by high pressure liquid chromatography of the aqueous extracts. RESULTS: Subsets of smoke-exposed placentas assessed by cluster analysis had augmented metabolic activity, others did not respond to smoke exposure. CYP1A1 expression in trophoblast cells analyzed by immunohistochemistry did not correlate with smoke exposure. The DNA-adducts generated was variable, regardless of verbally reported levels of maternal exposure. The amounts of different B[alpha]P-metabolites produced by individual samples matched for similar levels of exposure during pregnancy by self-reported smoking (1 pack/day) were also not comparable. Metabolism of B[alpha]P into different metabolites, and production of toxic DNA adducts from metabolites in vitro by human placenta were variable and unrelated to the extent of smoke exposure. CONCLUSIONS: The metabolic characteristic of human placenta for xenobiotic exposure substrates is based on the expression and function of diverse enzymes, and such metabolism exhibited inter-individual variation for toxic metabolite production or detoxification of the substrates in response to maternal smoke exposure.  相似文献   

18.
(±)-7β,8α-Dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-1) and (±)-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-2) are highly mutagenic diol epoxide diastereomers that are formed during metabolism of the carcinogen (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene. Remarkable stereoselectivity has been observed on metabolism of the optically pure (+)- and (?)-enantiomers of the dihydrodiol which are obtained by separation of the diastereomeric diesters with (?)-α-methoxy-α-trifluoromethylphenylacetic acid. The high stereoselectivity in the formation of diol epoxide-1 relative to diol epoxide-2 was observed with liver microsomes from 3-methylcholanthrene-treated rats and with a purified cytochrome P-448-containing monoxygenase system where the (?)-enantiomer produced a diol epoxide-2 to diol epoxide-1 ratio of 6 : 1 and the (+)-enantiomer produced a ratio of 1 : 22. Microsomes from control and phenobarbital-treated rats were less stereospecific in the metabolism of enantiomers of BP 7,8-dihydrodiol. The ratio of diol epoxide-2 to diol epoxide-1 formed from the (?)- and (+)-enantiomers with microsomes from control rats was 2 : 1 and 1 : 6, respectively. Both enantiomers of BP 7,8-dihydrodiol were also metabolized to a phenolic derivative, tentatively identified as 6,7,8-trihydroxy-7,8-dihydrobenzo[a]pyrene, which accounted for ~30% of the total metabolites formed by microsomes from control and phenobarbital-pretreated rats whereas this metabolite represents ~5% of the total metabolites with microsomes from 3-methylcholanthrene-treated rats. With benzo[a]pyrene as substrate, liver microsomes produced the 4,5-, 7,8- and 9,10-dihydrodiol with high optical purity (>85%), and diol epoxides were also formed. Most of the optical activity in the BP 7,8-dihydrodiol was due to metabolism by the monoxygenase system rather than by epoxide hydrase, since hydration of (±)-benzo[a]pyrene 7,8-oxide by liver microsomes produced dihydrodiol which was only 8% optically pure. Thus, the stereospecificity of both the monoxygenase system and, to a lesser extent, epoxide hydrase plays important roles in the metabolic activation of benzo[a]pyrene to carcinogens and mutagens.  相似文献   

19.
The mutagenicity of benzo[alpha]pyrene and 2-aminoanthracene for Salmonella typhimurium TA98 in the plate-incorporation test was studied using liver S9 from untreated and aroclor-1254-treated rats. The induction of liver S9 protein, arylhydrocarbon hydroxylase (AHH), and cytochrome P448/450 was followed with time. There was no change in protein concentrations with induction; AHH and cytochrome levels were increased at 1, 3, 5 and 7 days post Aroclor treatment. Benzo[alpha]pyrene mutagenicity was enhanced with Aroclor treatment while 2-aminoanthracene mutagenicity was depressed. The benzo[alpha]pyrene mutagenicity showed a positive correlation with the levels of AHH and cytochrome on the plate; 2-aminoanthracene showed a negative correlation with activity in induced samples.  相似文献   

20.
Treatment of mutagenic primary aromatic amines with nitrous acid is known to decrease their mutagenicity. We examined some factors concerning the validity of using decreases in mutagenicity due to nitrous acid treatment as an indication of the presence of mutagenic primary aromatic amines in complex mixtures. We found that treatment of benzo[alpha]pyrene with nitrous acid for the extended periods of time previously employed leads to formation of three nitrobenzo[alpha]pyrene isomers. Some of the isomers are direct-acting mutagens for S. typhimurium with considerably greater mutagenicity than benzo[alpha]pyrene isomers. In attempts to minimize reaction of chemicals other than aromatic amines, we found that only very brief reaction periods are required for complete reaction of nitrous acid with representative aromatic amines, essentially eliminating their mutagenicity. During such brief reaction periods modification of benzo[alpha]pyrene is negligible, but phenols react readily. Chromatographic analysis indicated that reaction of nitrous acid with aromatic amines leads to the formation of families of products, thereby increasing the complexity of the mixtures in which the amines may occur. Thus, experiments examining the effects of nitrous acid on the mutagenic activity of complex mixtures must be carefully designed, and the results must be interpreted cautiously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号