首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Zhang JR  Mostov KE  Lamm ME  Nanno M  Shimida S  Ohwaki M  Tuomanen E 《Cell》2000,102(6):827-837
The polymeric immunoglobulin receptor (pIgR) plays a crucial role in mucosal immunity against microbial infection by transporting polymeric immunoglobulins (pIg) across the mucosal epithelium. We report here that the human pIgR (hpIgR) can bind to a major pneumococcal adhesin, CbpA. Expression of hpIgR in human nasopharyngeal cells and MDCK cells greatly enhanced pneumococcal adherence and invasion. The hpIgR-mediated bacterial adherence and invasion were abolished by either insertional knockout of cbpA or antibodies against either hpIgR or CbpA. In contrast, rabbit pIgR (rpIgR) did not bind to CbpA and its expression in MDCK cells did not enhance pneumococcal adherence and invasion. These results suggest that pneumococci are a novel example of a pathogen co-opting the pIg transcytosis machinery to promote translocation across a mucosal barrier.  相似文献   

3.
4.
The surface of Streptococcus pneumoniae is decorated with a family of choline-binding proteins (CBPs) that are non-covalently bound to the phosphorylcholine of the teichoic acid. Two examples (PspA, a protective antigen, and LytA, the major autolysin) have been well characterized. We identified additional CPBs and characterized a new CBP, CbpA, as an adhesin and a determinant of virulence. Using choline immobilized on a solid matrix, a mixture of proteins from a pspA -deficient strain of pneumococcus was eluted in a choline-dependent fashion. Antisera to these proteins passively protected mice challenged in the peritoneum with a lethal dose of pneumococci. The predominant component of this mixture, CbpA, is a 75-kDa surface-exposed protein that reacts with human convalescent antisera. The deduced sequence from the corresponding gene showed a chimeric architecture with a unique N-terminal region and a C-terminal domain consisting of 10 repeated choline-binding domains nearly identical to PspA. A cbpA -deficient mutant showed a >50% reduction in adherence to cytokine-activated human cells and failed to bind to immobilized sialic acid or lacto-N-neotetraose, known pneumococcal ligands on eukaryotic cells. Carriage of this mutant in an animal model of nasopharyngeal colonization was reduced 100-fold. There was no difference between the parent strain and this mutant in an intraperitoneal model of sepsis. These data for CbpA extend the important functions of the CBP family to bacterial adherence and identify a pneumococcal vaccine candidate.  相似文献   

5.
Streptococcus pneumoniae naturally colonizes the nasopharynx as a commensal organism and sometimes causes infections in remote tissue sites. This bacterium is highly capable of resisting host innate immunity during nasopharyngeal colonization and disseminating infections. The ability to recruit complement factor H (FH) by S. pneumoniae has been implicated as a bacterial immune evasion mechanism against complement-mediated bacterial clearance because FH is a complement alternative pathway inhibitor. S. pneumoniae recruits FH through a previously defined FH binding domain of choline-binding protein A (CbpA), a major surface protein of S. pneumoniae. In this study, we show that CbpA binds to human FH, but not to the FH proteins of mouse and other animal species tested to date. Accordingly, deleting the FH binding domain of CbpA in strain D39 did not result in obvious change in the levels of pneumococcal bacteremia or virulence in a bacteremia mouse model. Furthermore, this species-specific pneumococcal interaction with FH was shown to occur in multiple pneumococcal isolates from the blood and cerebrospinal fluid. Finally, our phagocytosis experiments with human and mouse phagocytes and complement systems provide additional evidence to support our hypothesis that CbpA acts as a bacterial determinant for pneumococcal resistance to complement-mediated host defense in humans.  相似文献   

6.
7.
Streptococcus pneumoniae, a human pathogen, is naturally capable of colonizing the upper airway and sometimes disseminating to remote tissue sites. Previous studies have shown that S. pneumoniae is able to evade complement-mediated innate immunity by recruiting complement factor H (FH), a complement alternative pathway inhibitor. Pneumococcal binding to FH has been attributed to choline-binding protein A (CbpA) of S. pneumoniae and its allelic variants, all of which are surface-exposed proteins. In this study, we sought to determine the molecular basis of the CbpA-FH binding interaction. Initial deletional analysis of the CbpA protein in strain D39 (capsular serotype 2) revealed that the N-terminal region of 89 amino acids in the mature CbpA protein is required for FH binding. Immunofluorescence microscopy analysis showed that this region of CbpA is also necessary for FH deposition to the surface of the intact pneumococci. Moreover, recombinant proteins representing the 104 amino acids of the N-terminal CbpA alone was sufficient for high affinity binding to FH (KD < 1 nm). The FH binding activity was finally localized to a 12-amino acid motif in the N-terminal CbpA by peptide mapping. Further kinetic analysis suggested that additional amino acids downstream of the 12-amino acid motif provide necessary structural or conformational support for the CbpA-FH interaction. The 12-amino acid motif and its adjacent regions contain highly conserved residues among various CbpA alleles, suggesting that this region may mediate FH binding in multiple pneumococcal strains.  相似文献   

8.
The pneumococcal choline-containing teichoic acids are targeted by choline-binding proteins (CBPs), major surface components implicated in the interaction with host cells and bacterial cell physiology. CBPs also occur in closely related commensal species, Streptococcus oralis and Streptococcus mitis , and many strains of these species contain choline in their cell wall. Physiologically relevant CBPs including cell wall lytic enzymes are highly conserved between Streptococcus pneumoniae and S. mitis . In contrast, the virulence-associated CBPs, CbpA, PspA and PcpA, are S. pneumoniae specific and are thus relevant for the characteristic properties of this species.  相似文献   

9.
Streptococcus pneumoniae (pneumococcus) remains a significant health threat worldwide, especially to the young and old. While some of the biomolecules involved in pneumococcal pathogenesis are known and understood in mechanistic terms, little is known about the molecular details of bacterium/host interactions. We report here the solution structure of the 'repeated' adhesion domains (domains R1 and R2) of the principal pneumococcal adhesin, choline binding protein A (CbpA). Further, we provide insights into the mechanism by which CbpA binds its human receptor, polymeric immunoglobulin receptor (pIgR). The R domains, comprised of 12 imperfect copies of the leucine zipper heptad motif, adopt a unique 3-alpha-helix, raft-like structure. Each pair of alpha-helices is antiparallel and conserved residues in the loop between Helices 1 and 2 exhibit a novel 'tyrosine fork' structure that is involved in binding pIgR. This and other structural features that we show are conserved in most pneumococcal strains appear to generally play an important role in bacterial adhesion to pIgR. Interestingly, pneumococcus is the only bacterium known to adhere to and invade human cells by binding to pIgR.  相似文献   

10.
Streptococcus pneumoniae is a causative agent of otitis media, pneumonia, meningitis and sepsis in humans. For the development of effective vaccines able to prevent pneumococcal infection, characterization of bacterial antigens involved in host immune response is crucial. In order to identify pneumococcal proteins recognized by host antibody response, we created an S. pneumoniae D39 genome library, displayed on lambda bacteriophage. The screening of such a library, with sera either from infected individuals or mice immunized with the S. pneumoniae D39 strain, allowed identification of phage clones carrying S. pneumoniae B-cell epitopes. Epitope-containing fragments within the families of the histidine-triad proteins (PhtE, PhtD), the choline-binding proteins (PspA, CbpD) and zinc metalloproteinase B (ZmpB) were identified. Moreover, library screening also allowed the isolation of phage clones carrying three distinct antigenic regions of a hypothetical pneumococcal protein, encoded by the ORF spr0075 in the R6 strain genome sequence. In this work, Spr0075 is first identified as an expressed S. pneumoniae gene product, having an antigenic function during infection.  相似文献   

11.
We applied a novel negative selection strategy called genomic array footprinting (GAF) to identify genes required for genetic transformation of the gram-positive bacterium Streptococcus pneumoniae. Genome-wide mariner transposon mutant libraries in S. pneumoniae strain R6 were challenged by transformation with an antibiotic resistance cassette and growth in the presence of the corresponding antibiotic. The GAF screen identified the enrichment of mutants in two genes, i.e., hexA and hexB, and the counterselection of mutants in 21 different genes during the challenge. Eight of the counterselected genes were known to be essential for pneumococcal transformation. Four other genes, i.e., radA, comGF, parB, and spr2011, have previously been linked to the competence regulon, and one, spr2014, was located adjacent to the essential competence gene comFA. Directed mutants of seven of the eight remaining genes, i.e., spr0459-spr0460, spr0777, spr0838, spr1259-spr1260, and spr1357, resulted in reduced, albeit modest, transformation rates. No connection to pneumococcal transformation could be made for the eighth gene, which encodes the response regulator RR03. We further demonstrated that the gene encoding the putative DNA repair protein RadA is required for efficient transformation with chromosomal markers, whereas transformation with replicating plasmid DNA was not significantly affected. The radA mutant also displayed an increased sensitivity to treatment with the DNA-damaging agent methyl methanesulfonate. Hence, RadA is considered to have a role in recombination of donor DNA and in DNA damage repair in S. pneumoniae.  相似文献   

12.
The CbpA protein is an analog of the DnaJ molecular chaperone of Escherichia coli. To gain insight into the function of CbpA, we examined the nature of a cbpA null mutation with special reference to those of dnaK and dnaJ null mutations. In particular, the cbpA dnaJ double-null mutant was found to exhibit severe defects in cell growth, namely, a very narrow temperature range for growth, a defect in cell division, and susceptibility to killing by carbon starvation. These phenotypes are very similar to those reported for dnaK null mutants but not to those of dnaJ null mutants. Our results are best interpreted by assuming that CbpA is capable of compensating for DnaJ for cell growth and thus that the function(s) of CbpA is closely related to that of DnaJ.  相似文献   

13.
14.
Streptococcus pneumoniae (the pneumococcus) is a major cause of bacterial pneumonia, middle ear infection (otitis media), sepsis, and meningitis. Our previous study demonstrated that the choline-binding protein A (CbpA) of S. pneumoniae binds to the human polymeric immunoglobulin receptor (pIgR) and enhances pneumococcal adhesion to and invasion of cultured epithelial cells. In this study, we sought to determine the CbpA-binding motif on pIgR by deletional analysis. The extra-cellular portion of pIgR consists of five Ig-like domains (D1-D5), each of which contains 104-114 amino acids and two disulfide bonds. Deletional analysis of human pIgR revealed that the lack of either D3 or D4 resulted in the loss of CbpA binding, whereas complete deletions of domains D1, D2, and D5 had undetectable impacts. Subsequent analysis showed that domains D3 and D4 together were necessary and sufficient for the ligand-binding activity. Furthermore, CbpA binding of pIgR did not appear to require Ca2+ or Mg2+. Finally, treating pIgR with a reducing agent abolished CbpA binding, suggesting that disulfide bonding is required for the formation of CbpA-binding motif(s). These results strongly suggest a conformational CbpA-binding motif(s) in the D3/D4 region of human pIgR, which is functionally separated from the IgA-binding site(s).  相似文献   

15.
Spr1814 of Streptococcus pneumoniae is a putative response regulator (RR) that has four-helix helix-turn-helix DNA-binding domain and belongs to the NarL family. The prototypical RR contains two domains, an N-terminal receiver domain linked to a variable effector domain. The receiver domain functions as a phosphorylation-activated switch and contains the typical doubly wound five-stranded α/β fold. Here, we report the crystal structure of the receiver domain of spr1814 (spr1814(R)) determined in the absence and presence of beryllofluoride as a phosphoryl analog. Based on the overall structure, spr1814(R) was shown to contain the typical fold similar with other structures of the receiver domain; however, an additional linker region connecting the receiver and DNA-binding domain was inserted into the dimer interface of spr1814(R), resulting in the formation of unique dimer interface. Upon phosphorylation, the conformational change of the linker region was observed and this suggests that domain rearrangement between the receiver domain and effector domain could occur in full-length spr1814.  相似文献   

16.
Abstract The CbpA protein is an analog of the DnaJ molecular chaperone of Escherichia coli . The dnaJ cbpA double-null mutant exhibits severe defects in cell growth, namely, a very narrow temperature range for growth. To gain insight into the functions of CbpA as well as DnaJ, we isolated a multicopy suppressor gene that permits this dnaJ cbpA ~ mutant to grow normally at low temperatures. The suppressor gene was identified as rpoD , the gene that encodes the major σ 70. The biological implications of this finding are examined and discussed.  相似文献   

17.
18.
19.
There is considerable interest in pneumococcal protein antigens capable of inducing serotype-independent immunoprotection and of improving, thereby, existing vaccines. We report here on the immunogenic properties of a novel surface antigen encoded by ORF spr1875 in the R6 strain genome. An antigenic fragment encoded by spr1875, designated R4, was identified using a Streptococcus pneumoniae phage displayed genomic library after selection with a human convalescent serum. Immunofluorescence analysis with anti-R4 antisera showed that Spr1875 was expressed on the surface of strains belonging to different serotypes. Moreover, the gene was present with little sequence variability in 27 different pneumococcal strains isolated worldwide. A mutant lacking Spr1875 was considerably less virulent than the wild type D39 strain in an intravenous mouse model of infection. Moreover, immunization with the R4 recombinant fragment, but not with the whole Spr1875 protein, induced significant protection against sepsis in mice. Lack of protection after immunization with the whole protein was related to the presence of immunodominant, non-protective epitopes located outside of the R4 fragment. In conclusion, our data indicate that Spr1875 has a role in pneumococcal virulence and is immunogenic. As the R4 fragment conferred immunoprotection from experimental sepsis, selected antigenic fragments of Spr1875 may be useful for the development of a pneumococcal protein-based vaccine.  相似文献   

20.
Streptococcus pneumoniae (pneumococcus) is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages) residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA) is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号